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Introduction: The relationship between oral and gut microbiota in alcohol 
dependence (AD) is not well understood, particularly the effects of oral microbiota 
on the intestinal microbiota. The current study aimed to explore the association 
between oral and gut microbiota in AD to clarify whether oral microbiota could 
ectopically colonize into the gut.

Methods: 16S rRNA sequence libraries were used to compare oral and gut 
microbial profiles in persons with AD and healthy controls (HC). Source Tracker 
and NetShift were used to identify bacteria responsible for ectopic colonization 
and indicate the driver function of ectopic colonization bacteria.

Results: The α-diversity of oral microbiota and intestinal microbiota was 
significantly decreased in persons with AD (all p  <  0.05). Principal coordinate 
analysis indicated greater similarity between oral and gut microbiota in persons 
with AD than that in HC, and oral-gut overlaps in microbiota were found for 9 
genera in persons with AD relative to only 3 genera in HC. The contribution ratio 
of oral microbiota to intestinal microbiota composition in AD is 5.26% based 
on Source Tracker，and the AD with ectopic colonization showed the daily 
maximum standard drinks, red blood cell counts, hemoglobin content, and PACS 
scores decreasing (all p <  0.05).

Discussion: Results highlight the connection between oral-gut microbiota in AD 
and suggest novel potential mechanistic possibilities.
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Introduction

Alcohol dependence (AD) causes physical and psychological damage to patients and 
contributed to more than 3 million deaths in 2016, accounting for 5.3 percent of total global 
mortality (World Health Organization, 2018). Alcohol dependence was the most prevalent 
substance use disorder in China with a lifetime prevalence of 1.3% and a 12-month prevalence 
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of 0.7% as of 2015 (Huang et  al., 2019). The pathogenesis of AD 
remains unclear, although recent studies have implicated dysfunction 
of the oral or gut microbiota correlated with alcohol dependence 
(Leclercq et al., 2014; Dubinkina et al., 2017). Previous study suggested 
that oral and gut microbiota as well as their products may have an 
impact on nutritional metabolism, immune protection, and neuro-
regulation in individuals from infancy to senescence (Hehemann 
et al., 2010; Adak and Khan, 2019). Meanwhile, gut microbiota has a 
profound influence on the progression of AD and animal studies have 
shown that fecal microbiota transplantation from AD into germ-free 
mice interferes with recipient cognitive function, induces anxiety/
depression behavior decreases expression of brain-derived 
neurotrophic factor (BDNF), and the function of mGluR1/PKC ε 
pathway in the brain (Zhao et al., 2020). In addition, oral bacteria, 
such as Neisseria, are known to participate in the metabolism of 
nitrate and acetaldehyde, perhaps contributing to AD-related 
cognitive impairment (Fan et  al., 2018; Rosier et  al., 2020). And 
increased levels of P. gingivalis, resulting from a disturbed balance of 
the oral microbiome, may impair the function of the blood–brain 
barrier (BBB) and elicit neuroinflammation (Panza et al., 2019).

Both oral and gut microflora may thus contribute to the 
pathogenesis of AD, but little is known about the association between 
the two bacterial populations. Healthy people generate and swallow 
about 1.5 L of saliva per day containing an enormous number of oral 
microbiota and metabolites (Humphrey and Williamson, 2001; 
Atarashi et  al., 2017). Normal intestinal barrier function would 
prevent cross-colonization of oral and gut microbiota in healthy 
individuals, but the loss of intestinal integrity has been shown to cause 
invasion of oral bacteria into the intestine, like gastrointestinal 
diseases or in germ-free animal models (Humphrey and Williamson, 
2001; Bull-Otterson et al., 2013; Atarashi et al., 2017; Park et al., 2021). 
The phenomenon of oral bacteria found in the gut is one type of 
ectopic colonization in bacteria that has been observed in many 
disease states already (Strandwitz, 2018; Rashidi et al., 2021). More 
oral microbiota has been found colonized in the gut of irritable bowel 
syndrome (IBS), inflammatory bowel disease (IBD), and colorectal 
cancer (CRC), compared with healthy individuals (Gevers et al., 2014; 
Iwauchi et al., 2019; Pittayanon et al., 2019; Thomas et al., 2019). Such 
ectopic colonization might aggravate the disturbed gut microbiota and 
immunoreactivity. Effects of oral microbiota on gut microbiota have 
been found to contribute to microglia-mediated neuroinflammation 
in major depression disorder (MDD) (Scassellati et al., 2021), and 
heavy alcohol consumption is known to impair gut barrier function 
and cause dysfunction of oral and gut microbiota (Forsyth et al., 2009; 
Leclercq et al., 2017). Therefore, the association between oral and gut 
microbiota seems to affect the progression of AD, but this association 
is still unclear.

The current study investigated whether oral microbiota could 
be  ectopically colonized into the gut and whether those ectopic 
colonization bacteria are related to clinical features in AD. Findings 
from this study may contribute to a better understanding of oral-gut 
microbiota in AD, expose potential mechanisms and inform 
therapeutic strategies of AD in clinical practice.

Materials and methods

Participants

Thirty-three male patients diagnosed with alcohol dependence 
were recruited from the Second People’s Hospital of Guizhou Province 
during July and September 2019. alcohol dependence was diagnosed 
using the Diagnostic and Statistical Manual of Mental Disorders, 4th 
edition (DSM-IV). Other than nicotine dependence, as determined 
by the Mini International Neuropsychiatric Interview (M.I.N.I), 
patients did not present with other substance use disorders or other 
DSM-VI mental health or Axis I disorders. Twenty-one male healthy 
controls (HC) without somatic and psychiatric illnesses were also 
recruited. HC did not have a current or lifetime history of alcohol use 
or other substance use disorders. The inclusion and exclusion criteria 
are shown below.

The inclusion and exclusion criteria are shown below. The 
inclusion criteria for the alcohol dependence (AD) group were as 
follows: (1) diagnosis of AD according to the Diagnostic and Statistical 
Manual of Mental Disorders, 4th edition (DSM-IV); (2) Han Chinese 
males aged 18–60 years. The exclusion criteria for the AD group were 
as follows: (1) had or having the infectious disease; (2) had or having 
heart, brain, liver, kidney, oral and other serious diseases; (3) had or 
having metabolic diseases that can lead to the abnormal immune 
system; (4) had or having neurodegenerative diseases; (5) used 
antibiotics, steroids or other microbiota-modulating medications 
within 2 months before enrollment; (6) previous or current DSM-IV 
diagnosis of schizophrenia, depression, anxiety disorder, bipolar 
disorder, mental retardation, dementia (excluding mild cognitive 
function), and substance dependence other than alcohol and nicotine; 
(7) had irregular eating habits that affected oral flora (except alcohol) 
in recent 2 months; (8) alcohol abstinence longer than 1 week. The 
inclusion criteria for the HC group were as follows: Han Chinese 
males aged 18–60 years. The exclusion criteria for the HC group were 
as follows: (1)–(8) exclusion criteria for patients with alcohol 
dependence but (6) patients with a previous or current DSM-IV 
diagnosis of schizophrenia, depression, anxiety disorder, bipolar 
disorder, mental retardation, dementia (excluding MCI), and 
substance dependence, including alcohol (excluding nicotine); (9) 
drinking alcohol during sample collection.

G*Power3.1.9.7 software was used to calculate the sample size, 
and it was assumed that the test standard α = 0.05 (bilateral), the effect 
value was 0.5, the beta value was 0.20, and the degree of certainty (1-β) 
was 0.80. It was calculated that the minimum sample size 
required was 18.

All subjects gave written informed consent for the collection of 
saliva and feces and participation in the study.

All experiments were conducted by the Helsinki Declaration of 
1975 and the ethical standards of the home institution Committee on 
Human Experimentation. Ethical approval was granted by the ethics 
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committees of Peking University Sixth Hospital (2019, ethical review 
No. 6) and the Second People’s Hospital of Guizhou Province.

Clinical features and assessment scales

Clinical features of AD participants were indexed, including 
withdrawal days, dependence years, first drinking age (FD age), 
frequency of drinking weekly (FREW), frequency of drinking daily 
(FRED), average standard drinks per day (ASD), maximum standard 
drinks per day (MSD), smoking status, body mass index (BMI), 
aspartate aminotransferase (AST), alanine transaminase (ALT), 
gamma-glutamyl transpeptidase (GGT), total bilirubine (TBIL), red 
blood cell (RBC), hemoglobin (HB), mean corpuscular volume 
(MCV), triiodothyronine (TT3), tetraiodothyronine (TT4), thyroid 
stimulating hormone (TSH); alcohol withdrawal syndrome (evaluated 
by Clinical Institute Withdrawal Assessment for Alcohol-Revised, 
CIWA-Ar), alcohol craving (evaluated by Pennsylvania Alcohol 
Craving Scale, PACS), cognitive function (evaluated by Montreal 
Cognitive Assessment, MoCA), nicotine consumption (evaluated by 
Fagerstrom test for nicotine dependence, FTND), sleeping patterns 
(evaluated by Pittsburg Sleep Quality Index, PSQI) and symptoms of 
anxiety /depression (evaluated by Hamilton Anxiety Scale and 
Hamilton Depression scale, HAMA and HAMD) were recorded. 
Control subjects were assessed for cognitive function, depression and 
anxiety, and sleeping patterns.

Sample collection

All subjects fasted overnight and did not brush their teeth. Fresh 
saliva and feces were collected at 7:00 to 8:00 am into sterile EP tubes. 
Saliva was collected after patients had rinsed the mouth with water 
5 min beforehand and 1–2 ml of naturally secreted saliva was removed 
by Pap dropper into an EP tube. The procedure was repeated once. 
Feces were collected after patients had urinated to avoid contamination 
and defecated into a clean bedpan, from which 1–2 g stool, which had 
not been exposed to air, was removed with a sampling spoon. The 
procedure was repeated once. All samples were frozen in liquid 
nitrogen for 1 min and stored at −80°C. All samples were collected by 
procedures specified in the Human Microbiome Project (HMP) 
version 12 standard process (Integrative HMP Research Network 
Consortium, 2019).

DNA extraction

DNA was extracted from the oral and gut microbial community 
using NEBnext microbiome DNA enrichment kit (New England 
Biolabs, Ipswich, MA, US). The detailed procedure following the 
manufacturer’s instructions, including 600 μl Buffer with magnetic 
beads +20 μl Proteinase K + 5 μl RNase A was added to 96-well deep 
plates before washing three times and adding 100 μl Elution Buffer. 
100–200 mg sample was transferred to the centrifuge tube with 
grinding beads and 1 ml Buffer (ATL/PVP-10) added and the sample 
was ground and incubated at 65°C for 20 min before centrifugation 
at 14000 × g for 5 min. 0.6 ml Buffer PCI was added with mixing by 

vortex for 15 s and centrifugation at 12000 ×  g for 10 min. The 
supernatant was transferred to a deep well plate with magnetic beads 
binding solution and DNA was transferred to a 1.5 ml centrifuge 
tube. DNA concentration and purity were assessed by 
NanoDrop 2000 micro-ultraviolet spectrophotometer and quantified 
with a Qubit Fluorometer using Qubit® dsDNA BR Assay kit 
(Invitrogen, USA). DNA quality was checked by running an aliquot 
on 1% agarose gel.

16S rRNA sequencing and analysis

Variable regions, V3 ~ V4, of the bacterial 16S rRNA gene, were 
amplified with degenerate PCR primers, 515F 
(5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGAC 
TACHVGGGTWT-CTAAT-3′) and products purified by Agencourt 
AMPure XP beads and eluted with elution buffer. Agilent Technologies 
2,100 bioanalyzer qualified the Libraries and sequenced using an 
Illumina HiSeq 2,500 platform (BGI, Shenzhen, China), following the 
manufacturer’s instructions. 2 × 250 bp paired-end reads were 
generated. Raw reads were filtered and paired-end reads were tagged 
for clustering into operational taxonomic units (OTUs). OTU 
representative sequences were taxonomically classified using 
Ribosomal Database Project (RDP) Classifier v.2.2 with a minimum 
confidence threshold of 0.6 and trained on the Green-genes database 
v201305 by QIIME 2 (Bolyen et al., 2019). Alpha and beta diversity 
were estimated by MOTHUR (v1.31.2) and QIIME 2, respectively 
(Schloss et al., 2009; Wade and Prosdocimi, 2020).

Different classification levels were plotted with R package v3.4.1 
and R package “gg plots” (Shamsheer et al., 2022). Principal coordinate 
analysis (PCoA) of OTUs was conducted by R package “ade4” 
(Jombart, 2008). Wilcoxon or Kruskal–Wallis’ testing was used to 
ascertain significant species or functions by R (v3.4.1) software.

DNA extraction, 16S rRNA sequencing, and analyses were 
performed by BGI Co., LTD. Shenzhen, China.

Source Tracker and NetShift analyses

Source Tracker is a Bayesian approach to allow the estimation 
of the proportion of contaminants in a given community that come 
from possible source environments (Knights et  al., 2011). Oral 
microbiota was considered source environments and gut microbiota 
sink environments for calculation of the contribution rate of oral 
microbiota to gut microbiota. Source Tracker R script was 
downloaded from https://github.com/danknights/sourcetracker. 
NetShift was used to quantify oral and gut community changes 
between the AD and HC to identify the microbial taxa which serve 
as “driver-bacteria,” promoting the change from the healthy to the 
diseased state. The correlation network was established based on the 
Pearson coefficients between bacteria communities in AD and 
HC. Each genus was regarded as a point in the network and the 
genus with a significant correlation relationship was assigned an 
edge (Kuntal et  al., 2019). The Netshift application was used to 
elucidate the drivers of HC to the AD network. NetShift algorithm 
could be downloaded from NetShift was downloaded from https://
web.niapps.net/netshift.
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Statistical analysis

Statistical analyses were performed with IBM SPSS 23.0, 
R-4.2.0, and Graphpad prism 8.0.2. Differences in numerical 
variables between AD and HC, continuous variables consistent with 
normal distribution and homogeneity of variance were assessed by 
a two-tailed Student’s t-test and results expressed as the 
mean ± standard deviation, other continuous variables assessed by 
nonparametric test and results expressed as the median (Q25, Q75). 
Discontinuous variables were analyzed by the chi-square test. The 
α-diversity index and β-diversity index were calculated and 
compared between HC and AD microbiota. Principal coordinate 
analysis (PCoA) was used to evaluate the species differences in the 
microbiota between different sample groups. Based on the Wilcoxon 
test, calculated the characteristics of composition in oral/gut 
microbiota between AD and HC from phylum to genus. Oral-gut 
overlap microbiota based on common OTUs number by 
VeenDiagram package in R. Comparison of clinical features 
between ectopic colonization (EC) patients and no ectopic 
colonization (NE) patients by Mann–Whitney U test. Correlational 
analyses were assessed by the Spearman test. The value of p < 0.05 
was considered statistically significant.

Results

Baseline characteristics of alcohol 
dependence and healthy controls

No significant differences were present in age, occupation, 
educational status, marital status, annual income, BMI, or smoking 
status. No significant difference in FTND was found, but HAMD, 
HAMA, and PSQI scores were higher for AD than for HC (p < 0.001), 
and MoCA scores were lower for AD than for HC (p  < 0.05). 
Demographic and clinical characteristics of the study population are 
summarized in Table 1.

Oral and gut microbiota composition in 
alcohol dependence and healthy controls

The α-diversity of oral microbiota (Shannon index) and intestinal 
microbiota (Sob index, Chao1 index, ACE index, and Coverage index) 
was significantly decreased in AD, compared with HC in Figures 1A,B 
(all p  < 0.05). Based on weighted Unifrac, the β-diversity of oral 
microbiota between AD and HC exhibited statistical difference 

TABLE 1 Baseline characteristics in alcohol dependence and healthy controls.

AD
n  =  33

HC
n  =  21

χ2/t/z Value of p

Age, year 44.00 (36.50, 51.00) 43.00 (27.00, 51.00) −1.05 0.30

Occupation
In-service 24 15

0.01 0.92
Unemployed 9 6

Education years 7.36 ± 4.26 8.57 ± 4.38 −1.01 0.32

Marriage
Married 28 15

1.43 0.23
Not married 5 6

Smoking status
Yes 30 16

3.19 0.07
No 3 6

Income
60000.00 (15000.00, 

100000.00)

30000.00 (10000.00, 

55000.00)
−1.60 0.11

BMI, kg/m2 21.60 ± 2.29 22.87 ± 3.08 −1.73 0.09

MoCA 19.60 ± 6.41 23.79 ± 5.41 −2.39 0.02

FTND 4.00 (2.00, 6.00) 4.00 (0.00, 6.00) −0.69 0.49

HAMA 7.00 (2.00, 10.50) 1.00 (0.25, 2.75) −4.32 <0.001

HAMD 7.00 (1.50, 11.00) 1.00 (0.00, 2.00) −3.71 <0.001

PSQI 7.00 (4.00, 15.50) 2.50 (1.00, 4.00) −3.76 <0.001

Withdrawal days 2.00 (1.00, 4.00) NA NA NA

AD years 10.00 (5.00, 17.00) NA NA NA

FD age 16.00 (15.00, 18.00) NA NA NA

ASD 15.00 (7.50，23.00) NA NA NA

MSD 27.00 (13.00, 45.00) NA NA NA

CIWA-Ar 17.33 ± 7.94 NA NA NA

PACS 5.00 (2.50, 9.00) NA NA NA

AD, alcohol dependence; HC, healthy controls; BMI, Body Mass Index; MoCA, Montreal Cognitive Assessment Scale; FTND, Fagerstrom Test for Nicotine Dependence; HAMA, Hamilton 
Anxiety Scale; HAMD, Hamilton Depression Scale; PSQI, Pittsburg Sleep Quality Index; FD age, First Drinking age; ASD, Average Standard Drinks per day; MSD, Maximum Standard Drinks 
per day; CIWA-Ar, Clinical Institute Withdrawal Assessment for Alcohol-Revised; PACS, Pennsylvania Alcohol Scale.
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(p  < 0.01); and based on weighted Unifrac, the β-diversity of gut 
microbiota between AD and HC exhibited statistical difference 
(p < 0.001) in Figures 1C,D. Compared with HC, the characteristics of 
composition in the oral and gut microbiota of AD from phylum to 
genus were summarized based on the Wilcoxon test (all p < 0.05), in 
Supplementary Figures S1, S2.

Comparison of oral and gut microbiota in 
alcohol dependence and healthy controls

Based on unweighted Unifrac and weighted Unifrac to explore the 
relationship between oral and gut microbiota found that β-diversity 
between oral and gut microbiota in AD (p < 0.001, p < 0.001) and HC 
(p  < 0.05, p  < 0.001) exhibited significant difference in 
Figures  2A,B. Additionally, the β-diversity heatmap and principal 
coordinate analysis (PCoA) both indicate that the difference between 

oral and gut microbiota in AD was decreased compared to HC in 
Supplementary Figures S3A–C and Figures 2C,D. At the phylum level, 
significant differences between oral and gut microbiota were found in 
the top  10 species of HC (all p  < 0.05), but four species had no 
significant differences between oral and gut microbiota in the top 10 
species of AD in Figures 2E,F.

The oral-gut overlap bacteria in AD

Analysis of species composition indicated that overlaps between 
oral and gut microbiota were found for 9 genera in AD, including 
the genus of Prevotella, Streptococcus, Veillonella, Neisseria, 
Fusobacterium, Haemophilus, Alloprevotella, Megasphaera, and 
Bacteroides. And the genus of Fusobacterium, Alloprevotella, and 
Veillonella also are the oral/gut microbiota overlap for 
HC. Therefore, there were 6 AD oral/gut overlap genera, Prevotella, 

FIGURE 1

Differences in alpha and beta diversity between alcohol dependence and healthy controls. (A) α-diversity analysis showed that compared with the HC, 
the Shannon index of oral flora in the AD was lower, p <  0.05; no statistical difference was seen between AD and HC in the Sobs, Chao 1, ACE, 
Simpson, and Good coverage indices. (B) α-diversity analysis showed that compared with the HC, the intestinal flora observed species, Chao1, ACE and 
Good Coverage indices of the AD were lower, all p <  0.001; no statistical difference between AD and HC in the Shannon, Simpson indices. 
(C) Unweighted similarity analysis of β-diversity analysis showed that there was no statistical difference in β-diversity between the AD and HC, when 
sample sequence abundance was not considered; the results of weighted similarity analysis showed that there was a statistical difference in β-diversity 
between AD and HC, p <  0.01, when sample sequence abundance was considered. (D) Unweighted similarity analysis showed no statistical difference 
in β-diversity between AD and HC, when the sample sequence abundance was not considered; the results of the weighted similarity analysis showed a 
statistical difference in β-diversity between AD and HC, p <  0.001, when the sample sequence abundance was considered. All p-values are Bonferroni 
adjusted. * Indicates p <  0.05, ** indicates p <  0.01, *** indicates p <  0.001. AD indicates alcohol dependence, HC indicates healthy controls.

https://doi.org/10.3389/fmicb.2023.1203678
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Hu et al. 10.3389/fmicb.2023.1203678

Frontiers in Microbiology 06 frontiersin.org

Streptococcus, Neisseria, Haemophilus, Megasphaera, and 
Bacteroides, that were not found in the HC oral/gut overlap 
microbiota (Figures 3A,B).

The correlation analysis between relative abundance of oral-gut 
microbiota and clinical features found that, in the relative 
abundance of oral microbiota, Prevotella is negatively correlated 
with GGT and scores of PACS (r  = −0.43, p  = 0.02; r  = −0.39, 
p = 0.03); Neisseria is positively correlated with AST, MCV, and TSH 

(r = 0.39, p = 0.03; r = 0.39, p = 0.03; r = 0.38, p = 0.06), and negatively 
correlated with RBC (r = −0.44, p = 0.01); Haemophilus is positively 
correlated with education years, scores of MoCA (r = 0.42, p = 0.02; 
r  = 0.42, p  = 0.02), and negatively correlated with age, alcohol 
dependence years (r  = −0.45, p  = 0.01; r  = −0.45, p  = 0.01); 
Bacteroides is positively correlated with age, smoking years (r = 0.41, 
p = 0.03; r = 0.37, p = 0.04), and negatively correlated with daily 
alcohol consumption (r  = −0.38, p  = 0.04). And in the relative 

FIGURE 2

Relationships between oral and gut microbiota in alcohol dependence and healthy controls. (A) Difference in β-diversity between oral and gut 
microbiota in HC. Weight unifrac, p <  0.05; unweight unifrac, p <  0.001. (B) Difference in β-diversity between oral and gut microbiota in AD. Weight 
unifrac, p <  0.001; unweight unifrac, p <  0.001. (C) Distribution of oral and gut microbiota in HC analyzed by Principal Co-ordinates Analysis (PCoA). 
(D) Distribution of oral and gut microbiota in AD analyzed by Principal Co-ordinates Analysis (PCoA). (E) Significant differences between oral and gut in 
the top 10 species at the level of phylum in HC (all p <  0.05). (F) Bacteroidetes, Firmicutes, Fusobacteria, and Verrucomicrobia have no differences 
between oral and gut top 10 species at the level of phylum in AD. *Wilcoxon test indicated significant differences between different groups. All p-
values are Bonferroni adjusted. * Indicates p <  0.05, ** indicates p <  0.01, *** indicates p <  0.001. AD indicates alcohol dependence, HC indicates 
healthy controls.
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abundance of gut microbiota, found that Prevotella is positively 
correlated with frequency of drinking (daily) (r = 0.49, p = 0.01); 
Streptococcus is negatively correlated with HB (r = −0.38, p = 0.04) 
and positively correlated with TT3 (r = 0.39, p = 0.04); Haemophilus 
is positively correlated with education years (r = 0.38, p = 0.04); 
Megasphaera is negatively correlated with daily alcohol 
consumption, BMI, GGT, scores of PACS, scores of HAMD 
(r = −0.50, p = 0.01; r = −0.51, p = 0.00; r = −0.39, p = 0.03; r = −0.43, 
p = 0.02) (Figure 3C).

Ectopic colonization of oral microbiota in 
gut based on Source Tracker

Source Tracker analysis explored the ectopic colonization of oral 
microbiota in the gut, showing five AD, No. 3, 7, 9, 16, and 21, had a 
fraction of their gut microbiota which had originated from the oral 
cavity, but no positive results in HC. The specific oral bacteria involved 
in ectopic colonization, Abiotrophia, Actinomyces, Alloprevotella, 
Bacteroidales, Blautia, and Campylobacter…, are shown in Table 2 and 

FIGURE 3

Oral and gut overlap microbiota and correlation with clinical features in AD. (A) There are 9 genera were oral-gut overlap bacteria, Prevotella, 
Streptococcus, Veillonella, Neisseria, Fusobacterium, Haemophilus, Alloprevotella, Megasphaera, and Bacteroides, in AD. (B) There are 3 genera were 
oral-gut overlap bacteria, Fusobacterium, Alloprevotella, and Veillonella, in HC. (C) Heat map correlation between oral/gut overlap bacteria and clinical 
features in AD. *Spearman test indicated the association between different groups. * Indicates p <  0.05, ** indicates p <  0.01. AD indicates alcohol 
dependence, HC indicates healthy controls.

TABLE 2 The results of ectopic colonization based on Source Tracker (level of genus).

Ectopic colonization (genus)

Ectopic colonization from oral microbiota in AD 

based on Source Tracker

Abiotrophia, Actinomyces, Alloprevotella, Bacteroides, Blautia, Campylobacter, Capnocytophaga, Clostridiales, 

Corynebacterium, Cyanobacteria, Eubacterium, Escherichia, Fusobacterium, Flavonifractor, Granulicatella, Haemophilus, 

Leptotrichia, Lachnospiracea_incertae_sedis, Megasphaera, Moraxella, Neisseria, Oribacterium, Pasteurellaceae, 

Phocaeicola, Porphyromonas, Prevotella, Rothia, Saccharibacteria, Selenomonas, Solobacterium, Streptococcus, 

Treponema, Veillonella

Ectopic colonization from oral microbiota in HC 

based on Source Tracker
Not found
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Supplementary Figure S4. The contribution ratio of oral microbiota to 
intestinal microbiota composition in AD is 5.26%, and in HC is 0.00% 
based on Source Tracker. Analyze of microbiota composition between 
ectopic colonization and non-ectopic colonization patients, the ratio of 
Firmicutes to Bacteroidetes (F\B) is 1.23 for ectopic colonization and 
1.06 for non-ectopic colonization compared with 0.61 for HC at the 
level of phylum in Supplementary Figures S5A–C. According to the 
Mann–Whitney U test, in contrast to AD patients without ectopic 
colonization, the patients with ectopic colonization showed the daily 
maximum standard drinks, red blood cell counts, hemoglobin content, 
and PACS scores decreasing (all p  < 0.05) in Figures  4A–D. Three 
predominant driver bacteria, Prevotella, Neisseria, and Saccharibacteria 
in the level of the genus were found by Netshift analysis, and they were 
also belonging to ectopic colonization bacteria in Figure  4E and 
Table 2.

The correlation analysis between ectopic 
colonization bacteria and clinical features 
in AD

Based on the Spearman correlation test, to explore the association 
between ectopic colonization bacteria in the relative abundance of gut 
microbiota and clinical features in AD. Alloprevotella is positively 
correlated with first drinking age and ALT (r = 0.41, p = 0.03; r = 0.36, 
p = 0.04), Escherichia is negatively correlated with AST (r = −0.38, 
p = 0.04), Fusobacterium is positively correlated with MCV (r = −0.39, 
p = 0.03). Lachnospiracea_incertae_sedis is negatively correlated with 
frequency of drinking (weekly), AST, ALT, GGT, and TSH (r = −0.53, 
p = 0.00; r = −0.54, p = 0.00; r = −0.55, p = 0.00; r = −0.44, p = 0.01; 
r = −0.45, p = 0.0). Megasphaera is negatively correlated with average 
standard drinks per day, scores of PACS, scores of HAMD, and BMI 
(r = −0.46, p = 0.01; r = −0.42, p = 0.02; r = −0.42, p = 0.02; r = −0.52, 
p = 0.00). Prevotella is positively correlated with frequency of drinking 
(daily) (r = 0.47, p = 0.00). Saccharibacteria is negatively correlated 
with TBiL (r = −0.39, p = 0.01). Streptococcus is negatively correlated 
with HB (r = −0.37, p = 0.04) in Table 3.

Discussion

The exploration of the relationship between oral and gut 
microbiota revealed that differences between oral and gut microbiota 
decreased and the oral/gut microbiota overlap increased in AD, 
compared with HC. Genera involved in ectopic colonization of oral 
microbiota to gut were shown connected with AD symptom severity 
based on Source Tracker and NetShift analysis. Compared with 
previous studies which only focused on single niche, the current study 
emphasized the oral-gut microbiota axis and the connection between 
oral and gut microbiota in AD (Liao et al., 2022; Zhao et al., 2023). To 
the best of our knowledge, this is the first study to explore the ectopic 
colonization in AD combined with methods of Source Tracker and 
NetShift, along with other methods, this will help to enrich the 
etiological hypothesis of the oral-gut microbiota axis in AD.

Heavy alcohol consumption is likely to cause disturbances of 
oral-gut microbiota. In current study, the α-diversity of oral and 
intestinal microbiota decreased in AD, this change may predispose 
patients to inflammatory responses and metabolic disorders (Karkman 

et al., 2017). At level the of phylum, SR1 decreased and Firmicutes and 
Proteobacteria increased in the oral microbiota of AD, and at the level 
of genus, Prevotella decreased, and Bacteroides and Fusobacterium 
increased in the gut microbiota of AD; such compositional change 
may be pro-inflammatory (Brandsma et al., 2019; Ballini et al., 2020). 
In summary, alcohol affects the ecological niches of both oral and gut, 
these could provide prerequisites for ectopic colonization of oral 
bacteria to the gut (Li et al., 2019).

In this study, the distances between oral and gut microbiota in AD 
are shortened based on PCoA, which indicated that oral and gut 
microbiota share a greater similarity in AD. This phenomenon also 
has been found in elderly people, which is believed an enhanced 
tendency for oral bacteria to invade the gut (Iwauchi et al., 2019). 
Then, the current study also found 6 oral/gut overlap bacteria, 
Prevotella, Streptococcus, Neisseria, Haemophilus, Megasphaera, and 
Bacteroides in AD. A previous study found 7 oral/gut overlap bacteria, 
Actinomyces, Bifidobacterium, Dialister, Granulicatella, Lactobacillus, 
Megasphaera, and Veillonella in alcohol use disorder (AUD) (Kobyliak 
et al., 2018; Ames et al., 2020; Maitre et al., 2020). And the difference 
in specific bacteria might be related to alcohol consumption, race, and 
dietary habits.

However, the question of what causes changes in the association 
between oral and gut microbiota and whether oral microbiota can 
ectopically colonize the gut in AD needs to be  answered by the 
approaches of Source Tracker and NetShift. The contribution ratio of 
oral microbiota to the composition of intestinal microbiota in AD is 
5.26%, and no ectopic colonization was found in HC. Among the 
current study, those showing ectopic colonization often suffered lower 
red blood cell counts and hemoglobin content, meanwhile, their daily 
maximum standard drinks and craving for alcohol were also lower 
than non-ectopic colonization. This reduction in craving seems to 
confirm the prevailing hypothesis of the work that ectopic bacteria 
from the oral cavity to the gut contribute to the pathological state, 
because low red blood cell counts and hemoglobin content represent 
the poor state of nutrition in AD, and impaired nutritional status often 
with lower levels of ghrelin and alcohol craving, and consumed high 
quantity of ultra-processed food had higher obsessive thoughts about 
alcohol (Addolorato et al., 2006; Amadieu et al., 2021). Thus, ectopic 
colonization in AD might be regarded as a sign of deterioration in 
diseases (Ley et al., 2008; Wade, 2013). Previous studies have indicated 
that oral microbiota is a reservoir of pathogenic bacteria (Lim et al., 
2017). Colonization of the gut from oral bacteria may precipitate 
intestinal microbiota disturbance and barrier damage, resulting in low 
levels of systemic inflammation and distal spread (Bull-Otterson et al., 
2013; Imai et  al., 2021). In addition, HC had a proportion of the 
intestinal microbiota which derived from the oral microbiota of less 
than 1% according to the Chinese study, which similar to the results 
of current study (Guo et al., 2022).

The bacteria that drive state from health to AD, including 
Prevotella, Neisseria, and Saccharibacteria, were also belonging to 
ectopic colonization of oral bacteria based on NetShift analysis. 
Previous studies found that, Prevotella is an opportunistic pathogen 
that may increase branched-chain amino acid (BCAA) synthesis in 
the gut and lead to insulin resistance (Wu et al., 2011; Wang et al., 
2021). Prevotella and Neisseria were also enriched in the gut of Crohn’s 
disease (CD) (Zhang et al., 2020). Bacteroides and Prevotella have both 
been shown to contribute to metabolic endotoxemia in a high-fat fed 
mouse model (Ding et al., 2020). Saccharibacteria may improve renal 
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FIGURE 4

The association between clinical features and ectopic colonization bacteria in AD. (A) Ectopic colonization patients had lower maximum standard 
drinking daily (p <  0.05); (B) ectopic colonization patients had lower red blood cell counts (p <  0.01); (C) ectopic colonization patients had lower 
hemoglobin content (p <  0.001); (D) ectopic colonization patients had lower PACS scores (p <  0.05). (E) Genera that drive healthy states to alcohol 
dependence, Prevotella, Neisseria, and Saccharibacteria, are indicated by bigger black circles from NetShift analysis. *Mann–Whitney test indicated 
significant differences between different groups. *Indicates p <  0.05, ** indicates p <  0.01, *** indicates p <  0.001. Data are expressed as mean  ±  SEM 
(n =  21–33). EC indicates ectopic colonization patients, NE indicates no ectopic colonization patients, PACS indicates Pennsylvania alcohol craving 
scale, “Case” indicates a relative abundance of gut genera in alcohol dependence, “Control” indicates a relative abundance of gut genera in healthy 
controls.

TABLE 3 The correlation analysis between ectopic colonization bacteria and clinical features in alcohol dependence.

FD 
age

FREW FRED ASD AST ALT GGT TBIL HB MCV TSH PACS HAMD BMI

gAlloprevotella 0.41* – – – – 0.36* – – – – – – – –

gEscherichia – – – – −0.38** – – – – – – – – –

gFusobacterium – – – – – – – – – 0.39* – – – –

gLachnospiracea_ 

incertae_sedis
– −0.53** – – −0.54** −0.55** −0.44* – – – −0.45* – – –

gMegasphaera – – – −0.46* – – – – – – – −0.42* −0.42* −0.52**

gPrevotella – – 0.47** – – – – – – – – – – –

gSaccharibacteria – – – – – – – −0.39* – – – – – –

gStreptococcus – – – – – – – – −0.37* – – – – –

AD, alcohol dependence; FD age, first Drinking age; FREW, frequency of drinking (weekly); FRED, frequency of drinking (daily); ASD, Average Standard Drinks per day; AST, aspartate 
aminotransferase; ALT, alanine transaminase; GGT, gamma-glutamyl transpeptidase; TBIL, total bilirubine; HB, hemoglobin; MCV, Mean Corpuscular Volume; TSH, Thyroid Stimulating 
Hormone; PACS, Pennsylvania Alcohol Craving Scale; HAMD, Hamilton Depression Scale; BMI, Body Mass Index; g relative aboundence of gut microbiota; *p < 0.05，**p < 0.01.
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function through a symbiotic relationship with other host bacteria, 
which could decrease the concentration of serum creatinine (−0.011 
[95% CI –0.019, −0.003], p  = 0.007) and increase the estimated 
glomerular filtration rate (eGFR) (0.012 [95% CI 0.004, 0.020], 
p = 0.003) (Xu et al., 2020), and was found to reduce inflammation in 
a mouse model of periodontitis (Chipashvili et al., 2021).

Ectopic colonization bacteria correlated with the clinical feature 
in AD, such as first drinking age, frequency of drinking (weekly and 
daily), average standard drinks per day, BMI, AST, ALT, GGT, TBIL, 
HB, MCV, TSH, PACS scores and HAMD scores. Therefore, the 
presence of the ectopic genera may be an objective indicator of 
disease severity. Meanwhile, the current study also compared the 
species’ relative abundance of 6 oral/gut overlap bacteria with 
clinical characteristics, further combining the results in Figure 3C 
and Table 3 revealing that the ectopic colonization of the oral flora 
to the intestine could be  one of the reasons for the increased 
number of oral-gut overlap bacteria in alcohol dependent, and oral 
ectopic colonized bacteria might play a role in the intestine and 
correlate with the severity of clinical symptoms. In terms of 
mechanism about ectopic colonization, previous research found 
that ectopic colonization bacteria from the oral cavity, such as 
Fusobacterium nucleatum, Porphyromonas gingivalis, and Klebsiella 
spp., aggravate gut dysbiosis and favor pro-inflammatory bacteria 
(Arimatsu et al., 2014), and activation of the NF-ĸB-PPAR-I FABP/
Angptl4 pathway decreases lipid accumulation and induces 
intestinal apoptosis (Nakajima et al., 2015; Olsen and Yamazaki, 
2019). Furthermore, P. gingivalis activates the MAL-PI3K pathway, 
and Klebsiella spp. resulted in potent Th1 cell differentiation in the 

gut (Maekawa et al., 2014; Atarashi et al., 2017; Scassellati et al., 
2021). Meanwhiles, amounts of bacteria and their products invade 
the blood, activating B cells and inflammatory response, increasing 
fibrinogen production, and vascular endothelial injury in the liver 
(Wiest et  al., 2014; Sansores-España et  al., 2021). Thrombotic 
occlusion of capillaries and excessive interleukin-1β (IL-1β) and 
interleukin-6 (IL-6) secretion may follow (Leclercq et al., 2017; Imai 
et  al., 2021). Low-grade inflammation in peripheral tissues and 
vagus nerve fibers (IL-1β) in the gut-brain axis may weaken the 
blood–brain barrier (BBB) (Maekawa et al., 2014; Acharya et al., 
2017; Leclercq et  al., 2017; Sansores-España et  al., 2021). 
Inflammatory responses in the CNS may cause activated microglia 
to produce tumor necrosis factor (TNF), IL-1β, and IL-6 and 
neurotrophic factor (BDNF) from astroglia. Inflammation damages 
the limbic system and dorsal lateral prefrontal cortex (DLPFC) of 
the brain, exacerbating the cognitive impairment and affective 
disturbance of AD (Lee et al., 2005; Liu et al., 2016; Pascual et al., 
2021) (Supplementary Figure S6). We could deduce that ectopic 
colonization of oral microbiota could be involved in intestinal and 
brain dysfunction in AD through the microbiota-gut-brain axis 
from the network above (Figure 5).

We acknowledge some limitations to the current study. Ectopic 
colonization in AD was investigated using data analysis of Source 
Tracker, thus it is still not enough to conclude that there is ectopic 
colonization in the gut by specific oral bacteria, and experimental 
verification is necessary. This study only included male subjects, 
lack of representation of females as one of the limitations of 
the study.

FIGURE 5

The effect of ectopically colonized bacteria on the microbiota-gut-brain axis in AD. Oral microbiota arrive at the gut via the blood and/or gut pathway 
and colonize the distal intestine. Then aggravate gastrointestinal microbiota dysbiosis, barrier injury and inflammation, ultimately affecting alcohol 
craving in AD.
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Conclusion

The decreased divergence between oral and gut microbiota and 
increased oral-gut overlap bacteria were found in AD. Ectopic 
colonization bacteria were only found in AD based on Source Tracker. 
Connections between oral-gut microbiota and mechanisms of AD 
progression are highlighted and could be  regard as the potential 
biomarker for oral-gut microbiota mechanisms in AD development.
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