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Colistin is highly promising against multidrug-resistant and extensively drug-
resistant bacteria clinically. Bacteria are resistant to colistin mainly through 
mcr and chromosome-mediated lipopolysaccharide (LPS) synthesis-related 
locus variation. However, the current understanding cannot fully explain the 
resistance mechanism in mcr-negative colistin-resistant strains. Significantly, 
the contribution of efflux pumps to colistin resistance remains to be  clarified. 
This review aims to discuss the contribution of efflux pumps and their related 
transcriptional regulators to colistin resistance in various bacteria and the 
reversal effect of efflux pump inhibitors on colistin resistance. Previous studies 
suggested a complex regulatory relationship between the efflux pumps and their 
transcriptional regulators and LPS synthesis, transport, and modification. Carbonyl 
cyanide 3-chlorophenylhydrazone (CCCP), 1-(1-naphthylmethyl)-piperazine 
(NMP), and Phe-Arg-β-naphthylamide (PAβN) all achieved the reversal of colistin 
resistance, highlighting the role of efflux pumps in colistin resistance and their 
potential for adjuvant development. The contribution of the efflux pumps to 
colistin resistance might also be  related to specific genetic backgrounds. They 
can participate in colistin tolerance and heterogeneous resistance to affect the 
treatment efficacy of colistin. These findings help understand the development of 
resistance in mcr-negative colistin-resistant strains.
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Introduction

The emergence and widespread occurrence of carbapenem-resistant gram-negative bacteria 
(CRGB: Enterobacteriaceae, Pseudomonas spp., Acinetobacter spp., etc.) poses a severe public 
health risk, with some metallo-β-lactamases-producing individuals also revealing inherent 
resistance to ceftazidime/avibactam. These CRGB acquire multiple antimicrobial resistance 
determinants under the action of mobile elements, promoting their resistance to tetracycline, 
quinolone, aminoglycosides, and other antibiotics. Additionally, energy-dependent efflux 
pumps, the classical pathway of bacterial resistance, play an essential role in multidrug resistance 
in bacteria. The efflux pumps can be divided into resistance-nodulation-cell division (RND), 
major facilitator superfamily (MFS), multidrug and toxic compound extrusion (MATE), small 
multidrug resistance (SMR), and ATP-binding cassette (ABC) super-families based on the 
differences in efflux transport proteins (Li and Nikaido, 2009). These transporters have a wide 
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range of efflux substrates covering antibiotics for common clinical 
anti-infective treatments (β-lactams, tetracyclines, chloramphenicol, 
fluoroquinolones, aminoglycosides, sulfonamides, etc.), besides being 
involved in the elimination of bacterial intracellular metabolites. In 
the clinical infection setting, these efflux pumps also eliminate a wide 
range of chemical disinfectants favoring the long-term colonization of 
an abiotic surface by pathogens. These efflux pumps also respond 
quickly to enhance their viability when exposed to harsh environments 
(Fernández and Hancock, 2012). In particular, efflux pump 
transcription regulators are essential in regulating oxidative stress, 
physiological metabolism, and fitness (Holden and Webber, 2020). 
These results suggest that the efflux pumps are also an efficient means 
for bacteria to resist external environmental stress. Understanding 
their operation and development can help understand the evolutionary 
process of bacteria.

As carbapenems failed to treat CRGB, colistin (polymyxin B and 
E) was reintroduced to treat some refractory gram-negative infections. 
Colistin, as a cationic polypeptide compound, mainly acts on the outer 
membrane of bacteria carrying a negative charge. Colistin can destroy 
the stability of the outer membrane by displacing Ca2+ and Mg2+ ions, 
thus playing a bactericidal role (Falagas and Kasiakou, 2005). 
However, the lipid modification mediated by mutation and the 
inactivation of the two-component regulatory systems (TCS: PmrAB 
and PhoPQ) and mgrB are common causes of reduced susceptibility 
to colistin in bacteria. Plasmid-mediated horizontal transfer of mcr 
and its variants in bacteria promotes the rapid emergence of colistin 
resistance. In contrast, the role of efflux pumps in colistin resistance 
has received less attention. Previous studies have shown that efflux 
pump inhibitors (EPIs) CCCP and NMPs reverse colistin resistance, 
suggesting the role of efflux pumps in colistin resistance. Despite 
colistin’s much larger size than other common antibiotics and 
chemicals, the efflux of colistin compounds may be used as efflux 
substrates have been observed in many bacteria (Warner and Levy, 
2010; Sundaramoorthy et  al., 2019a). LPS modification and 
overexpression of efflux pumps and their regulators are also thought 
to be important components of the colistin resistance mechanisms in 
mcr-negative K. pneumoniae (Naha et al., 2022). In January 2023, 
we conducted a search on PubMed and Web of Science databases 
using keywords such as “colistin,” “efflux pump,” and “cationic 
antimicrobial peptide.” We  screened over 100 publications 
summarized in this review, aiming to explore the role of the efflux 
pump in colistin resistance and provide a basis for elucidating the 
resistance mechanisms of mcr-negative colistin-resistant strains. The 
flow chart depicting the search and selection process is provided in 
Supplementary Figure S1.

General and novel colistin resistance 
mechanisms

The absence of the outer membrane limits the use of colistin 
against gram-positive bacteria. The colistin resistance mechanisms in 
gram-negative bacteria have been summarized in many previous 
reviews (Jeannot et  al., 2017; Gogry et  al., 2021). In general, the 
colistin resistance mechanism mainly includes two steps. First, point 
mutations in the TCS PmrAB, PhoPQ, CrrAB, and other lipid A 
modification coding genes located in chromosome loci produce more 
positively charged phosphoethanolamine to be added to the outer 

membrane lipids, resulting in weakened binding to colistin. 
Mutational inactivation and truncation of the insertion sequence of 
the PhoQ kinase inhibitor mgrB may also be effectively involved in 
this process. Second, phosphoethanolamine transferase encoded by 
mcr can also mediate the modification of the outer membrane (lipid 
A). More than 100 variants of mcr have been identified since it was 
first reported in 2015 (Liu et al., 2016).1 The mcr variants have 
completed horizontal transfer among different species with the help 
of mobile elements, posing a severe threat to public health. 
Compensatory mutations can effectively alleviate the fitness costs of 
mcr and promote the continued existence of plasmids carrying mcr 
(Yang et  al., 2020). A recent study on A. hydrophila suggests that 
MlaA, the outer membrane lipoprotein-encoding gene, may 
be associated with high levels of colistin resistance (Liu et al., 2021). 
A recent study found that the RpoE stress system mediated colistin 
resistance in E. coli without disturbing the lipid A profile (Zeng et al., 
2023). The discovery of colistin-degrading proteases also reveals the 
diversity of colistin resistance mechanisms (Lee et al., 2022).

Impacts of EPIs on colistin resistance

Although colistin is one of the few treatments available for multi-
drug resistant pathogens, it does not seem effective in reducing patient 
mortality (Kelesidis and Falagas, 2015; Lee et al., 2020). Therefore, 
effective alternative treatment measures need to be developed. Current 
reviews of colistin resistance mechanisms have described less about 
the contribution of efflux pumps. Ni et al. (2016) successfully restored 
colistin susceptibility in colistin-resistant A. baumannii, P. aeruginosa, 
K. pneumoniae, and S. maltophilia using the efflux pump inhibitor 
CCCP (Table  1). Subsequent studies demonstrated that CCCP 
reversed colistin resistance in gram-negative bacteria that produced 
or did not produce mcr (Osei Sekyere and Amoako, 2017; Baron and 
Rolain, 2018). In contrast, other common EPIs (reserpine, verapamil, 
PAβN, and NMP) have more pronounced effects on the MICs of 
non-colistin-resistant strains (Table 1) (Ni et al., 2016; Osei Sekyere 
and Amoako, 2017). DNP, another proton-carrier inhibitor similar to 
CCCP, has apparent effects on colistin-resistant A. baumannii (Park 
and Ko, 2015). These results suggested that the differences in EPIs 
might be  the main reason influencing the restoration of colistin 
susceptibility. The possible explanation is that CCCP-mediated 
electrochemical gradient depolarization can restore the negative 
charge of the outer membrane and lead to increased susceptibility to 
bacteria (Ni et al., 2016). Similarly, the MarR inhibitor salicylic acid 
can affect the negative cell surface charge of colistin-resistant E. coli 
and restore colistin susceptibility, but this effect is not apparent in 
colistin-sensitive E. coli (Sundaramoorthy et al., 2019b). Meanwhile, 
CCCP can reduce the metabolic activity of A. baumannii and increase 
its susceptibility to colistin (Park and Ko, 2015). A study in 
P. aeruginosa also showed that CCCP affected energy metabolism and 
thus decreased the colistin tolerance of P. aeruginosa biofilms (Pamp 
et  al., 2008). In contrast, a previous study showed that CCCP 
contributed to the increase in polymyxin B resistance in wild-type and 
phop mutant in survival assays, which was mainly explained by the 

1 https://www.ncbi.nlm.nih.gov/pathogens/refgene/#mcr
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reduction of the proton gradient in the bacterial inner membrane 
(Alteri et al., 2011). Overall, more evidence is needed to confirm its 
impact on the cellular microenvironment and the potential 
involvement of other mechanisms.

Efflux pumps belonging to RND, MATE, SMR, and MFS families 
can use proton motive force to mediate efflux to various antibiotics 
(Lomovskaya and Watkins, 2001). Notably, CCCP reduces the activity 
of these multidrug-resistant efflux pumps by disrupting the proton 
motive force through interference with the transmembrane potential. 
A recent study found that CCCP, but not PAβN, reversed colistin 
resistance in a colistin-resistant K. pneumoniae strain that was mcr-
negative and had no mutations in mgrB, phoPQ, pmrABCDK and 
reported efflux pump-related genes (ramAR, acrAB, kpnEF/GH, soxS, 
etc.) (Pu et al., 2023). It remains unclear whether other proton motive 
force-dependent and energy-driven efflux pumps contribute to 
colistin resistance (Figure  1). Additionally, the crrB mutant 
K. pneumoniae had a 4-fold decreased for colistin MIC in the presence 
of PAβN, suggesting a potential role of the efflux pump in colistin 
resistance (Sun L. et al., 2020). In the presence of NMP, the colistin 
MICs in colistin-resistant with mcr-negative A. baumannii/K have 
been observed. Pneumoniae lacking lipid A-related modification gene 
variation decreased significantly (Naha et  al., 2020; Yilmaz et  al., 

2020). Li et  al. also found that the colistin MICs in ST11-blaKPC-2 
resistant lineage significantly reduced in the presence of NMP (Yang 
et al., 2021). Although these results suggest a potential pathway for the 
involvement of efflux pumps in colistin resistance, more substantial 
evidence is still needed. Considering the differences among species, 
we then summarized in detail the roles of the efflux pumps and their 
related genes in colistin resistance in different species.

Enterobacteriaceae

Escherichia coli, Enterobacter, and 
Salmonella

Colistin-resistant Enterobacteriaceae are widely identified in 
clinical infection settings and animal husbandry, and the status of 
antimicrobial resistance is a concern (Shen et al., 2019). As a 
transcription regulator commonly found in E. coli, K. pneumoniae, 
and other members of Enterobacteriaceae, marR played an essential 
role in regulating efflux pumps. Furthermore, marR mediated the 
inhibition of marA, while salicylic acid, antibiotic pressure, and 
endogenous amino acid replacement could release the disinhibition 

TABLE 1 Effect of common efflux pump inhibitors on the colistin MICs.

Isolate mcr
Efflux pump inhibitors FC

References
CCCP NMP PAβN other ≥4 2

E. coli ■ ■ × × × ■ × Liao et al. (2020)

E. coli × ■ × × × ■ × Osei Sekyere and Amoako (2017)

K. pneumoniae ■ ■ × × × ■ × Baron and Rolain (2018)

K. pneumoniae × ■ × × × ■ × Osei Sekyere and Amoako (2017)

K. pneumoniae × × × ■ × ■ × Sun L. et al. (2020)

K. pneumoniae × × ■ × × × ■ Naha et al. (2020)

A. baumannii Unknown ■ × × × ■ × Ni et al. (2016)

A. baumannii × ■ × ■ TZ, CPZ ■ × Machado et al. (2018)

A. baumannii × ■ ■ × × ■ × Yilmaz et al. (2020)

A. baumannii × ■ × × DNP ■ × Park and Ko (2015)

P. aeruginosa × ■ × × × ■ × Baron and Rolain (2018)

P. aeruginosa Unknown × × ■ × ■ × Ni et al. (2016)

S. marcescens × ■ × × × ■ × Baron and Rolain (2018)

S. maltophilia Unknown ■ × × × ■ × Ni et al. (2016)

S. maltophilia Unknown × ■ × × ■ × Ni et al. (2016)

E. cloacae ■ ■ × × × ■ × Baron and Rolain (2018)

E. cloacae × ■ × × × ■ × Osei Sekyere and Amoako (2017)

E. cloacae* × × × ■ × ■ × Telke et al. (2017)

C. freundii × ■ × × × ■ × Osei Sekyere and Amoako (2017)

S. enterica × ■ × × × ■ × Baron and Rolain (2018)

M. morganii × ■ × × × ■ × Baron and Rolain (2018)

P. mirabilis × ■ × × × ■ × Baron and Rolain (2018)

A. hydrophila Unknown × × ■ × ■ × Lo et al. (2022)

B. intermedia × ■ × × × ■ × Zoaiter et al. (2023)

TZ, thioridazine; CPZ, chlorpromazine; DNP, 2,4-dinitrophenol; FC, Fold change; *E. cloacae/E. asburiae.
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and activate marA expression under physiological conditions, thus 
upregulating the MDR efflux pump AcrAB-TolC (Grkovic et  al., 
2002). Activated marA could also upregulate the expression of gene 
encoding lipopolysaccharide core heptose (II) kinase, known as waay. 
This upregulation increases the negative charge of the bacterial outer 
membrane, subsequently enhancing its ability to bind cationic 
antimicrobial peptides (collateral sensitivity) (Lázár et  al., 2018). 
Sundaramoorthy et al. (2019b) found that the negative charge of the 
outer membrane of colistin-resistant E. coli increased in the presence 
of the marR inhibitor salicylic acid, thereby restoring susceptibility to 
colistin. Another study found that the decreased polymyxin B 
susceptibility due to the marAB upregulation and marR mutant was 
observed, mainly attributed to the action of AcrAB and other TolC-
dependent efflux pumps (Warner and Levy, 2010). These findings 
demonstrated the different pathways through which marRA is 
involved in colistin resistance. Another soxRS system, common in 
E. coli and Salmonella, plays an essential role in coping with 
superoxide, nitric oxide, and antibiotic stress. Increased soxS 
expression induced multidrug-resistant efflux pump AcrAB 
expression, decreased membrane permeability, and promoted the 
formation of multidrug-resistant phenotypes (Koutsolioutsou et al., 
2005). The same binding sites exist in the promoters regulating Sox, 
Rob, and Mar systems (mar/sox box), resulting in a high degree of 
overlap between the genes (micF, acrAB, ompF, fumC, etc.) of soxRS 
and mar regulons (Figure 1) (Martin et al., 1999). Both soxRS and 
waaY could be  activated by superoxide induction, but waaY 
transcription was SoxRS dependent (Figure  1) (Lee et  al., 2009). 
Although the absence or overexpression of soxS in E. coli harboring 

the soxR mutation did not significantly affect CAMP susceptibility, the 
overexpression of SoxS in the tolC mutant contributed to increased 
susceptibility to polymyxin B (Warner and Levy, 2010). A recent study 
showed that not only the collateral susceptibility of antimicrobial 
resistance development to cationic polypeptides was associated with 
the changes in the regulation of LPS-related genes, but also a variety 
of physiological metabolism-related genes such as iron ion-binding 
proteins and transmembrane transport proteins played an important 
role (Grézal et al., 2023). This also reflected the pleiotropy of these 
global regulators involved in regulating multiple links of physiological 
metabolism. The disruption of tolC directly affected outer membrane 
integrity, and the intracellular accumulation of toxic substances 
activated marA, soxS, and rob to upregulate the efflux pumps (Rosner 
and Martin, 2009; Zgurskaya et al., 2011). Additionally, Rob might 
directly or indirectly increase marRAB expression by upregulating 
micF in response to colistin pressure, although the rob deficiency had 
little effect on CAMP susceptibility (Oh et  al., 2000; Warner and 
Levy, 2010).

Heteroresistance may be an intermediate stage in the transition of 
susceptible bacteria to antimicrobial resistance, which is an essential 
reason for the failure of clinical anti-infective therapy (Falagas et al., 
2008). Telke et al. found that soxRS-induced AcrAB-TolC efflux pump 
mediated heterogeneous resistance to colistin and could restore 
colistin susceptibility through PAβN in Enterobacter spp. (Telke et al., 
2017). Unlike CCCP and DNP, PAβN could act directly as an inhibitor 
of AcrAB and AcrEF efflux pumps. Therefore, these results also 
suggested that AcrAB efflux pump was involved in colistin resistance 
(Misra et al., 2015). Colistin could mediate bactericidal effects by 

FIGURE 1

Potential relationship between multidrug resistance efflux pumps and their transcriptional regulatory factors and colistin resistance (E.coli, 
Enterobacter, and Salmonella). Two-component regulatory systems (PmrAB, PhoPQ, etc.) and related pathway variations are the classical pathways of 
mcr-negative colistin-resistant isolates. (1) Derepressed marA/soxS activated AcrAB-TolC or other RND efflux pumps involved in antibiotics efflux. (2) 
marA overexpression conferred collateral sensitivity to cationic antimicrobial peptides by up-regulating waaY. (3) Role of tolC in regulating PhoPQ via 
ecr in Enterobacter spp. remains to be confirmed. (4) Whether the effect of CCCP on the bacterial microenvironment mediates the change in colistin 
susceptibility is unclear.
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producing hydroxyl radicals or causing oxidative stress reactions as a 
class of bactericidal antibiotics (Bialvaei and Samadi Kafil, 2015; Yu 
et  al., 2019). However, this bactericidal effect did not appear to 
influence the soxRS transcriptional levels in heterogeneous colistin-
resistant Enterobacter isolates (Telke et al., 2017). The necessity of 
colistin heteroresistance by tolC (but not acrB) was further confirmed 
in E. cloacae, and tolC could activate the PhoQ-PhoP system by 
affecting the ecr (Figure 1) (Huang et al., 2019). The deletion of acrB 
is not sufficient to completely reverse colistin heterologous resistance 
in E. cloacae (Huang et al., 2019). Previous findings suggested efflux 
pumps are the primary mechanism for generating stable 
heterogeneous subpopulations (Manjunath et al., 2021). The fitness 
costs of these resistance mechanisms remain to be evaluated. Besides 
the co-regulation of tolC with Mar, Rob, and Sox, the expression of 
tolC, which carried multiple promoters, was also affected by EvgAS 
and PhoPQ, indicating that AcrAB-TolC had the potential to cope 
with different environments and responded quickly (Zhang et al., 
2008; Pérez et al., 2012).

Transcriptome and proteomics analyses revealed that the 
expression of efflux pump AcrAB in E. coli and K. pneumoniae 
significantly increased after exposure to polymyxin B under 
experimental conditions (Ramos et al., 2016; Liu et al., 2020). The 
overexpression of cpxR in the absence of acrB affected the expression 
of TCS genes (phoP, phoQ, pmrB, pmrC, pmrH, and pmrD) and 
restored colistin susceptibility in Salmonella (Zhai et al., 2018). The 
variation in the acrB 620 site in Salmonella contributed to the 
restoration of colistin susceptibility, which could be explained by the 
defective macromolecular transport due to the altered conformation 
of the switch loop in this site (Cha et al., 2014; Kapach et al., 2020). 
Either tolC deletion alone or dual deletion of cpxR and tolC increased 
the susceptibility of S. enterica to colistin to varying degrees. The 
inactivation of tolC impaired the function of the entire RND efflux 
family and other tolC-dependent efflux pumps, not only the AcrAB 
pump (Zhang M. K. et  al., 2021). These results highlighted the 
different contributions of acrB, soxRS, and marRA to colistin 
resistance in different backgrounds, the role of tolC mutations in 
regulating colistin resistance, and the complex regulatory network 
among the efflux pump, two-component system, and LPS modification.

Klebsiella pneumoniae

Multicenter studies from China have shown that the insertion 
inactivation of mgrB is the primary mechanism of colistin resistance in 
K. pneumoniae (Li et al., 2023). However, acrR insertion by IS26 is 
widespread in ST11-blaKPC-2-producing PR-CRKP (Polymyxin-resistant 
carbapenem-resistant K. pneumonia), which may be related to the low 
level of colistin resistance in these high-risk clones (Yang et al., 2021; Li 
et  al., 2023). ramRA is a widely described global regulator in 
K. pneumoniae compared with E. coli and Salmonella, which mediates 
resistance to antibiotics such as tigecycline, nitrofurantoin, and beta-
lactams by regulating AcrAB and OqxAB (Hao et  al., 2022). The 
expression of soxS, ramA, and acrAB-tolC significantly upregulated in 
mcr-negative colistin-resistant K. pneumoniae lacking specific 
TCS-related gene variants, suggesting the role of soxS, ramA, and efflux 
pumps in colistin resistance (Naha et al., 2020). Similar to marA and 
soxS, ramA can also affect LPS modification. ramA directly binds to and 
activates the genes involved in lipid A biosynthesis: lpxC, lpxL-2, and 

lpxO, thereby modifying lipid A and resulting in decreased colistin 
susceptibility and increased anti-serum phagocytosis under the 
condition of increased ramA expression (Figure 2) (De Majumdar et al., 
2015). Li et al. demonstrated in vitro that ramR variants can mediate 
polymyxin resistance, possibly related to derepressed ramA-mediated 
LPS alterations and multidrug resistance efflux pump overexpression 
(AcrAB) (Li et al., 2023). Another survey in China showed that the 
transcription level of ramA in colistin-resistant K. pneumoniae was not 
statistically significantly different from that in non-colistin-resistant 
strains, but the study lacked the main antimicrobial resistant and 
hypervirulent lineages ST11 and ST23 prevalent in China (Wang et al., 
2017). However, ramA overexpression and variation were common in 
some colistin-resistant K. pneumoniae ST11 and ST147 isolates (Naha 
et  al., 2020; Lv et  al., 2021; Bolourchi et  al., 2021a,b). Cationic 
antimicrobial peptides are also common in the human environment. 
Thus, whether these high-risk clones contribute to the co-evolution of 
hypervirulence and antimicrobial resistance by activating the efflux 
pump is not clear. A previous study showed that ΔacrB K. pneumoniae 
mutant had increased susceptibility to colistin and that LPS and CPS 
production were not significantly affected, revealing a role for AcrAB in 
the antimicrobial peptides resistance (Padilla et  al., 2010). A less-
described class of multidrug efflux RND transporter, KexD, is also 
present in K. pneumoniae and can be expressed constitutively with 
E. coli TolC or K. pneumoniae KocC (Ogawa et al., 2012). KexD has been 
proven to contribute to colistin resistance, and both of them are more 
conducive to high-level colistin resistance in K. pneumoniae under the 
induction of its neighbor gene crrB (Figure 2) (Cheng et al., 2018; Pantel 
et al., 2023). The specific diversity of the crrBAC-kexD cluster in the 
K. pneumoniae ST11 group suggests that ST11, a closely related lineage 
with carbapenem resistance and hypervirulence, is at risk of further 
developing colistin resistance (Kim et al., 2022). Overall, the colistin 
resistance mechanisms in mcr-negative colistin-resistant pathogens may 
be accumulated, highlighting the synergistic involvement of multiple 
mechanisms. Notably, the homolog of mexCD-oprJ efflux, tmexCD-
toprJ, can be plasmid-mediated to acquire resistance to tigecycline in 
Enterobacteriaceae rapidly (Lv et al., 2020). In recent years, it has been 
identified that tmexCD-toprJ and mcr coexist in the same host of mobile 
elements, declaring the failure of last-line antibiotics (tigecycline and 
colistin) treatment and suggesting the threat of the rapid emergence of 
superbugs (Sun S. et al., 2020; Dong et al., 2022).

A study showed that several mcr-negative colistin-resistant 
K. pneumoniae strains isolated from CC15 and CC101 had different 
degrees of overexpression of acrAB, ramA, kpnEF (SMR pump), and 
kpnGH (MFS pump) (Naha et al., 2022). KpnEF efflux pumps belong 
to the small MDR family. The ΔKpnEF mutants showed increased 
susceptibility to various cationic antimicrobial peptides such as 
colistin, whereas KpnEF expression differs in the cpxAR mutant 
background (Figure 2) (Srinivasan and Rajamohan, 2013). The kpnGH 
is homologous to emrAB and belongs to the MFS efflux pump. In vitro, 
ΔkpnGH mutant susceptibility to cephalosporins, imipenem, 
polymyxin B, chlorhexidine, and other antimicrobial agents increased 
(Srinivasan et al., 2014).

Acinetobacter baumannii

The antimicrobial resistance surveillance from China showed that 
the colistin resistance rate of A. baumannii was still relatively low, but 
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more than half of the isolates showed carbapenem-resistant 
A. baumannii (CRAB) (Gao et  al., 2017; Zhang et  al., 2020). 
A. baumannii had intrinsic resistance to multiple antibiotics. Hence, 
colistin has become one of the few options for treating CRAB. In the 
clinical application of colistin in anti-infection therapy, it is easy to 
induce A. baumannii to lead to colistin resistance by modifying 
phosphoethanolamine mediated by the two-component regulatory 
system PmrAB (Qureshi et al., 2015). In A. baumannii, three significant 
efflux pumps, AdeAB, AdeIJK, and AdeFGH, are involved in expelling 
antibiotics such as tetracycline, beta-lactam, and quinolones (Ayoub 
Moubareck and Hammoudi Halat, 2020). After A. baumannii was 
exposed to colistin, the upregulation of Ade cluster encoding genes was 
common; emrB and macAB overexpression were also observed (Cheah 
et al., 2016; Hua et al., 2017; Boinett et al., 2019). In E. coli, MacA 
demonstrated high affinity and specificity for the core LPS, suggesting 
that MacAB-TolC could be  involved in LPS transport (Lu and 
Zgurskaya, 2013). phoP inhibited macAB transcription, and macAB 
deletion attenuated Salmonella’s virulence more than the tolC mutant 
(Nishino et al., 2006). Despite the upregulation of MDR efflux pumps, 
the laboratory-induced colistin-resistant isolates showed restoration of 
susceptibility to cefepime, azithromycin, and teicoplanin compared 
with the parental isolates (Moffatt et al., 2010; Li et al., 2015). Hua et al. 
also found that colistin induced partial restoration of antibiotic 
susceptibility in resistant strains but they mainly focused on β-lactams 
(Hua et al., 2017). Increased susceptibility to bacitracin, vancomycin, 
and beta-lactams was also observed in A. baumannii with high 
permeability of the outer membrane (Leus et  al., 2018). These 
phenomena suggested that efflux pumps might be more involved in 
the transport of toxic compounds rather than in the efflux of the 
dominant antibiotics in colistin-resistant strains with increased outer 

membrane permeability due to LPS loss (Henry et al., 2012; Henry et 
al., 2015). Such collateral sensitivity could be  masked by multiple 
β-lactamases and other plasmid-mediated resistance determinants in 
some clinical isolates of colistin-resistant A. baumannii.

Machado et al. (2018) identified several heterogeneous colistin-
resistant strains that lacked TCS gene variants (lpxACD and pmrCAB). 
The EPIs CCCP, NMP, and PAβB were found to reverse polymyxin 
resistance to varying degrees in these strains. Furthermore, these strains’ 
efflux pump genes adeB, adeJ, adeG, craA, amvA, abeS, and abeM were 
overexpressed after colistin exposure (Machado et al., 2018). Colistin 
resistance mediated by the mutations in the pmr operon is generally 
expensive for A. baumannii (Geisinger and Isberg, 2017). Colistin 
heteroresistant A. baumannii isolates with only lpxACD mutations and 
overexpression of adeAB, adeG, and adeIJK were also observed in other 
studies, highlighting the role of efflux pumps in colistin heteroresistance 
(Chen et  al., 2020). Besides participating in antibiotics efflux, the 
overexpression of these efflux pumps may be associated with fitness 
advantages mediated by these clinical isolates at specific sites of 
infection (Yoon et al., 2016). Another study also demonstrated that the 
resistance of A. baumannii to colistin could be reversed by NMP. AdeRS 
mutations mediating AdeAB or other RND-type efflux system 
overexpression were suggested to be  the possible cause of colistin 
resistance in these isolates (Yilmaz et al., 2020). Additionally, increased 
expression of efflux transporter proteins (AdeABC and HlyD family) 
after colistin exposure was also observed in another study (Cheah et al., 
2016). However, neither AdeRS nor AdeAB was shown to affect the 
colistin MIC in vitro (Richmond et  al., 2016). These findings also 
suggested that efflux pump overexpression played a role in the excretion 
of toxic compounds and maintaining outer membrane integrity besides 
antibiotic efflux. The role of efflux pumps in antimicrobial resistance is 

FIGURE 2

Potential relationship between multidrug resistance efflux pumps and their transcriptional regulatory factors and colistin resistance (K. pneumoniae). (1) 
ramAR was the dominant efflux pump transcriptional regulator in K. pneumoniae, binding to lpxC/X/O and participating in lipopolysaccharide 
synthesis. (2) KpnEF efflux pump was regulated by cpxRA and involved in colistin efflux and capsule synthesis. (3) Co-expression of CrrAB with the 
adjacent KexD efflux pump promoted the development of high levels of colistin resistance.
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also influenced by specific physiological settings (Leus et al., 2018). 
Additionally, different biological effects were found in AdeB deletion 
strains with different genetic backgrounds, suggesting that the function 
of the AdeAB efflux pump might be heterogeneous in other individuals 
(Richmond et al., 2016). These results indicated that the AdeAB pump 
could target different substrates under different living environments 
and selective pressures.

The two-component system and efflux pumps can be activated in 
bacteria by pH, nutrients, redox state, osmotic pressure, quorum 
signaling, and antibiotics (Worthington et al., 2013; Bazyleu and Kumar, 
2014). One reported that the expression of AdeRS, AdeABC, and 
AdeFGH promoters did not show significant differences under sub-MIC 
colistin concentration and different growth conditions (Gil et al., 2021). 
However, the activation of the efflux pumps adeB, adeG, adeJ, adeH, and 
autoinducer synthase (abaI) by subinhibitory colistin has been observed 
in some clinical isolates (Sato et  al., 2018; Shenkutie et  al., 2022). 
Multiple biological effects on bacteria are observed at sublethal antibiotic 
concentrations, one of which can directly engage or interfere with 
quorum sensing systems (QS) (Figure  3) (Andersson and Hughes, 
2014). As a signal molecule in the QS system, abaI is essential in 
regulating biofilms and can be used as a substrate for the AdeFGH efflux 
pump (He et al., 2015). A. baumannii isolates in a biofilm state has 
higher minimal biofilm inhibition concentrations (MBICs), which helps 
reduce the therapeutic effect of colistin (Kim et al., 2015). However, 
AdeRS did not always exist in A. baumannii isolates (Montaña et al., 
2015). The restoration of colistin susceptibility by EPIs was observed in 
some colistin-resistant isolates without adeRS, suggesting the existence 
of other regulatory pathways and efflux pumps involved in colistin 
resistance (Yilmaz et al., 2020). Lin et al. observed that the transcription 
of emrB and several emrB- like genes were upregulated in colistin 
resistance-induced A. baumannii. Furthermore, ΔemrB mutants had 
increased susceptibility to colistin, demonstrating the contribution of 
the EmrAB pump to colistin resistance in A. baumannii (Lin et al., 
2017). EmrAB was previously described mainly in E. coli and could 
mediate increased resistance to nalidixic acid, thiolactamycin, 
nitroquinoline, and hydrophobic proton uncouplers, with relatively little 
information available in A. baumannii (Yousefian et  al., 2021). In 
another study, significant transcriptional changes were observed in the 
MATE (ydhE), MFS (mdfA), and SMR (ynfA and sugE) efflux pumps of 
colistin-resistant A. baumannii upon exposure to subinhibitory colistin 
concentrations (Paul et al., 2020). The overexpression of the MATE 
family efflux pump and mdfA contributes to the efflux of cationic 
compounds, but their contribution to colistin resistance remains 
confirmed (He et al., 2011; Li et al., 2015). A putative solvent/toluene-
tolerant efflux ABC transporter protein, Ttg2C, may be essential in high-
level colistin resistance in A. baumannii (Thi Khanh Nhu et al., 2016).

Pseudomonas aeruginosa

Pseudomonas aeruginosa is a common pathogen causing burn 
infection and cystic fibrosis, exhibiting intrinsic resistance to different 
antibiotics. MexAB-OprM, MexXY-OprM, and MexCD-OprJ are widely 
described RND family efflux pumps in P. aeruginosa with various efflux 
substrates: β-lactams, aminoglycosides, quinolones, tetracyclines, 
tigecycline, macrolides, amphenicols, novobiocin, sulfonamides, and 
trimethoprim (Li et al., 2015). MexXY is an induced efflux system, often 
characterized by concentration-dependent induction by ribosomal 

inhibitors (such as chloramphenicol, tetracyclines, macrolides, and 
aminoglycosides) (Jeannot et al., 2005). However, the overexpression of 
MexXY under exposure to ribosome-targeting antimicrobial agents was 
inversely correlated with colistin susceptibility and accompanied by the 
downregulation of the arn operon (Poole et al., 2015). Meanwhile, the 
heterogeneity of MexXY expression was observed in clinically isolated 
colistin-resistant P. aeruginosa isolates with different resistance levels, 
suggesting the possibility of intervention by other mechanisms (Goli 
et al., 2016). In an experiment on chlorhexidine (cationic polypeptide 
compounds) induced resistance, several mutants with decreased colistin 
susceptibility were observed, and these mutants exhibited MexY 
overexpression. While adding chlorpromazine significantly reduced the 
chlorhexidine MICs in the resistant mutants (Tag ElDein et al., 2021). 
Under colistin selective pressure, the two-component regulator ParR-
ParS activated the arnBCADTEF operon, promoted mexY overexpression 
and inhibited oprD to reduce susceptibility to colistin (Fernández et al., 
2010; Muller et al., 2011). mexXY deletion in ParRS-dependent pathways 
increased colistin tolerance by upregulating arnA and pmrA expression. 
The simultaneous overexpression of the arn opern and mexXY induced 
by the dual activation of PmrAB and ParRS contributed to the high-level 
resistance of the pmrB mutants to colistin, suggesting that the synergistic 
effect of efflux pumps and LPS modification promoted the development 
of colistin resistance (Puja et al., 2020) (Figure 3). In another study on 
the development of cross-resistance to colistin by exposing P. aeruginosa 
to chlorhexidine, proteomics revealed that the upregulation of MexA 
expression might be related to colistin resistance (Hashemi et al., 2019). 
Zhang W. et al. (2021) also observed significant upregulation of mexAB-
oprM in laboratory-induced colistin-resistant P. aeruginosa. These results 
were similar to the previous findings of Pamp et al., who found that 
MexAB was involved in colistin tolerance, especially in adapting different 
subpopulations of bacteria to colistin in P. aeruginosa biofilms (Pamp 
et al., 2008). The efflux pump activator MerR induced mexAB-oprM and 
mexEF-oprN to participate in biofilm tolerance and acted as a repressor 
of phoPQ to participate in colistin resistance (Chambers and Sauer, 
2013). In P. aeruginosa, the efflux pump is involved in the transport of 
signal molecules, and its expression can also be  affected by the QS 
system. The genes related to QS were upregulated when P. aeruginosa was 
exposed to subinhibitory colistin concentration (Figure 3) (Cummins 
et  al., 2009). However, whether this pathway can promote colistin 
resistance by activating efflux pumps or biofilms remains to 
be confirmed.

rsmA is a post-transcriptional regulatory protein involved in 
regulating various virulence-related genes, and its deletion causes 
overexpression of the MexEF-OprN pump and downregulation of type 
III secretion (Burrowes et al., 2006). However, the disruption of type 
III via secretion rsmA is associated with the overexpression of MexCD-
OprJ or MexEF-OprN (Linares et al., 2005; Mlynarcik and Kolar, 2019). 
On exposure to different membrane-targeted drugs, these strains can 
mobilize various genetic determinants, such as pmr operons and efflux 
pumps, in response to environmental stresses (Chiang et al., 2012). The 
MexAB-oprM, MexCD-oprJ, and MuxABC-opmB efflux pumps all 
contribute to colistin-tolerant subpopulations (Chiang et al., 2012).

Stenotrophomonas maltophilia

Stenotrophomonas maltophilia is widespread in the natural 
environment and exhibits natural resistance to numerous 
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antibiotics, significantly limiting clinical use options. Despite 
colistin’s in vitro antimicrobial activity, the assessment of colistin 
susceptibility in S. maltophilia is influenced by various factors in 
vitro. (Martínez-Servat et al., 2018). Lin et al. found that MacABCsm 
had a broader substrate spectrum on macrolides, aminoglycosides, 
and polymyxin than its counterpart in E. coli, and the deletion of 
MacAB resulted in a significant decrease in the colistin MIC of 
S. maltophilia isolates (Lin et al., 2014). Meanwhile, MacABCsm was 
stably expressed in S. maltophilia, associated with intrinsic 
resistance (Lin et  al., 2014). Although multiple genes encoding 
efflux pumps have been identified in colistin-resistant S. maltophilia, 
their specific contribution to colistin resistance remains elucidated 
(Li et al., 2019).

Aeromonas hydrophila

Aeromonas hydrophila is a common group of opportunistic 
pathogens in the Aeromonas genus associated with aquatic 
environments. The AheABC efflux pump regulates the efflux of 
cefoperazone, cefuroxime, erythromycin, pristinamycin, and trityltin 
in A. hydrophila and participates in its MDR phenotype (Hernould 
et al., 2008). A recent study showed that the expression levels of three 
putative RND efflux pump genes, AHA0021, AHA1320, and AheB, 
significantly increased in MDR A. hydrophila. Also, PAβN 
significantly reduced the MIC of piperacillin/tazobactam, imipenem, 
erythromycin, and polymyxin B, suggesting the contribution of the 
RND efflux pump to colistin resistance (Lo et al., 2022).

Efflux pumps are associated with 
intrinsic colistin resistance in other 
gram-negative bacteria

Serratia marcescens and Proteus mirabilis

Proteus and S. marcescens are also common but easily 
overlooked opportunistic pathogens in clinical infections, often 
showing inherent resistance to colistin. LPS modification 
mediated by L-Ara4N in lipid A, Kdo residues, and arnBCADTEF 
operon contributes to the intrinsic resistance of P. mirabilis and 
S. marcescens to colistin (Olaitan et  al., 2014). A recent study 
showed that the ABC transporter MacAB contributed to the 
intrinsic colistin resistance of S. marcescens, which was previously 
thought to be associated with the efflux of macrolide antibiotics 
and could be constitutively expressed with tolC (Shirshikova et al., 
2021). In Salmonella, phoP inhibited macAB transcription, and 
macAB deletion attenuated the virulence of Salmonella more than 
the tolC mutant (Nishino et al., 2006). LPS played a role in colistin 
resistance and was a critical virulence factor in pathogenesis. 
However, whether macAB in S. marcescens is associated with 
PhoPQ or other TCSs remains to be investigated. The MFS efflux 
pump family SmvA was overexpressed in K. pneumoniae with 
increased resistance to multiple cationic biocides (chlorhexidine 
and octenidine) (Wand et al., 2019). Another study on P. mirabilis 
demonstrated that SmvA expression was insufficient to explain the 
differences in polymyxin B MIC of these intrinsically resistant 
isolates (Pelling et al., 2019).

FIGURE 3

Potential relationship between multidrug resistance efflux pumps and their transcriptional regulatory factors and colistin resistance (P. aeruginosa and 
A. baumannii). (1) AdeRS, merR, and parRS activated AdeAB, MexXY-OprM, and MexAB-OprM to efflux antibiotics, respectively. (2) Efflux pumps were 
involved in colistin tolerance by transporting signaling molecules to activate the quorum sensing system. (3) Some colistin-resistant A. baumannii 
strains with efflux pump overexpression exhibited increased susceptibility to multiple antibiotics, which is associated with the disruption of LPS.

https://doi.org/10.3389/fmicb.2023.1207441
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ding et al. 10.3389/fmicb.2023.1207441

Frontiers in Microbiology 09 frontiersin.org

Neisseria spp.

Among Neisseria spp., N. meningitidis and N. gonorrhoeae are 
closely associated with clinical infections and causative agents of 
bacterial meningitis and gonorrhea, respectively. The MtrCDE efflux 
system in Neisseria is thought to be the leading cause of the low-level 
intrinsic resistance to colistin (Moffatt et  al., 2019). MtrCDE is 
Neisseria’s most widely explored RND pump, contributing to resistance 
to β-lactams, macrolides, rifampicin, detergents, bile salts, and cationic 
polypeptides. The contribution of MtrCDE to colistin resistance has 
been demonstrated in vitro (Tzeng et al., 2005). The epistatic effects 
between mtrD and mtr promoter region promote the formation of the 
multidrug resistance phenotype (Wadsworth et al., 2018).

Yersinia spp.

Yersinia comprises dozens of species, and only Y. pestis, 
Y. pseudotuberculosis, and Y. enterocolitica are closely related to 
clinical infection. Significantly different from other bacteria, the 
resistance of Yersinia to cationic peptides (including colistin) is 
affected by temperature as well as individual differences, which may 
be related to the successful adaptation of these pathogens at different 
sites (Bengoechea et al., 1996, 1998). Bengoechea et al. found that the 
rosAB locus encoded a temperature-regulated efflux pump and could 
participate in colistin efflux in response to antibiotic pressure 
(Bengoechea and Skurnik, 2000).

Burkholderia

Like S. maltophilia, Burkholderia is widespread in the environment 
and exhibits inherent resistance to various antibiotics, including 
colistin. The primary mechanism of intrinsic resistance of 
Burkholderia to colistin is still Ara4N synthesis and Ara4N transfer to 
lipid A (Loutet and Valvano, 2011). A previously suggested norM 
belonging to MATE transporters contributes to colistin resistance, but 
it is mainly associated with the presence of tetracycline (Fehlner-
Gardiner and Valvano, 2002). Another class of yej operons (yejA1, 
yejA2, yejB, yejE, and yejF) belonging to ABC transporters was also 
found to be  directly activated by colistin and conferred colistin 
resistance. To further clarify the contribution of the efflux pump to 
colistin resistance, Zoaiter et al. (2023) found that CCCP restored 
susceptibility in Burkholderia isolates, while VRP, PAβN, and RSP did 
not. The genomic analysis showed that the efflux pump genes YejABEF, 
LolCDE, and NorM were widely present in these isolates (Zoaiter 
et al., 2023). This result suggested that multiple efflux pumps might 
be involved in the intrinsic colistin resistance of Burkholderia. Another 
study explored the interaction of the Amrab-OprA, BpeEF-OprC, and 
BpeAB-OprB efflux pumps with the outer membrane permeability 
and showed that only the simultaneous presence of Amrab-OprA 
inactivation and hyperporination contributed to the increased 
susceptibility to colistin (Krishnamoorthy et al., 2019).

Future perspectives

Compared with the two-component regulatory system PmrAB/
PhoPQ and mcr-mediated colistin resistance, relatively little 

information is available on the role played by efflux pumps in this 
regard. Although these findings suggest the possibility of EPIs 
reversing polymyxin resistance, EPI application to reverse colistin 
resistance still needs to be confirmed. CCCP has advantages over 
other EPIs in reversing colistin resistance, and its cytotoxicity limits 
its clinical application. Therefore, identifying these atypical resistant 
strains and developing suitable EPIs are crucial. Whether EPIs can 
reverse polymyxin resistance mediated by polymyxin-degrading 
protease and RpoE stress response pathways not involving structural 
changes in lipid A is uncertain. On the contrary, various reports 
showed that the bactericidal effect of CCCP on colistin was different. 
Therefore, the impact of CCCP on the bacterial intracellular 
microenvironment remains to be clarified. Other efflux pumps that 
rely on proton power to mediate colistin resistance remain to 
be identified. Since efflux pumps and associated transcription factors 
play a role in response to environmental stress, their activation can 
provide an adaptive advantage for these antibiotics-resistant strains in 
specific environments (Holden and Webber, 2020). However, the 
fitness effects of efflux pumps and related transcription factors 
mediating colistin resistance are still less explored compared with 
those of colistin resistance caused by LPS-related locus variants. The 
role of efflux pumps and their regulators in LPS synthesis, transport, 
and outer membrane integrity in colistin-resistant strains with 
different genetic and living backgrounds remains to be determined.

Conclusion

The efflux pumps’ structure, function, and regulation have been 
previously summarized in detail in many comprehensive reviews 
(Piddock, 2006; Puzari and Chetia, 2017; Nishino et  al., 2021). 
We specifically examined the effects of efflux pumps, their regulators, 
and EPIs on colistin susceptibility. Efflux pumps play a role in the 
classical pathway of antibiotic resistance and participate in the efflux of 
various metabolites and signaling molecules. The correlation between 
efflux pumps and their transcriptional regulators and LPS modification/
transport indicates colistin resistance mechanisms’ complexity. The 
observation that efflux pumps and their regulator (ramR, KpnEF, KexD, 
etc.) independently mediate colistin susceptibility in some isolates 
indicates colistin resistance mechanisms’ diversity. The effect of efflux 
pumps on colistin susceptibility is also mediated through multiple 
pathways, such as heteroresistance and tolerance. These findings 
indicate that the multidrug resistance efflux pumps may participate in 
different stages of occurrence and development of colistin resistance. 
Overall, the contribution of efflux pumps and their regulators to colistin 
resistance is multi-pathway, including outer membrane permeability, 
LPS modification, and environmental adaptation, besides the direct 
involvement in efflux. For developing adjuvants acting as EPIs, it is 
critical to identify colistin-resistant strains that are mcr-negative and 
lack specific mutations related to LPS modification.
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