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Interferon and chemokine-mediated immune responses are two general antiviral 
programs of the innate immune system in response to viral infections and have 
recently emerged as important players in systemic metabolism. This study found 
that the chemokine CCL4 is negatively regulated by glucose metabolism and 
avian leukosis virus subgroup J (ALV-J) infection in chicken macrophages. Low 
expression levels of CCL4 define this immune response to high glucose treatment 
or ALV-J infection. Moreover, the ALV-J envelope protein is responsible for CCL4 
inhibition. We confirmed that CCL4 could inhibit glucose metabolism and ALV-J 
replication in chicken macrophages. The present study provides novel insights 
into the antiviral defense mechanism and metabolic regulation of the chemokine 
CCL4 in chicken macrophages.
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Introduction

The innate immune system acts as a first line of defense against invading microbial 
pathogens and launches two general antiviral programs in response to viral infections. One 
antiviral response is mediated by the induction of type I and III interferons and the subsequent 
upregulation of IFN-stimulated genes (ISGs), which play a pivotal role in delaying the replication 
of the virus in the initial stage of virus infection (Lazear et al., 2019; Blanco-Melo et al., 2020). 
The other antiviral response regulates and determines specific subsets of leukocytes, such as 
inflammatory monocytes, by chemokine secretion to help eliminate/eradicate the virus. These 
broad antiviral responses have accelerated virus evolution to counter interferon and chemokine-
mediated antiviral responses. Viruses have evolved multiple strategies of interferon evasion to 
establish successful replication cycles in their hosts (Ten, 2017). In addition to antagonizing the 
interferon system, many oncogenic viruses also hijack chemokine systems to manipulate the 
replication of infected cells (Damania, 2004).

Presently, the innate immune system has emerged as a prominent player and paves our 
understanding of systemic metabolism (Cortese et al., 2014; Li et al., 2018; Jung et al., 2019; Shen 
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et  al., 2021; Wang et  al., 2022). In addition to evading the innate 
immune system, viruses usually interfere with host metabolism. 
Viruses rely entirely on the host metabolic machinery to complete 
their life cycle and have evolved to rewire host cell glucose and 
glutamine metabolism (Thai et  al., 2015). Several studies have 
demonstrated that the innate immune system regulates glucose 
metabolism. For example, IFN-γ negatively affects glucose metabolism 
(Greer et al., 2016). IFN-γ can restrain host cell glycolysis (Shima 
et al., 2018), and this metabolic reprogramming is a key component 
of classical inflammatory macrophage activation (Su et al., 2015). Type 
I interferons have also been shown to reprogram metabolism (Lercher 
et al., 2019, 2020). IFN-β prevents the shift to aerobic glycolysis in 
inflammatory macrophages and restrains macrophage metabolism 
(Olson et  al., 2021). Previous research has also highlighted that 
chemokines regulate glucose metabolism, including C-C motif 
chemokine ligand 4 (CCL4) and CCL5 (Chou et al., 2016; Gao et al., 
2016; Ajoy et al., 2021; Chang and Chen, 2021). The co-receptor of 
CCL4 and CCL5, C-C chemokine receptor 5 (CCR5), has been 
demonstrated to restrain aerobic glycolysis (Blanco et al., 2021) and 
to contribute to systemic insulin sensitivity and glucose metabolism 
(Chou et al., 2016). Therefore, viruses may ultimately have a significant 
impact on host metabolism by modulating the innate immune system.

However, few studies have demonstrated the important 
communication between the immune system, virus infection, and 
metabolism. CCL4, previously known as macrophage inflammatory 
protein (MIP)-1β, belongs to the CC chemokine subfamily and has 
important chemokinetic and inflammatory functions through 
interaction with the chemokine receptor CCR5 (Mukaida et al., 2020). 
Recently, CCL4 has been interrelated and linked with genetic resistance 
and the chicken’s response to infection by avian viruses. High expression 
of the CCL4 gene has been shown to negatively affect susceptibility to 
NDV infection. Previous studies have signified and deciphered the role 
of CCL4 in chickens. For example, AIV-induced CCL4 in chicken lung 
tissues (Ranaware et al., 2016) was higher in AIV-resistant chickens than 
in AIV-susceptible chickens (Vu et al., 2021). CCL4 was also upregulated 
in the IBDV-infected chicken lines P and N, with a greater increase seen 
in the most susceptible line, line P (Mohd Isa et  al., 2020); this 
upregulation of CCL4 indicates a pro-inflammatory response, which is 
correlated with the bursal immunopathology of IBDV.

The current study addressed whether the established dialog between 
the chemokine CCL4 and glucose metabolism is involved in virus 
infection. We selected an important viral model of avian leukosis virus 
subgroup J (ALV-J) in chicken. ALV-J is an alpha-retrovirus and causes 
tumors and immunosuppression in chickens, and there is no effective 
vaccine against ALV-J (Venugopal, 1999; Payne and Nair, 2012). We found 
that the chemokine CCL4 is negatively regulated by glucose metabolism 
and ALV-J infection in chicken macrophages. We confirmed that CCL4 
could inhibit glucose metabolism and ALV-J replication in chicken 
macrophages. The present study indicated that the chemokine CCL4 
might play a key role in antiviral defense and the reprogramming of 
glucose metabolism after ALV-J infection in chicken macrophages.

Materials and methods

Cell culture

The chicken macrophage-like line HD11 was obtained from the 
Laboratory of Avian Preventive Medicine, Yangzhou University, 

China. HD11 cells were derived from chicken bone marrow and 
transformed with the avian myelocytomatosis virus MC29 (Beug 
et al., 1979). The chicken macrophage cell line HD11 was maintained 
in DMEM-high glucose or DMEM-low glucose (Gibco, USA) with 
10% FBS at 41°C, 5% CO2, and 95% humidity.

Viral infection

The virus strain JS09GY3 (GenBank accession number 
GU982308) was isolated from field-infected commercial layer 
chickens with haemangioma, myeloid leukosis, and insertion in the E 
element (Wu et al., 2010). This virus strain induced robust immune 
responses in the chicken bursa of Fabricius (Hang et al., 2014) and was 
selected to study the antiviral function of CCL4. HD11 cells were 
seeded into six-well plates and infected with the JS09GY3 strain of 
ALV-J at a multiplicity of infection (MOI) of 1 and 5. At 6, 12, 24, and 
36 h post-infection (hpi), cells were collected for ALV-J replication and 
host gene expression analysis.

Drug treatment

We used two drugs, 2-deoxy-D-glucose (2-DG) and sodium 
oxamate, to investigate the influence of glucose metabolism inhibitors 
on the expression of the chemokine CCL4 in HD11 cells. 2-DG is a 
glucose analog that acts as a competitive inhibitor of glucose 
metabolism, inhibiting glycolysis via its actions on hexokinase 
(Vander Heiden, 2011; Galluzzi et  al., 2013; Zhang et  al., 2014). 
Sodium oxamate, a specific lactate dehydrogenase A (LDHA) 
inhibitor, is a derivative of pyruvate that inhibits the conversion of 
pyruvate to lactate via lactate dehydrogenase, thus disrupting 
glycolysis (Zhang et al., 2019). HD11 cells were seeded into six-well 
plates, treated with the glycolysis inhibitor 2-DG or a specific LDHA 
inhibitor sodium oxamate for 36 h, and then collected for host gene 
expression analysis.

MTT and CCK-8 assays

MTT and CCK-8 assays were used to evaluate the cytotoxicity on 
HD11 cells of high or low-glucose treatment, the glycolytic inhibitor 
2-DG treatment, and the LDHA inhibitor sodium oxamate. MTT and 
CCK-8 assays were performed using MTT reagents and Cell Counting 
Kit-8 (Beyotime, China) following the ‘manufacturer’s instructions. 
All MTT and CCK-8 assays were performed in sextuplets and 
repeated in three independent experiments.

Plasmid construction

The full-length CDS sequence of chicken CCL4 was obtained 
from the total RNA isolated from HD11 cells by RT-PCR using 
specially designed primers. The Hind III and Bam HI restriction sites 
were incorporated into the forward and reverse primers as follows:

ch-CCL4 forward primer 5′-CCCAAGCTTATGAAGGTC 
TCTGTGGCTG-3′, and ch-CCL4 reverse primer 5′- CGC 
GGATCCTCAGTTCAGTTCCATCTTG-3′. The chicken CCL4 gene 
was then inserted into the eukaryotic expression vector pcDNA3.1 by 
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double digested with Hind III and Bam HI restriction enzymes and 
confirmed by DNA sequencing. The pcDNA3.1 (+) vector was 
purchased from Invitrogen and stored in our laboratory.

Transfection

HD11 cells were transfected with control or CCL4 using 
HighGene Transfection Reagent (ABclonal, United States) for 48 h, 
and total RNA and protein were collected for gene expression analysis. 
For viral infection experiments, HD11 cells were first infected with the 
ALV-J virus at a multiplicity of infection (MOI) of 5 for 12 h. Cells 
were then transfected with CCL4 or control using HighGene 
Transfection Reagent (ABclonal, United States) for another 36 h and 
then collected for ALV-J replication analysis.

RNA interference assays

For the knockdown of the chicken CCL4 gene, HD11 cells were 
transfected with CCL4 or control siRNA using HighGene Transfection 
Reagent (ABclonal, United  States) for 48 h. Then total RNA and 
protein were collected for gene expression analysis. HD11 cells were 
first infected with the ALV-J virus for viral infection experiments at 
an MOI of 5 for 12 h. Cells were then transfected with control or 
chicken CCL4 siRNA using HighGene Transfection Reagent 
(ABclonal, United  States) for another 36 h and then collected for 
ALV-J proliferation analysis.

Reverse transcription-quantitative PCR

RT–qPCR assays were performed according to previous studies 
(Chen et al., 2019). Briefly, total RNA was extracted from chicken cells 
or tissues using RNA-easy™ Isolation Reagent (Vazyme, Nanjing, 
China) according to the ‘manufacturer’s recommendations. The 
gDNA Eraser-treated RNA samples were reverse-transcribed with RT 
primers at 37°C for 15 min with HiScript III RT SuperMix for qPCR 
(+gDNA wiper) (Vazyme, Nanjing, China). Quantitative PCR was 
then performed with gene-specific primers and SYBR qPCR Master 
Mix (Vazyme, Nanjing, China) on a CFX Connect™ Real-Time PCR 
Detection System (Bio-Rad, California, United States). The GAPDH 
RNA levels were used as internal controls to normalize gene 
expression. The gene-specific primers sequences for ALV-J and 
GAPDH were referenced in previously published manuscripts (Chen 
et al., 2019). The other primers are designed by Primer Premier 6.0 
software and described in Table 1.

Protein extraction and immunoblotting

Whole-cell lysates were prepared with Cell Lysis Buffer (Cell 
Signalling Technologies, USA), separated by 10% SDS–PAGE at 120 V 
for 90 min, and transferred to polyvinylidene difluoride membranes 
at 50 V for 150 min. The membranes were blocked in TBS-T containing 
5% nonfat dry milk (Bio-Rad, California, United States). Primary 
antibodies were incubated overnight at 4°C with agitation. The 

following antibodies were used to determine protein expression: 
rabbit polyclonal antibody against HK1 (A1054, Abclonal), rabbit 
polyclonal antibody against HK2 (A0994, Abclonal), rabbit polyclonal 
antibody against PKM2 (K001645P, Solarbio), rabbit monoclonal 
antibody against actin (ab179467, Abcam), mouse monoclonal 
antibody against c-Myc (ab56, Abcam), rabbit polyclonal antibody 
against LDHA (K002251P, Solarbio) and mouse monoclonal antibody 
against JE9, which is specific to the envelope protein of ALV-J. After 
washing extensively with TBST, the membranes were incubated with 
secondary antibodies (anti-rabbit or anti-mouse horseradish 
peroxidase conjugate) for 1 h at room temperature. After extensive 
washing with TBST, the blots were developed using enhanced 
chemiluminescent detection reagents on a FluorChem Q imaging 
system (Protein Simple, United States).

TABLE 1 Primers used in this study.

Primer 
name

Nucleotide sequence 
5′-3’

Accession 
number

CCL4 fwd GTCCTCCTCATTGCCATC
NM_204720.3

CCL4 rev TCAGTTCAGTTCCATCTTGT

IFN-β fwd GCCCACACACTCCAAAACACTG
NM_001024836.2

IFN-β rev TTGATGCTGAGGTGAGCGTTG

GLUT1 fwd AGGAGATGAAGGAGGAGAG
NM_205209.2

GLUT1 rev GACGATTGCGATGAGGAT

GLUT3 fwd GGCATAGTTGTAGGCATCC
NM_205511

GLUT3 rev TTCTTCCTCCATCTTGTTGA

HK1 fwd CCGTGCCGACAATCTAAG
NM_204101.2

HK1 rev AGGTCATCATAGTGCCAAC

HK2 fwd ATGGAGGAGATGAGGCAC
NM_204212.2

HK2 rev GGTCCTGATGTCGTTGAG

PFKL fwd CGATGCTGCCTATGTGTA
NM_001396039.1

PFKL rev TCAGAGGAGTAGAGGTTGT

PFKM fwd TCACCAACCTCTGCGTCATC
NM_204223.2

PFKM rev TGTTCAGGTGGCTCGACTTC

PKM2 fwd CAGACCTGTGGCTATTGC
NM_205469.2

PKM2 rev CATTGTCCAGCGTCACTT

LDHA fwd CGTCAGCAAGAAGGAGAA
NM_205284.2

LDHA rev AGCCACTACCGATAACAC

MYC fwd GAAGCGAACGAGTCTGAA
NM_001030952.2

MYC rev AGTTGTGTTGGTGGATGTT

ALV-J env fwd TGCGTGCGTGGTATTATTTC
GU982308.1

ALV-J env rev AATGGTGAGGTCGCTGACTGT

GAPDH fwd GAGAAACCAGCCAAGTATGA
NM_204305.2

GAPDH rev CTGGTCCTCTGTGTATCCTA

CCL4 siRNA 1 S

CCL4 siRNA 1 AS

CCL4 siRNA 2 S

CCL4 siRNA 2 AS

CCL4 siRNA 3 S

CCL4 siRNA 3 AS

CUGCUGCACCACUUACAUA

UAUGUAAGUGGUGCAGCAG

CAAAGCCUGCCAUCAUCUU

AAGAUGAUGGCAGGCUUUG

CAGCACAUAUAGCUCGACA

UGUCGAGCUAUAUGUGCUG

NM_204720.3
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Statistical analyses

The statistical analysis was performed with the Statistical Package 
for the Social Sciences (version 16.0) software. Statistical significance 
was assessed using a two-tailed unpaired Student’s t-test with a p value 
threshold of <0.05. * represents fold change ≥2 and p < 0.05; ** 
represents fold change ≥2 and p < 0.01.

Results

CCL4 is negatively regulated by glucose 
metabolism in chicken macrophages

MTT and CCK-8 assays were performed to analyze the influence 
of glucose and the glycolytic inhibitor on the proliferation of the chicken 
macrophage cell line HD11. As shown in Figures 1A,B, low glucose-
treated HD11 cells showed a lower cell viability rate than the high 
glucose-treated HD11 cells at 48 h. Treatment with low concentrations 
of glycolytic inhibitors (2-deoxy-D-glucose and sodium oxamate) did 
not significantly alter the viability of HD11 cells. We further found that 
in contrast to high glucose treatment, low glucose treatment significantly 
(p < 0.01) upregulated CCL4 expression in HD11 cells (Figure  1C). 
Consistent with this finding, the glycolytic inhibitor 2-deoxy-D-glucose, 
which targets hexokinase, the entry-point enzyme for glycolysis, also 
induced CCL4 expression (Figure 1D). We next blocked LDHA activity 
with the specific LDHA inhibitor sodium oxamate, and found that 
treatment with sodium oxamate also enhanced CCL4 expression in 
HD11 cells (Figure 1E). These results indicate that CCL4 is negatively 
regulated by glucose metabolism.

ALV-J infection inhibited CCL4 expression 
in chicken macrophages

We next investigated the dynamic response pattern of the 
chemokine CCL4 in chicken macrophages infected with the ALV-J 
strain JS09GY3. We first observed that the mRNA expression level of 
the ALV-J env gene gradually increased from 6 to 36 hpi in the chicken 
macrophage cell line HD11 infected with ALV-J at MOIs of 1 and 5 
(Figure 2A). The protein expression level of the ALV-J env gene was 
increased in HD11 cells infected with ALV-J for 36 h at an MOI of 5, 
which further confirmed that ALV-J successfully infected HD11 cells 
(Figure  2B). The results showed that ALV-J infection persistently 
reduced the expression of the CCL4 gene in HD11 cells from 6 to 36 
hpi. In particular, the expression levels of the CCL4 gene were 
significantly (p < 0.01) downregulated in ALV-J-infected HD11 cells at 
24 and 36 hpi (Figure 2C). Compared with a low MOI of ALV-J, CCL4 
expression was more significantly reduced at a high MOI of 5. These 
results showed that ALV-J infection inhibited chemokine CCL4 
expression in chicken macrophages.

ALV-J envelope protein inhibit CCL4 
expression in chicken macrophages

To investigate the specific mechanism by which ALV-J infection 
inhibits CCL4 expression, HD11 cells were transfected with the 

plasmid pcDNA3.1-ALV-J Env for 48 h, and then the expression of 
CCL4 was assessed by RT–qPCR. As shown in Figures 3A,B, ALV-J 
Env mRNA and protein were abnormally expressed in HD11 cells 
transfected with the plasmid pcDNA3.1-ALV-J Env compared to the 
control. Consistent with ALV-J infection, overexpression of ALV-J Env 
also significantly (p < 0.01) inhibited the expression of CCL4 
expression in HD11 cells (Figure 3C). These results suggested that the 
ALV-J-encoded envelope protein is responsible for CCL4 inhibition.

CCL4 Regulates glucose metabolism in 
chicken macrophages

We then assessed the influence of CCL4 on glucose metabolism. 
As shown in Figure 4, overexpression of CCL4 inhibited the expression 
of glucose metabolism-related genes in HD11 cells in a dose-
dependent way. Transfection of HD11 cells with the vector containing 
CCL4 for 48 h led to an obvious reduction in the mRNA levels of 
glucose metabolism-related genes, including MYC; glucose 
transporter 1 (GLUT1); GLUT3; hexokinase 1 (HK1); HK2; 
phosphofructokinase, liver type (PFKL); phosphofructokinase, muscle 
type (PFKM); pyruvate kinase M2 (PKM2) and LDHA (Figure 4A). 
In particular, CCL4 significantly (p < 0.01) downregulated the 
expression of the key genes HK1, HK2, PKM2, MYC, and LDHA, 
which regulate glycolysis at the protein level in HD11 cells (Figure 4B). 
Knockdown of chicken CCL4 gene by RNAi did not change the 
mRNA levels of glucose metabolism-related genes, including MYC, 
GLUT1, GLUT3, HK1, HK2, PFKL, PFKM, PKM2, and LDHA in 
HD11 cells (Figure 4C). However, CCL4 knockdown significantly 
raised the protein expression levels of HK1, MYC, and LDHA in 
HD11 cells (Figure 4D). These results suggested that CCL4 inhibits 
glucose metabolism in chicken macrophages.

CCL4 Mediates ALV-J replication by 
regulating the expression of glucose 
metabolism genes in chicken macrophages

Next, we  further investigated the influence of CCL4 on the 
reprogramming of glucose metabolism after ALV-J infection in 
chicken macrophages. HD11 cells were transfected with CCL4 after 
ALV-J infection, and the impact of CCL4 on ALV-J replication 
proliferation was assessed. Compared with the control group, 
transfection of CCL4 significantly (p < 0.01) inhibited the expression 
of the ALV-J env gene at both the mRNA and protein levels in HD11 
cells (Figures 5A–C). We found that CCL4 substantially repressed the 
protein expression of two key genes, c-myc and LDHA, that regulate 
glycolysis in ALV-J-infected HD11 cells. Knockdown of the chicken 
CCL4 gene by RNAi in HD11 cells was performed further to confirm 
the role of chicken CCL4  in antiviral defense. Conversely, CCL4 
knockdown significantly (p < 0.05) increased the expression of the 
ALV-J env gene at both the mRNA and protein levels in HD11 cells 
(Figures 5D,E). Moreover, CCL4 knockdown notably increased the 
protein expression of two key genes, c-myc and LDHA, that regulate 
glycolysis in ALV-J-infected HD11 cells (Figure 5E). These findings 
indicate that the CCL4 gene possesses an antiviral function in ALV-J 
infection by interfering with the reprogramming of glucose 
metabolism after ALV-J infection.
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Discussion

Recently, the field of immunometabolism has made great strides 
to unveil the crucial role of intracellular metabolism in regulating 
immune cell function (Lercher et al., 2020). Activation of immune 
cells engages specific metabolic pathways and rearranges their 
oxidation–reduction (redox) system, which supports metabolic 
reprogramming (Muri and Kopf, 2021). In the present study, 
we  described a role for the chemokine CCL4 as a regulator of 
macrophage glucose metabolism and identified this as an antiviral 
mechanism modulating metabolism during ALV-J infection. CCL4 is 
negatively regulated by ALV-J infection and glucose metabolism. 
Therefore, the interaction between the innate immune system and 
glucose metabolism may be involved in ALV-J infection. Furthermore, 
regulation of glucose metabolism may be an effective strategy to limit 
ALV-J infection.

As an important player in the antiviral response, interferons have 
been demonstrated to modulate macrophage metabolism. For 
example, IFN-γ-mediated metabolic reprogramming is a key 
component of classical inflammatory macrophage activation (Su et al., 
2015). IFN-γ treatment restrains host cell glycolysis, which is 
accompanied by a reduction of glucose transporter-1 (GLUT1) and 

hypoxia-inducible factor-1α (HIF-1α) expression (Shima et al., 2018). 
One recent study has also shown that type I  interferons restrain 
macrophage metabolism, and IFN-β prevents the shift to aerobic 
glycolysis in inflammatory macrophages (Olson et al., 2021).

Our results show that CCL4 is a key factor limiting the replication 
of ALV-J in chicken macrophages. In response to ALV-J infection, the 
expression level of the CCL4 gene was significantly increased in the 
bursa of Fabricius of 10-day-old chickens. In contrast, this increased 
expression of CCL4 was subsequently reduced with increasing levels 
of viral infection in 30-day-old chickens (Hang et al., 2014). This study 
found that ALV-J infection in vitro significantly reduced CCL4 gene 
expression in chicken macrophages, especially at high MOI. We further 
confirmed that the ALV-J envelope protein is responsible for CCL4 
inhibition. Furthermore, CCL4 significantly inhibited the expression 
of the ALV-J envelope (env) gene at both the mRNA and protein levels 
in chicken macrophages. A recent study showed that the antiviral 
actions of type I  interferons are mediated through the CCL4-
dependent recruitment of inflammatory monocytes rather than 
through the direct inhibition of virus replication via the action of 
intracellular interferon-stimulated genes (Parekh et al., 2019). Thus, 
these results indicated that ALV-J infection might resist the 
chemokine-mediated antiviral response by inhibiting the expression 

FIGURE 1

The response of CCL4 on glucose metabolism in chicken HD11 cells. MTT (A) and CCK-8 (B) assay were performed to evaluate the cytotoxicity on 
HD11 cells of treatment with high or low glucose, the glycolytic inhibitor 2-DG treatment and the LDHA inhibitor sodium oxamate for 48 h. (C) Relative 
expression analysis of chicken CCL4 in HD11 cells treated with high or low glucose for 48 h. (D) Relative expression analysis of chicken CCL4 in HD11 
cells treated with the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) for 48 h. (E) Relative expression analysis of chicken CCL4 in HD11 cells treated with 
the specific LDHA inhibitor sodium oxamate for 48 h. Error bars represent the s.d., n = 3. *p < 0.05 and **p < 0.01 (two-tailed Student’s t-test).
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of CCL4. Inhibition of glucose metabolism may be  an essential 
mechanism by which CCL4 inhibits the replication of ALV-J in 
chicken macrophages.

The chemokine CCL4 is necessary for the control of viral 
infection. However, this chemokine’s effect on glucose metabolism has 
not been thoroughly investigated. The present study has uncovered a 

missing link between the chemokine CCL4 and glucose metabolism 
in the context of ALV-J infection and glucose treatment. Using two 
models (glucose treatment and virus infection), we revealed that the 
chemokine CCL4 was affected by glucose metabolism and ALV-J 
infection. We then confirmed that CCL4 is a negative regulator of 
glucose metabolism by overexpression of CCL4. Significantly, CCL4 

FIGURE 2

The expression of CCL4 in response to ALV-J infection in chicken HD11 cells. RT–qPCR (A) and Western blotting (B) analysis of ALV-J env gene 
expression in HD11 cells at different time points of ALV-J infection. (C) RT–qPCR analysis of the chicken CCL4 gene in HD11 cells at 6, 12, 24, and 36 
hpi. Error bars represent the s.d., n = 3. *p < 0.05 and **p < 0.01 (two-tailed Student’s t-test).

FIGURE 3

Overexpression of the ALV-J env gene inhibited the expression of the CCL4 gene in chicken cells. RT–qPCR (A) and Western blotting (B) analysis of 
ALV-J env gene in HD11 cells transfected with pcDNA3.1-ALV-J Env or the control plasmid for 48 h. (C) RT–qPCR analysis of the CCL4 gene in HD11 
cells transfected with pcDNA3.1-ALV-J Env or the control plasmid for 48 h. Error bars represent the s.d., n = 3. **p < 0.01 (two-tailed Student’s t-test).

https://doi.org/10.3389/fmicb.2023.1205143
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wu et al. 10.3389/fmicb.2023.1205143

Frontiers in Microbiology 07 frontiersin.org

inhibits ALV-J-mediated reprogramming of glucose metabolism in 
chicken macrophages. One recent study also showed that CCL4 plays 
a significant role in glucose metabolism and is upregulated in diabetes 
mellitus (Chang and Chen, 2021). CCL4 may be involved in glucose 
metabolism through its C-C chemokine receptor 5 (CCR5) receptor. 
It has been reported that the chemokine receptor CCR5 specifically 
inhibits aerobic glycolysis in memory-like CD4+ T cells (Blanco et al., 
2021). CCR5 also regulates insulin signaling in the hypothalamus and 
contributes to systemic insulin sensitivity and glucose metabolism 
(Chou et  al., 2016). Studies have also demonstrated that another 
ligand of CCR5, CCL5, is critical for glucose metabolism (Chou et al., 
2016; Gao et al., 2016; Ajoy et al., 2021). Therefore, regulating glucose 
metabolism by CCL4 and its receptor CCR5 may be  an effective 
strategy to limit ALV-J infection.

Vaccines, chemicals, and antibiotics generally mediate poultry 
disease prevention and control. However, there is currently no 
effective commercial vaccine for ALV-J. It is relatively challenging to 
develop vaccines owing to several reasons: ALV-J displays a high level 
of genetic variation and recombination, posing the potential for 
generating novel strains (Xu et al., 2022). The second is that ALV-J has 
evolved varied strategies to evade or suppress host immune response 
(Mo et al., 2021; Wang et al., 2022; Xu et al., 2022). In addition, it is 
difficult to induce the production of ALV-J-specific antibodies for 
uncertain reasons and thus leads to great difficulties in ALV-J vaccine 
research. Moreover, the extensive use of antibiotics and chemicals in 
livestock has resulted in environmental and human health concerns, 

particularly concerning the emergence of drug-resistant bacteria in 
the food chain (Lowenthal et al., 1999). Cytokines are crucial immune 
system regulators, and cytokine therapy is considered a natural 
alternative for disease control (Lowenthal et al., 1999, 2000). Cytokines 
contribute a central role in disease control in a variety of diseases 
(Stokkers and Hommes, 2004), including avian diseases (Muri and 
Kopf, 2021). CCL4 is an excellent candidate as a therapeutic agent and 
adjuvant due to its immunotherapeutic properties against ALV-J 
infection. Therefore, applying and integrating CCL4 may provide and 
open new horizons to control and prevent ALV-J.

Chicken macrophage-like HD11 cells are an established chicken 
myelomonocytic cell line. This cell line is derived from chicken bone 
marrow and transformed by the v-myc encoding retrovirus MC29 
(Beug et al., 1979). HD11 cells are normally loosely adherent to plastic 
and have an ovoid shape (Wisner et al., 2011), and they are used as an 
important immune cellular model in poultry to study the immune 
response and antiviral immunity of ALV-J. In this study, we confirmed 
the antiviral effect of the chemokine CCL4 on ALV-J infection in 
HD11 cells. The previous study showed that increased expression of 
CCL4 was associated with ALV-J infection in the bursa of Fabricius of 
chickens (Hang et al., 2014). Other studies also showed that CCL4 
involved in ALV-J infection (Chen et al., 2018; Ruan et al., 2021). 
These findings may be  indicated that CCL4 may have clinical 
significance for promotion of ALV-J infection. As a small signaling 
molecule, CCL4 might be  become a potential drug target for 
developing antiviral agents for ALV-J infection. For example, CCL4 

FIGURE 4

CCL4 regulates the expression of glucose metabolism genes. (A) Relative expression analysis of the chicken CCL4, GLUT1, GLUT3, HK1, HK2, PFKM, 
PFKL, PKM2, LDHA, and c-myc genes in HD11 cells transfected with pcDNA3.1-CCL4 or the control plasmid for 48 h. (B) Western blotting analysis of 
HK1, HK2, PKM2, MYC, and LDHA gene expression in HD11 cells transfected with pcDNA3.1-CCL4 or the control plasmid for 48 h. (C) Relative 
expression analysis of the chicken CCL4, GLUT1, GLUT3, HK1, HK2, PFKM, PFKL, PKM2, LDHA, and c-myc genes in HD11 cells transfected with the 
control or chicken CCL4 siRNA for 48 h. (D) Western blotting analysis of HK1, MYC, and LDHA gene expression in HD11 cells transfected with the 
control or chicken CCL4 siRNA for 48 h. Error bars represent the s.d., n = 3. **p < 0.01 (two-tailed Student’s t-test).
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agonists could be the most promising as anti-ALV-J drugs. In addition, 
we also need to consider that CCL4 agonists may cause tissue damage 
caused by a storm of inflammatory factors.

In conclusion, the present study shows that the chemokine CCL4 
regulates macrophage glucose metabolism and exerts antiviral 
protective effects by inhibiting glucose metabolism. These findings 
might provide an important mechanistic insight into the metabolic 
response of macrophages to avian tumor virus infection. Further 
investigating the metabolic effects of chemokine metabolic effects on 
macrophages will help clarify chemokines’ complex beneficial and 
detrimental roles in antiviral innate immunity and incorporate 
molecular docking and interdisciplinary networking approaches to 
develop effective vaccines to combat ALV-J infection in chickens.
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expression in HD11 cells, which were first infected with the ALV-J virus at an MOI of 5 and then transfected with pcDNA3.1-CCL4 or the control 
plasmid for 48 h. (C) Western blotting analysis of ALV-J env, MYC, and LDHA gene expression in HD11 cells were first infected with the ALV-J virus at an 
MOI of 5 and then transfected with pcDNA3.1-CCL4 or the control plasmid for 48 h. (D) RT–qPCR analysis of ALV-J env gene expression in HD11 cells 
was first infected with the ALV-J virus at an MOI of 5 and then transfected with the control or chicken CCL4 siRNA for 48 h. (E) Western blotting 
analysis of ALV-J env, MYC, and LDHA gene expression in HD11 cells, which were first infected with the ALV-J virus at an MOI of 5 and then transfected 
with the control or chicken CCL4 siRNA for 48 h. Error bars represent the s.d., n = 3. **p < 0.01 (two-tailed Student’s t-test).
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