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Introduction: Homologous recombination is an e�ective way to generate

recombinant viruses for vaccine research such as pseudorabies virus (PRV) and

adenovirus. Its e�ciency can be a�ected by the integrity of viral genome and the

linearization sites.

Methods: In the study, we described a simple approach to isolate the viral DNA

with high genomic integrity for large DNA viruses and a time-saving method

to generate recombinant PRVs. Several cleavage sites in the PRV genome were

investigated by using the EGFP as a reporter gene for identification of PRV

recombination.

Results: Our study showed that cleavage sites of XbaI and AvrII are ideal for

PRV recombination which showed higher recombinant e�ciency than others. The

recombinant PRV-EGFP virus can be easily plaque purified in 1–2 weeks after the

transfection. By using PRV-EGFP virus as the template and XbaI as the linearizing

enzyme, we successfully constructed the PRV-PCV2d_ORF2 recombiant virus

within a short period by simply transfecting the linearized PRV-EGFP genome

and PCV2d_ORF2 donor vector into BHK-21 cells. This easy and e�cient method

for producing recombinant PRV might be adapted in other DNA viruses for the

generation of recombinant viruses.
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Introduction

Pseudorabies virus (PRV) is a causative agent of Aujeszky’s disease or pseudorabies that

can cause reproductive failure characterized by abortion, embryonic death, mummification,

and stillbirths. It also causes central nervous system problems, respiratory distress,

and weight loss in pigs (Card et al., 1995; Guerin and Pozzi, 2005; Yin et al., 2012;

Deng et al., 2022; Zheng et al., 2022). The virus belongs to the Herpesviridae family

and has a double-stranded linear DNA genome. The genome of PRV is approximately

141–145 kb long which encodes at least 70 different proteins. A total of 11 different

envelope glycoproteins of PRV have been identified, namely, gB, gC, gD, gE, gG, gH,

gI, gK, gL, gM, and gN (Dietz et al., 2000; Klupp et al., 2004). The glycoproteins gB

gD, gH, gL, and gK were identified as the essential proteins of PRV that are necessary

for virus attachment to the host cell surface. The other glycoproteins such as gC, gE,

gG, gI, gM, and gN are considered non-essential for viral entry and replication in

which foreign genes can be inserted stably (Schmidt et al., 2001; Vallbracht et al., 2018).
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It has been reported how attenuated PRV can be a useful vector

to develop recombinant vaccines for protection against both

pseudorabies and other diseases (Thomsen et al., 1987; Freuling

et al., 2017; Feng et al., 2020; Tong et al., 2020; Zheng et al., 2020).

PRV Bartha-K61 is an attenuated PRV vaccine strain in which

complete gE and partial gI genes have been deleted. The vaccine

strain was developed in Hungary and produced by extensive

passage in vitro. It can grow well in pig kidney cells (PK-15

cells), baby hamster kidney fibroblast cells (BHK-21 cells), chicken

eggs, and chicken embryo fibroblast cells (CEF cells) (Dong et al.,

2014). As a marker vaccine, the Bartha-K61 vaccine has played a

significant role in the prevention of PRV and differential diagnosis

of wild-type viruses from vaccine strain due to its safety and

immunogenicity in pig vaccination (An et al., 2013; Wang et al.,

2014; Delva et al., 2020). It is still widely used in many countries,

including China. To date, there are several ways to generate

recombinant PRV, co-transfection of plasmid DNA containing

homologous arms and virus or viral genome directly (Tong et al.,

2020; Zheng et al., 2020; Tan et al., 2022) and CRISPR/Cas9-

mediated homologous recombination (Tang et al., 2016; Feng

et al., 2020). Although conventional homologous recombination

methods provide a convenient way to produce recombinant

viruses and recombinant vaccines, the efficiency of recombination

including the plaque purification of the recombinant virus requires

several rounds of screening and will likely consume valuable time.

In the present study, we described an easy and efficient method

for the isolation of PRV genome DNA intact and the construction

of recombinant PRV Bartha-K61 virus. To demonstrate the

application of the established method, the capsid protein gene

(ORF2) of PCV2d (a variant strain of porcine circovirus type 2,

characterized by severe respiratory disease complex in pigs, which

has become a predominant genotype circulating in swine herds in

many countries) was amplified and inserted into the genome of

PRV Bartha-K61.

Materials and methods

Cells and virus

PK-15 and BHK-21 cells were purchased from the American

Type Culture Collection (ATCC, VA, United States) and cultured

in Minimum Essential Medium (MEM; Gibco, MA, United States)

or Dulbecco’s modified Eagle’s medium (DMEM; Gibco, MA,

United States), supplemented with 10% fetal bovine serum

(FBS; Atlanta Biologicals, GA, United States) and 1x antibiotic-

antimycotic (Gibco, MA, United States) at 37 ◦C within a 5% CO2

incubator. PRVBartha-K61 strain was kindly provided by Professor

Enquist (Princeton University). It was propagated in PK-15 cells

and kept in liquid nitrogen until use.

Extraction of viral DNA

To obtain a complete viral genome, PK-15 cells were plated

in a T75-mm flask at a concentration of 5 × 105 cells/flask and

grown overnight to a confluence of 80–90%. The growth medium

was replaced with 12ml of fresh maintenance medium (MEM

containing 2% FBS), and the cells were infected with PRV at

a multiplicity of infection (MOI) of 0.5 PFU/cell. At 24 h post-

infection, the culture medium was removed, and the cells were

washed three times with 10mL phosphate buffered saline (PBS).

An additional 5mL of PBS was added to the flask, and the cells

were scraped into a 15-ml tube. After centrifugation at 2,000 x g for

20min at 4◦C, the cell pellet was resuspended in 1ml lysis buffer

solution (0.5% SDS, 10 mmol/L Tris-HCl pH 7.8, 5 mmol/L EDTA,

10µg/ml RNase, and 50µg/ml proteinase K) and incubated at 37◦C

in a water bath for 2–3 h. After centrifugation at 2,000 x g for 20min

at 4◦C, the supernatant was collected in a new tube. The viral

DNA in the supernatant was extracted with equal volumes of the

UltraPureTM phenol:chloroform:isoamyl alcohol solution (25:24:1,

v/v/v, Thermo Fisher Scientific, MA, United States) three times.

The clear upper phase was transferred to a new 5-mL tube. In total,

2 volumes of ice-cold 100% ethanol and 1/10 volume of 3M sodium

acetate (NaAc) at pH 5.2 were added to the tube, which was mixed

by inverting the tube gently 8–10 times. The tube was then placed

on ice for 10min to separate the genomic DNA. A white floccule

was obviously observed in the tube, which was the viral DNA. We

carefully took the DNA using a sterile pipette tip or disposable

inoculation loop and blotted the excess liquid, allowing it to dry for

5–10min at room temperature. The viral DNA was resuspended in

200–500 µl TE buffer and maintained at 4◦C for later use.

Construction of plasmids

The pUC-gG-MCS (pUG) vector was constructed by Jens

B. Bosse (Professor Enquist Lab, Princeton University). It was

derived from pUC57 plasmid by inserting 850 bp of homology

into the surroundings of the PstI site in the gG gene locus of

the PRV Becker strain. For convenient insertion of exogenous

genes, a pCMV-IE-MCS-SV40pA cassette was inserted between

the two recombinant arms (Figure 1A). To verify the recombinant

plasmid system and facilitate plaque visualization, the EGFP gene

was cloned into pUG between the restriction sites of AgeI and

KpnI to generate the plasmid pUG-EGFP. To further confirm the

system and generate the recombinant virus, another plasmid pUG-

PCV2d_ORF2 holding the PCV2d ORF2 gene was constructed.

The PCV2d ORF2 gene was inserted into the same sites as the

EGFP gene.

Generation of recombinant virus

To investigate the efficiency of generation recombinant viruses

and the chances of productive integration, different restriction

enzymes were used to linearize the viral DNA according

to the analysis of the viral genome (Figure 1B). Six groups

with different transfection strategies were compared separately

(Table 1). All linearized viral DNA and plasmids were precipitated

with ethanol/NaAc as per the above description before the

transfection step.

For transfection, BHK-21 cells were seeded into 6-well plates

at 5 × 105 cells/well so that the monolayers could be 80–90%

confluent on the following day. In total, 3 µg of digested plasmid
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FIGURE 1

The map of the pUC-gG-MCS vector and the genome of PRV Bartha. (A) gG hom1 and gG hom2 are the two recombinant arms in the gG locus of

PRV Becker. (B) Restriction enzyme analysis of the PRV Bartha genome, unique and dual cutters were listed and used in this study.

TABLE 1 Di�erent groups of the transfection.

Groups Linearization of viral DNA Linearization of plasmid Transfection complex mixture

A EcoRI HindIII Linearized viral DNA+ linearized plasmid

B EcoRV HindIII Linearized viral DNA+ linearized plasmid

C XbaI HindIII Linearized viral DNA+ linearized plasmid

D AvrII HindIII Linearized viral DNA+ linearized plasmid

E XbaI ___ Linearized viral DNA+ plasmid

F ___ HindIII Virus+ linearized plasmid

Viral genomes and plasmids were treated or non-treated with different restriction enzymes.

pUG-EGFP was co-transfected with 1.5 µg of linearized PRV

genomic DNAusing Lipofectamine 3000 (Thermo Fisher Scientific,

MA, United States), according to the manufacturer’s instructions.

Fluorescent EGFP and CPE of the cells were checked daily under a

fluorescentmicroscope with an objective lens of 20×magnification.

Plaque purification

After 1 or 2 days of incubation at 37◦C, the single plaques

were marked on the underside of the 6-well plate using a fine-tip

marker pen under a fluorescence microscope. For the generation

of the recombinant PRV, either viral plaques with fluorescence

were selected (PRV-EGFP) or viral plaques without fluorescence

signals were selected (PRV-PCV2d_ORF2). All marked plaques

were picked separately from a 1.5-ml tube containing 200 µl

DMEM using a sterile Pasteur pipette, and then the viral plaques

were labeled and stored at −80 ◦C as stocks for the next passage.

After 2 to 3 rounds of plaque purification, the selected plaques were

passaged on PK-15 cells, and the cultured recombinant viruses were

subjected to further analysis.

RT-PCR

Total cellular RNA of different plaque isolates was extracted

using the commercially available viral nucleic acid extraction kit

(IBI Scientific, IA, United States). The first-strand cDNA was

prepared using a ProtoScript
R©

first strand cDNA synthesis kit

(New England Biolabs, MA, United States), according to the

manufacturer’s instructions. To confirm the recombinant virus

PRV-PCV2d_ORF2, the inserted fragment of ORF2 was verified

using PCR with the PCV2d ORF2 special primers (Forward

primer: 5′-ACCGGTGCCACCATGACGTATCCAAGGAGGCG-3′,

reverse primers 5′-GGTACCTCACTTAGGGTTAAGTGGGG-3′).

Immunofluorescence assay

PK-15 cells were dispensed into a 96-well plate and infected

with PRV-PCV2d_ORF2 at an MOI of 1 in a final volume of 200

µl for 24 h. The cells were washed three times with PBS and fixed in

cold methanol for 20min at −20 ◦C. After fixation, the cells were

permeated with 0.1% Triton X-100 at room temperature for 15min
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and incubated with 5% FBS for 1 h at 37 ◦C. The cells were then

incubated with anti-PCV2 capsid MAb (RTI, PA, United States)

for 2 h at 4◦C. After three washes with PBS, the cells were

subjected to immunofluorescence staining with Alexa Fluor 488

goat anti-mouse IgG secondary antibody (Thermo Fisher Scientific,

MA, United States) for 1 h at room temperature. Following three

washes with PBS, the fluorescence signal was detected under a

fluorescent microscope.

Western blot

PK-15 cells were inoculated with PRV-PCV2d_ORF2 for

24 h in a 6-well plate. Cell lysates were separated using SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) with a gradient

concentration of acrylamide (12%) followed by transfer onto

nitrocellulose membranes. The membrane was blocked with 5%

non-fat milk in PBS for 1 h and incubated with a mouse anti-

PCV2 capsid MAb (RTI, PA, United States) overnight at 4◦C.

The following day, the membrane was incubated with a solution

of horseradish peroxidase-conjugated rabbit anti-mouse IgG

(Thermo Fisher Scientific, MA, United States) in PBS containing

1% non-fat milk for 1 h at room temperature. After incubation with

SuperSignalWest Pico chemiluminescent substrate (Thermo Fisher

Scientific, MA, United States) for 5min, the blots were analyzed

with an imaging system.

Results

Generation of recombinant virus PRV-EGFP

Viral DNA was extracted from PRV Bartha-K61 strain-infected

PK-15 cells. To facilitate plaque visualization, we cloned the EGFP

gene into the pUC-gG-MCS (pUG) vector between the restriction

sites of AgeI and KpnI to generate the plasmid pUG-EGFP. Co-

transfection of the XbaI/AvrII linearized viral DNA and HindIII

linearized pUG-EGFP into BHK-21 cells can produce obvious CPE

and fluorescence signal at 24 h post-transfection (Figure 2G). The

plaque purification of the recombinant viruses can be performed

directly after the transfection. After two or three rounds of plaque

picking, we successfully obtained the recombinant virus PRV-

EGFP.

Selection of cleavage sites significantly
a�ects the e�ciency of recombination

To investigate the impact of cleavage sites on the efficiency

of recombination, we linearized the viral DNA by different

restriction enzymes. Co-transfection of linearized viral DNA

with non-linearized plasmid pUG-EGFP caused an observable

EGFP signal after transfection (Figure 2E). However, most of

the fluorescence disappeared after the second round passage.

When co-transfecting linearized viral DNA with linearized plasmid

pUG-EGFP, expression of EGFP in cells can be observed in

the EcoRI or EcoRV-treated viral DNA group. However, CPE

or viral plaques were not easily detected after transfection

(Figures 2A, B). Most interestingly, only the viral genome that

was digested by XbaI or AvrII can cause obvious CPE and

plaques after co-transfection with the linearized plasmid pUG-

EGFP (Figures 2C, D). The recombinant efficiency of the AvrII-

treated viral genome is higher than that of the XbaI-treated viral

genome, which can produce more viral plaques. This indicates

that the closer the linearized incision is to the ends of the

recombination arm, the higher the recombination efficiency that

will be generated.

Generation of the recombinant virus
PRV-PCV2d_ORF2

The strategy to efficiently construct recombinant virus PRV-

PCV2d_ORF2 is using the genome of the PRV-EGFP virus as

the template and replacing the EGFP gene with PCV2d_ORF2

using the homologous recombination approach. We inserted the

PCV2d ORF2 gene into the vector pUG to generate plasmid

pUG-PCV2d_ORF2. As expected, plaques formed 24 h post-

transfection by co-transfecting of XbaI-treated (compared with

AvrII, XbaI is an economical site) genome DNA of PRV-

EGFP virus and HindIII-treated plasmid pUG-PCV2d_ORF2 into

BHK-21 cells. After two rounds of viral plaque purification

(Figure 3A), the purified viruses without bring fluorescence

were passaged on PK-15 cells (Figure 3B). RT-PCR (Figure 3C),

sequencing, IFA, and Western blot (Figures 3D–F) results showed

that we successfully obtained the recombinant virus PRV-

PCV2d_ORF2.

Discussion

Homologous recombination is a type of genetic recombination

in which the genetic material of the virus, eukaryote, or

bacteria is exchanged naturally between two molecules of DNA

that contain similar recombinant arms. Over the past few

decades, it has been used extensively in the construction of

recombinant adeno-associated virus (Fisher et al., 1997; Jacob

et al., 2020), poxvirus (Fisher et al., 1997; Wyatt et al.,

2015), and herpesvirus (Wilkinson and Weller, 2003; Boscheinen

et al., 2019). It is a powerful tool to precisely manipulate

the genome for producing a new gene or virus according

to the experimental need. There were a variety of ways to

produce recombinant PRV according to the previous reports

(Takashima et al., 2002; Lin et al., 2005; Lerma et al., 2016;

Tang et al., 2016). However, it is very time consuming to

generate recombinant PRVs by using the limited dilution method.

The strategy mentioned in this report, i.e., makes the plaque

purification possible by monitoring EGFP which can be replaced

in the future, significantly shortening the time for constructing

recombinant PRVs.

Previous studies have reported that linearizing viral DNA at the

desired insertion site before transfection can enforce homology-

directed repair (HDR) by recombination with the co-transfected

plasmids. To achieve this, a transfer virus expressing EGFP must

be generated first by co-transfecting plasmid with PRV or PRV

genome. Two unique restriction sites were designed and flanked
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FIGURE 2

Transfection results of di�erent treated viral DNA and plasmids (200×). Co-transfection of EcoRI-treated viral DNA + HindIII-treated pUG-EGFP (A),

EcoRV-treated viral DNA + HindIII-treated pUG-EGFP (B), XbaI-treated viral DNA+ HindIII-treated pUG-EGFP (C), AvrII-treated viral DNA +

HindIII-treated pUG-EGFP (D), XbaI-treated viral DNA + pUG-EGFP plasmid (E), and virus + HindIII-treated pUG-EGFP (F) into BHK-21 cells,

respectively. At 24h after transfection, the expression of EGFP was observed in each group, but virus plaques were detected only in groups C and D.

(G) The recombinant virus PRV-EGFP was obtained by plaque purification (200×).

on both sides of the EGFP-coding sequence, then the unique

restriction sites could be used between the plasmid expressing

a gene of interest and the PRV-EGFP genome (Klingbeil et al.,

2014). However, the step for preparing recombinant virus PRV-

EGFP may require several rounds and weeks of plaque purification

(Zhao et al., 2020). In recent years, the CRISPR/Cas9 system

has also been widely used in homology-directed repair (HDR),

this approach can be used to introduce desired sequences by

homologous recombination (Hirohata et al., 2019). Undeniably,

the CRISPR/Cas9 technology has emerged as a powerful tool

that enables ready modification of the mammalian genome and

accelerates biological and medical research in vivo. However, the

efficiencies of CRISPR/Cas9-mediated homologous recombination

are still limited by the sizes of targeted chromosomal regions

and donor DNAs. DNA repair may cause deletion, insertion

and mutation in CRISPR/Cas9 target sites for homologous

recombination, and to avoid this, sgRNA should be designed at

uncritical regions, such as introns (Zhang et al., 2020). In addition,

promiscuous cleavage of off-target sites remains a major concern

in the application of the CRISPR/Cas9 technology (Lin et al., 2016;

Rose et al., 2020). In this study, the viral DNA was digested with

restriction enzymes cleaving at one (EcoRI) or more sites (AvrII,

EcoRV, and XbaI) in the genome. After transfection, we can restore

the infectious full-length genome, which is quite efficient.

Previous studies have found that the topology of DNA can

affect transfection efficiency. Although linearized DNA may have

a lower efficiency of transfection compared with the circular DNA,

it can improve the efficiency of generating stable transfected cells

and enhance the recovery of recombinant viruses (Kitts et al.,

1990; von Groll et al., 2006; Hsu and Uludag, 2008; Stuchbury and

Munch, 2010). The efficiency of the recombination was up to 10-

fold higher than that of co-transfections with circular DNA when

using linearized plasmids to produce recombinant baculovirus

(Kitts et al., 1990). However, the site of cleavage also played an

important role in both transient and stable transfection efficiency

(Stuchbury and Munch, 2010). In the present study, we compared

the effects of cleavage sites on recombination efficiency. The sites

of XbaI and AvrII were close to the recombinant arms and had
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FIGURE 3

Generation and identification of recombinant PRV-PCV2d_ORF2. The recombinant PRV-ORF2 was purified by plaque picking from BHK-21 cells

(200 ×) (A), and the purified virus was then propagated in PK-15 cells (B). RT-PCR (C), IFA (D), and Western blot (F) were used to confirm the

expression of PCV2d capsid protein. Cells infected with PRV-PCV2d_ORF2 developed immunofluorescence and the expression of capsid protein

could be detected by PCV monoclonal antibody, and cells infected with Bartha did not show immunofluorescence (E).

high recombination efficiency when using these sites to cut the viral

genome, which suggests that the closer to the recombinant arm,

the higher the obtained efficiency will be. The different outcomes

of transfection experiments with EcoRI, EcoRV, XbaI, and AvrII-

digested PRV DNA might be due to the different relevance of

the affected genome positions and their sensitivity to erroneous

NHEJ (non-homologous end joining) repair. XbaI and AvrII cut

sites within the inverted repeat regions (IR-S and TR-S) of the

genome and possibly correct repair of one copy might be sufficient

to restore infectivity.

Furthermore, the integrity of the viral genome is crucial for

producing recombinant viruses. We have tried multiple methods

to isolate the whole viral genome including commercially available

viral nucleic acid extraction kits (IBI Scientific, IA, United States)

and different ways to precipitate the virus particles including the

PEG precipitation. None of them was able to obtain an intact

viral DNA genome. The method described here was the most

convenient and did not require a special reagent or instrument.

We also provide insight that this method can be used for

adenovirus, poxvirus, and other herpesviruses for large viral DNA

genome isolation.
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