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Intratumor microbiome derived 
glycolysis-lactate signatures 
depicts immune heterogeneity in 
lung adenocarcinoma by 
integration of microbiomic, 
transcriptomic, proteomic and 
single-cell data
Xiaheng Deng †, Xiru Chen †, Yu Luo †, Jun Que * and Liang Chen *

Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 
China

Introduction: Microbiome plays roles in lung adenocarcinoma (LUAD) 
development and anti-tumor treatment efficacy. Aberrant glycolysis in tumor 
might promote lactate production that alter tumor microenvironment, affecting 
microbiome, cancer cells and immune cells. We aimed to construct intratumor 
microbiome score to predict prognosis of LUAD patients and thoroughly 
investigate glycolysis and lactate signature’s association with LUAD immune cell 
infiltration.

Methods: The Cancer Genome Atlas-LUAD (TCGA-LUAD) microbiome data 
was downloaded from cBioPortal and analyzed to examine its association with 
overall survival to create a prognostic scoring model. Gene Set Enrichment 
Analysis (GSEA) was used to find each group’s major mechanisms involved. Our 
study then investigated the glycolysis and lactate pattern in LUAD patients based 
on 19 genes, which were correlated with the tumor microenvironment (TME) 
phenotypes and immunotherapy outcomes. We developed a glycolysis-lactate 
risk score and signature to accurately predict TME phenotypes, prognosis, and 
response to immunotherapy.

Results: Using the univariate Cox regression analysis, the abundance of 38 genera 
were identified with prognostic values and a lung-resident microbial score (LMS) 
was then developed from the TCGA-LUAD-microbiome dataset. Glycolysis 
hallmark pathway was significantly enriched in high-LMS group and three 
distinct glycolysis-lactate patterns were generated. Patients in Cluster1 exhibited 
unfavorable outcomes and might be insensitive to immunotherapy. Glycolysis-
lactate score was constructed for predicting prognosis with high accuracy and 
validated in external cohorts. Gene signature was developed and this signature 
was elevated in epithelial cells especially in tumor mass on single-cell level. 
Finally, we found that the glycolysis-lactate signature levels were consistent with 
the malignancy of histological subtypes.

Discussion: Our study demonstrated that an 18-microbe prognostic score and a 
19-gene glycolysis-lactate signature for predicting prognosis of LUAD patients. 
Our LMS, glycolysis-lactate score and glycolysis-lactate signature have potential 
roles in precision therapy of LUAD patients.
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Background

Despite the improvements in the treatment of lung adenocarcinoma 
(LUAD) in the recent decades, the 5-year survival rate remains below 
satisfactory levels (<20%) (Reck et al., 2022). Presently, both cellular 
and humoral biomarkers are extensively employed to predict the 
emergence and prognosis of LUAD. Advancements in next-generation 
sequencing (NGS) technology have led researchers to primarily 
investigate genomic and proteomic alterations in order to identify early 
detection markers, including CEA (Grunnet and Sorensen, 2012), 
SHOX2/PTGER4 methylation (Weiss et al., 2017; Schotten et al., 2021), 
microRNAs (miRNAs) and circulating tumor DNAs (ctDNAs) (Du 
et al., 2018; Seijo et al., 2019; Xia et al., 2022). However, emerging 
studies reveal that NGS profiles contain an enormous amount of 
microbial-derived sequencing reads that might offer new insights into 
the tumorigenesis markers (Poore et al., 2020).

The shifts in microbiota community structure might contribute to 
carcinogenesis and affect anti-cancer therapies through multiple 
biological pathways, such as immune, metabolism and signal 
transduction (Garrett, 2015). Studies have proved that malignancies 
such as colorectal, gastric, hepatocellular and pancreatic cancers are 
closely related to the microbiota (Vogtmann and Goedert, 2016; Mima 
et al., 2017). The well-known presence of Helicobacter pylori in the 
upper gastrointestinal tract was closely associated with stomach ulcers 
and elevated risk of gastric cancer (Burkitt et al., 2017). Citrobacter 
rodentium was found to facilitate colon cancer progression in mouse 
models (Atarashi et al., 2015). The lungs provide the largest interface 
for gas exchange, which are inevitably exposed to diversified 
environmental microorganisms. Proteobacteria, Bacteroidetes, 
Firmicutes, and Actinobacteria are found to be the major phyla of the 
healthy lung microbiome (Charlson et al., 2011). In patients with acute 
or chronic pulmonary diseases, such as chronic obstructive pulmonary 
disease and asthma, the micro-anatomic alterations in bacterial 
colonization in lungs could even be observed before CT scan showed 
abnormalities (Erb-Downward et al., 2011). There is growing evidence 
supporting a central role for microbiome in the development of lung 
cancer (Pilaniya et  al., 2016; Yu et  al., 2016). Greathouse et  al. 
identified a correlation between Acidovorax, a bacterium associated 
with smoking, and the progression of lung squamous cell carcinoma 
harboring TP53 mutations (Greathouse et al., 2018). In addition, the 
combination of Capnocytophaga and Veillonella exhibited promising 
results for predicting the malignancy of non-small cell lung cancer 
and have the potential to serve as novel biomarkers (Yan et al., 2015). 
Recently emerged studies also showed that disturbances of 
microbiome composition such as antibiotics use might impair the 
efficacy of antitumor immunotherapy (Botticelli et  al., 2020). For 
example, Bifidobacterium was discovered by Sivan et al. (2015) to 
increase anti-PD-L1 activity in germ free mice whereas anti-CTLA-4 
response was impacted in antibiotic mice. Thus, the recognition of 
microbiome in LUAD cancers could predict the prognostic status of 
individual patient.

To this end, our study embarked on a comprehensive investigation 
into the distribution of intratumor microbes and their association 
with glycolysis-lactate clusters in LUAD patients. We  aimed to 
establish a microbial abundance-derived prognostic score, the lung 
resident microbe score (LMS), and to evaluate its relationship with the 
prognosis and immune infiltration of LUAD. Subsequently, we applied 
Gene Set Enrichment Analysis (GSEA) HallMark pathways 
enrichment to the high LMS group, which led to the discovery of the 
glycolysis hall pathway. This finding prompted us to develop 
glycolysis-lactate based patterns and evaluate their function in LUAD 
prognosis. As a result, we  constructed a glycolysis-lactate score, 
validated as a robust tool for further exploring the role of these 
patterns in the immune microenvironment and drug sensitivity. 
Through this comprehensive approach, we  aimed to deepen the 
understanding of the connection between the tissue microbiome and 
metabolic changes in cancer development.

Materials and methods

Sample datasets and clinical profiles 
collected for analysis

The RNA sequence data, clinical data, microbiome data of TCGA-
LUAD were obtained from the cBioPortal.1 Fragments Per Kilobase 
Million (FPKM) values were converted to Transcripts Per Million 
(TPM) values using TPM = (FPKM/FPKMsum) × 106. The TCGA-
LUAD-microbial profile, which was classified at the genus level rather 
than the species level, was generated by Dohlman et al. as a part of The 
Cancer Microbiome Atlas (TCMA) (Dohlman et  al., 2021). After 
removing duplicates and patients without follow-up information, 
RNA-sequence data from 522 cases and microbiome data from 491 
cases were enrolled in this study. We included four Gene Expression 
Omnibus (GEO) RNA-sequence datasets2 (GSE40791 (Zhang et al., 
2012), GSE46539 (Chen et al., 2015), GSE72094 (Schabath et al., 2016) 
and GSE115002 (Cui et al., 2019)) for establishing the prognostic 
model, with GSE72094 containing complete survival information 
(Schabath et al., 2016). The “Combat” function in the “sva” R package 
was utilized to remove batch effects among the TCGA datasets and 
GEO microarrays. Additionally, we used GSE31210, which contains 
246 cases with overall survival (OS) and progression free survival 
(PFS) data, as an external validation cohort. Furthermore, 
we  downloaded the proteome profile PMID35383171 from the 
supplementary data of Mirhadi et  al.’s (2022) study. In addition, 
GSE131907, which is a single-cell RNA sequencing dataset for LUAD, 
was utilized to validate the prognostic model at the single-cell level. 

1 https://www.cbioportal.org/

2 https://www.ncbi.nlm.nih.gov/geo/
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Moreover, GSE58772, the only dataset featuring histological subtype 
classifications of LUAD, enabled us to investigate the potential of our 
prognostic model in distinguishing these subtypes (Table 1).

Development of lung-resident microbial 
score (LMS) and clinical nomogram

The lung-resident microbial score was generated through specific 
procedures. The TCGA-LUAD-microbiome dataset was split into a 
training cohort and test cohort in a 1:1 ratio using the 
“createDataPartition” method available in the “caret” R package. 
Microbial taxa significantly associated with OS (p < 0.05) were identified 
using univariate Cox regression analysis in the training cohort. These 
microbes were categorized as protectors (hazard ratio (HR) <1) or risk-
factors (HR >1). The least absolute shrinkage and selection operator 
(LASSO) regression analysis, performed using the “glmnet” R package, 
was used to further filter candidate microbes. To develop the LMS for 
the 18 selected microbes (i) with the best predictive performance, 
we used the following formula: LMS=∑ ×Coefficient i Abundance i . 
The coefficients for each microbe were derived via multivariate Cox 
regression analysis. To partition the LMS, we arranged the patients in 
the validation set as either High-LMS or Low-LMS based on the median 
LMS value. The prognostic performance of the LMS was assessed using 
the Kaplan–Meier (K-M) method and log-rank test available in the 
“survminer” R package. The “timeROC” function from the “tROC” R 
package and principal component analysis (PCA) were used to evaluate 
the predictive accuracy and stability of LMS. The test cohort was used 
to further verify the feasibility of LMS. The “pheatmap” R package was 
used to plot survival curves and display the risk score distribution.

To determine if the LMS was an independent prognostic 
parameter, multivariate Cox regression analysis was performed, with 
clinicopathological factors, identified as significant in univariate 
analysis, including age, sex, and stage. Using the “rms” R package, a 
nomogram was constructed that incorporated clinical characteristics 
and LMS, to predict patient survival probability at 1, 3, and 5 years. 
To evaluate the accuracy of the nomogram-predicted survival rates, 
calibration plots were generated to compare the predicted versus 
actual survival rates.

Primary exploration of immunity and GSEA 
in LMS groups

To elucidate the discrepancy between the High-LMS and 
Low-LMS patients, immunocyte infiltration was analyzed based on 
the CIBERSORT algorithms3 from TCGA-LUAD-transcriptome 
database and the subtle differences were visualized by radar chart 
using the “ggpubr” R package. Moreover, in view of the major 
mechanisms involved the High-and Low-LMS groups remained 
unclear, hallmark pathways were recognized using “h.all.v2022.1.Hs.
symbols.gmt” gene set from MsigDB website.4 The “clusterProfiler” 
and the “enrichplot” R packages were used for the enrichment 
analysis with the transcriptomic data of individual samples.

Glycolysis and lactate metabolic signatures 
and unsupervised clustering to identify 
LUAD subtypes

To quantify glycolysis and lactate metabolic enrichment scores in the 
High-and Low-LMS groups, we used 13 gene sets related to glycolysis 
and lactate metabolism recruited from the GSEA database. We employed 
single-sample GSEA (ssGSEA) using the “GSVA” R package to calculate 
these scores. Consensus clustering was performed on the merged 
TCGA-GEO dataset by utilizing ssGSEA scores for each sample. The R 
package “ConsensusClusterPlus” was implemented for repeating the 
process 1,000 times. The parameters for the analysis were set to maxK = 5, 
pItem = 0.8, reps = 1,000, clusterAlg = “pam,” and distance = “euclidean.”

Antitumor immunity depiction of LUAD 
patients

In this study, we analyzed the tumor immune microenvironment 
(TIME) of LUAD, which comprises various components, including the 
infiltration of immune cells, immune and stromal scores, analysis of 
immune-related signatures, and anti-cancer immunity. To quantify the 
activity of anti-cancer immunity across the seven-step cancer-immunity 
cycle, we used the tracking tumor immunophenotype (TIP) database5 
(Xu et al., 2018). We determined the abundance of 28 immunocytes 
infiltrating the TCGA-GEO merged dataset using the ssGSEA algorithm 
and previously established marker gene sets, as reported by Charoentong 
et al. (2017). Stromal and immune scores in TIME were estimated using 
the ESTIMATE algorithm (Yoshihara et al., 2013). We also calculated 
enrichment scores for four immune-related signatures, previously 
reported by Braun et  al., using the ssGSEA method. Furthermore, 
we evaluated the potential effectiveness of immune checkpoint blockade 
(ICB) therapy in each sample using 21 signatures from Mariathasan 
et al.’s study (Mariathasan et al., 2018; Braun et al., 2020). In addition, 
we utilized the Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm6 to predict the immunotherapeutic response of each patient 
with LUAD (Jiang et al., 2018).

3 https://cibersort.stanford.edu

4 http://www.gsea-msigdb.org/

5 http://biocc.hrbmu.edu.cn/TIP/

6 http://tide.dfci.harvard.edu/

TABLE 1 Summary of publicly available data utilized in the study.

Data set Data type Glycolysis-lactate 
score construction 
cohort

TCGA-LUAD-

microbiome

Intratumor 

microbiome

PMID35383171 Proteome

GSE131907 scRNA-seq

GSE40791 RNA-seq

GSE46539 RNA-seq

GSE115002 RNA-seq

GSE58772 RNA-seq

GSE72094 RNA-seq Training cohort

TCGA-LUAD-RNAseq RNA-seq Internal validation cohort

GSE31210 RNA-seq External validation cohort
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Drug sensitivity and messenger RNA 
expression-based stemness index (mRNAsi) 
calculation

To predict responses to chemotherapy and molecular targeted 
drugs, we utilized the “oncoPredict” R package, which employs data 
from the Genomics of Drug Sensitivity in Cancer (GDSC),7 to assess 
drug responses amongst three glycolysis-lactate subtypes. 
We implemented a method developed by Malta et al.’s (2018) study, 
wherein we retained the transcriptional mRNA-based stemness index 
(mRNAsi) scores for LUAD patients based on pluripotent stem cells, 
using a one-class logistic regression machine learning algorithm 
(OCLR). The Wilcox test was used to determine if there was a 
significant difference in mRNAsi scores among the three subtypes. 
Additionally, we obtained 23 stemness gene sets from MsigDB and 
determined the stemness enrichment scores to further evaluate the 
differences between the glycolysis-lactate subtypes.

Weight gene co-expression network 
analysis (WGCNA) to identify candidate 
genes

We utilized the “WGCNA” R package to construct co-expression 
networks of candidate genes in the GSE72094 dataset, thereby identifying 
representative modules of dissimilar glycolysis-lactate subtypes. The gene 
selection process involved discarding those with missing values, 
constructing a cluster tree to remove outliers, and applying network 
topology analysis to calculate a soft-threshold power β = 3 for a weighted 
adjacency matrix. We  then converted this matrix into a topological 
overlap matrix, which enabled the production of a hierarchical cluster of 
genes interconnected with the corresponding dissimilarities 
(minModulesize = 250). Through recognizing the modules with similar 
patterns, an intramodular analysis was executed to quantify the Gene 
Significance (GS) and Module Membership (MM) of module-trait 
relationships. The module eigengene (ME), which represented the first 
principal component of each module, was then calculated, and its 
associations with glycolysis-lactate subtypes, TNM stage, survival 
information, and KRAS/EGFR/STK11/TP53 mutation were identified. 
We selected candidate genes based on a GS > 0.5 and MM > 0.5 threshold. 
Subsequently, we employed association analysis with the proteomic data 
from Mirhadi et al.’s study to construct a nine-quadrant map, which better 
visualizes the transcript and protein dynamics in the co-expression 
module. Proteomaps8 were produced to show the quantitative 
composition of proteomes based on Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses, with each protein shown by a polygon, and 
polygon areas representing protein abundance.

Prognostic glycolysis-lactate score 
construction and validation

We used Univariate Cox regression to detect prognostic genes in 
the studied module of the GSE72094 dataset. To reduce the number 

7 https://www.cancerrxgene.org/

8 https://proteomaps.net/

of filtered prognostic genes and construct a gene combination, 
we  employed the LASSO method and Cox proportional hazard 
regression algorithm implemented in the “glmnet” R package. The 
resulting Glycolysis-lactate Score was calculated as the sum of the 
products of the coefficient i  and RNA expression 
i (∑ ×Coeefficient i RNA Expression i ). Subsequently, we validated 
the prognostic utility of this score in the TCGA-LUAD dataset. To 
confirm our findings, we  also validated the score in the external 
GSE31210 database, which included OS and PFS information.

Glycolysis-lactate signature on the single 
cell RNA (scRNA) sequencing level

We obtained a scRNA-seq dataset (GSE131907), which included 
44 LUAD patients. We included 11 tumor, 11 distant normal lung, 10 
normal lymph node, and 10 metastatic brain tissue samples in our 
study. Using the “Seurat” R package, we created a Seurat object using 
the raw count matrix, features, and barcodes profiles. We  then 
removed low-quality cells based on the percentage of RNA mapped to 
mitochondrial genes per cell using the “PercentageFeatureSet” 
function. The same exclusion criteria from our previous study were 
applied: genes detected in fewer than three cells, fewer than 50 total 
detected genes, or greater than or equal to 5% mitochondrial genes 
(Luo et al., 2022). Nonlinear dimensionality reduction was carried out 
by PCA, and we identified the top 20 principal components (PCs) 
using the uniform manifold approximation and projection (UMAP) 
algorithm. Genes differentially expressed in each cluster with an 
adjusted p < 0.05 and ∣log2(Fold Change (FC))∣ > 0.5 were designated 
as marker genes. We  annotated each cluster using the recently 
developed “ScType” R package, which provides unbiased and 
improved cell type annotations (Ianevski et  al., 2022). Finally, 
we generated glycolysis-lactate signatures on the single-cell level using 
the “AddModuleScore” function and TISCH website.9

Statistical analysis

All statistical analyses were performed using Rstudio software 
(version 4.1.1). We  used the “cor.test” function in R to compute 
bi-directional Spearman’s correlation. To produce the survival curves 
and assess survival differences, we utilized the K-M plot and log-rank 
test. We employed the “clusterProfiler” R package to identify enriched 
functions associated with specific genes. For all comparisons, 
statistical significance was set at a two-tailed p-value of less than 0.05.

Results

Development of a scoring method based 
on TCGA-LUAD-microbiome

We have created a flowchart depicting our study process and 
included it as Supplementary Figure S1. The TCGA-LUAD-
microbiome dataset was divided into a training set (n = 246) and a 

9 http://tisch.comp-genomics.org
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testing set (n = 245). Univariate Cox regression analysis was used to 
identify 38 out of 1,406 genera whose abundance was associated with 
prognostic value in the 246 LUAD samples from the TCGA training 
dataset. Of these, 14 genera, namely Helicobacter, Histophilus, 
Luteibacter, Marinitoga, Sandarakinorhabdus, Simplexvirus, 
Stomatobaculum, Roseiflexus, Methylopila, Sapelovirus, 
Faecalibacterium, Flavivirus, Belnapia and Lysinimicrobium correlated 
with favorable OS while the abundance of the remaining 24 genera 
was associated with worse survival (p < 0.05, as depicted in Figure 1A 
and Supplementary Figure S2A). We  further investigated the 
correlation between clinical parameters and microbial abundance, 
revealing that the abundance of Marichromatium, Roseibium and 
Sporosarcina was positively correlated with increasing tumor stages 
whereas the abundances of Luterbacter and Sandarakinorhabdus were 
attenuated in the stage III-IV group (Supplementary Figure S2B). 
Based on the microbial abundance, patients were stratified into high 
and low groups, and the cut-off points that demonstrated the most 
significant OS differences were determined. The Kaplan–Meier curves 
showed that patients with high abundance of Marichromatium, 
Roseibium and Sporosarcina had notably shorter OS, while those with 
high abundance of Luterbacter and Sandarakinorhabdus had a more 
favorable prognosis (Supplementary Figure S2C). We then performed 
Lasso-penalized Cox regression to select potential prognostic 
microbes, and the shrinkage penalty parameters for Lambda (λ) were 

determined by ten-fold cross-validation (Supplementary Figure S2D). 
Multivariate Cox regression analysis was finally performed by 
including the 18 prognostic microbes with non-zero regression 
coefficients to obtain the regression coefficients for each microbe. The 
derived scoring method was
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Evaluation of the performance of the LMS

LMS were calculated according to the formula and patients were 
divided into high (n = 243) and low-LMS groups (n = 248) based on the 
median LMS. In Figure  1B, we  employed PCA to assess the 

FIGURE 1

Development of a scoring method based on TCGA-LUAD-microbiome. (A) Volcano plot displays the relationship between microbial abundance and 
overall survival (OS). (B) Categorization of high and low LMS patients before and after LMS construction based on the PCA (Left: Number of 
microbes  =  1,406, Right: Number of microbes  =  18). (C) Kaplan–Meier analysis of OS and progression free survival (PFS) in total set. (D) Risk scores 
predicting OS in total set using time-independent ROC analysis. (E) The distribution of survival status, risk scores and abundance of 18 prognostic 
microbes in total set.
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discriminative power of the complete set of microbes (1,406 in total, 
left plot) and the specific set of 18 microbes used in the LMS (right 
plot). For the PCA incorporating all 1,406 microbes, the proportions 
of variance (R2) for PC1, PC2, and PC3 were 0.353, 0.035, and 0.023, 
respectively, with Q2 = 0.977. The p-values for the differences between 
the high and low LMS groups were < 0.001 for PC1, 0.542 for PC2, and 
0.314 for PC3. For the PCA using the 18 LMS microbes, the proportions 
of variance (R2) for PC1, PC2, and PC3 were 0.156, 0.107, and 0.075, 
respectively, with Q2 = 0.954. The p-values for the differences between 
the high and low LMS groups were < 0.001 for PC1, 0.485 for PC2, 
and < 0.001 for PC3. This demonstrates a significant difference for both 
PC1 and PC3, indicating that this LMS is more effective in 
distinguishing between the two patient groups (Figure 1B).

In the training set, patients in the high-LMS group (n = 123) 
exhibited significantly worse prognostic outcomes compared to those 
in the low-LMS group (n = 123). Kaplan–Meier analysis indicated that 
the low-LMS group had longer OS and progression-free survival (PFS) 
times than the high-LMS group, as depicted in 
Supplementary Figures S3A,B. The AUC values for LMS were 0.905, 
0.896, and 0.921 for OS and 0.789, 0.758, and 0.798 for PFS at years 1, 
3, and 5 respectively, as illustrated in 
Supplementary Figures S3D,E. Furthermore, the risk plot demonstrated 
a remarkable increase in mortality rate with higher LMS, as presented 
in Supplementary Figure S3C. Distribution of survival status and 
microbial abundance among the 246 patients in the training cohort are 
presented in Supplementary Figure S3C. Next, the test set (n = 245) and 
entire dataset (n = 491) were used to verify the accuracy of LMS. In the 
testing set, survival curve analysis indicated that OS was significantly 
longer in the group with low levels of LMS, while PFS showed no 
significant difference (Supplementary Figures S3A,B). The AUC values 
obtained by ROC analysis for 1-,3-, and 5-years of OS and PFS were 
reported. The AUC values were 0.636, 0.659, and 0.596 and 0.602, 
0.537 and 0.547, respectively (Supplementary Figures S3D,E). The 
distribution of LMS, survival status and microbiome abundance levels 
observed in the validation cohort were similar to those obtained in the 
training cohort (Supplementary Figure S3C).

In the entire dataset, we observed significant survival advantage 
for both OS and PFS in the group with low LMS levels (Figure 1C). 
ROC analysis showed that AUC values, respectively, for 1-, 3-, and 
5-years were 0.796, 0.778, and 0.759 for OS and 0.692, 0.647, and 0.661 
for PFS (Figure 1D). Additionally, the risk curve and microbe heatmap 
exhibited similar findings to the ones observed in the training and 
testing cohorts (Figure 1E). In summary, our results suggest that LMS 
could potentially serve as a prognostic biomarker for LUAD.

To evaluate the independent prognostic value of LMS, 
we  performed both univariate and multivariate Cox regression 
analysis that included other clinical features. The results showed that 
LMS could serve as an independent predictor for OS even after 
adjusting for age, sex, smoking status and stage in the multivariable 
analysis (Figure  2A). Based on the results obtained from the 
multivariable Cox regression analysis, we  developed a prognostic 
nomogram that can predict 1-, 3-and 5- year OS in a clinical setting 
(Figure 2B). The calibration curves of the nomogram for 1-, 3-and 
5- year OS were plotted, and the prediction line was almost coincident 
with the best-fit line (45°C line). This result demonstrates good 
agreement between predicted and actual probabilities, and high 
precision in distinguishing most survival outcomes at these time 
points (Supplementary Figure S3F).

Identification of tumor infiltrating 
immunocytes and enrichment analysis of 
LMS groups

We examined the relationship between LMS and tumor-
infiltrating immune cells in LUAD. We used the CIBERSORT method 
to estimate the proportions of immune cells in each TCGA-LUAD 
transcriptome sample. The low-LMS group had a higher proportion 
of memory B cells and resting mast cells, while the high-LMS group 
showed a higher proportion of activated mast cells (Figure 2C).

We conducted GSEA Hallmark enrichment analysis to elucidate 
the underlying mechanisms that differentiate high-and low-LMS 
groups. The results showed that high-LMS group was significantly 
enriched in cell cycle-related pathways such as HALLMARK_E2F_
TARGETS (NES = 2.13, NOM p-value < 0.001 and FDR 
q-value < 0.001), HALLMARK_G2M_CHECKPOINT (NES = 2.18, 
NOM p-value < 0.001 and FDR q-value < 0.001), HALLMARK_
MTORC1_SIGNALING (NES = 1.92, NOM p-value < 0.001 and FDR 
q-value<0.001), HALLMARK_MYC_TARGETS_V1 (NES = 2.25, 
NOM p-value < 0.001 and FDR q-value < 0.001) and HALLMARK_
MYC_TARGETS_V2 (NES = 1.80, NOM value of p = 0.001 and FDR 
q-value = 0.006) (Figure 2D). On the other hand, low-LMS group was 
enriched in anti-infective pathways such as HALLMARK_
ALLOGRAFT_REJECTION (NES = -1.47, NOM p-value = 0.005 and 
FDR q-value = 0.013), HALLMARK_IL6_JAK_STAT3_SIGNALING 
(NES = -1.62, NOM p-value = 0.005 and FDR q-value = 0.01), 
HALLMARK_INTERFERON_ALPHA_RESPONSE (NES = -1.60, 
NOM value of p = 0.004 and FDR q-value = 0.01), HALLMARK_
INTERFERON_GAMMA_RESPONSE (NES = -1.45, NOM 
p-value = 0.007 and FDR q-value = 0.01) (Figure  2E). Notably, 
HALLMARK_GLYCOLYSIS (NES = 1.67, NOM p-value < 0.001 and 
FDR q-value = 0.003) was significantly enriched in the high-LMS 
group, indicating a possible important role of glycolysis in intratumor 
microbe-related LUAD, which was distinct from the cell-cycle related 
pathways (Figure 2D).

Immune characteristics associated with 
glycolysis and lactate metabolic patterns in 
LUAD

To determine whether significant differences in glycolysis and 
lactate-regulated patterns existed between high-and low- LMS groups, 
ssGSEA was conducted using 13 glycolysis and lactate metabolic gene 
sets. The results showed that 10 of these 13 gene sets exhibited a higher 
level of enrichment in the high-LMS group, while the remaining 3 
gene sets showed no significant differences (Figure 3A). We found that 
genes related to glycolysis and lactate metabolism are closely 
associated with the lung-resident microbiome and have prognostic 
value in LUAD. Inspired by these results, we performed hierarchical 
clustering on TCGA-LUAD patient data to identify three distinct 
groups (Cluster 1, Cluster 2, and Cluster 3) based on regulated 
patterns in LUAD (Supplementary Figure S4A). Patients in Cluster 1 
had significantly worse survival outcomes compared to those in 
Clusters 2 and 3 (Figure 3B). Moreover, most glycolysis and lactate 
metabolic gene sets were upregulated in Cluster 1, while certain gene 
sets related to lactate dehydrogenase exhibited no significant 
differences (Figure 3C). Gene Ontology (GO) enrichment analysis 
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revealed suppression of several immune-related biological processes, 
such as regulation of immune system processes, regulation of immune 
response, and T-cell activation, in Cluster 1, suggesting potential 
differences in immune status among the three clusters (Figure 3D).

We investigated whether glycolysis and lactate-regulated patterns 
played a role in the TIME. The seven-step cancer immunity cycle, as 
delineated by Chen and Mellman (2013), offers a structured 
understanding of the successive stages inherent in anti-tumor immune 
responses: Step1 Liberation of Cancer Cell Antigens: This initial phase 
encompasses the apoptosis and necrosis of neoplastic cells, 
concomitant with the extrication of antigens. Step2 Capture and 
Processing of Cancer Antigens: Antigen-presenting cells, notably 
dendritic cells, seize and process these antigens in preparation for 
their presentation to the immune effector cells. Step3 Presentation of 
Antigens: The processed antigens are exhibited to immune cells on the 

surface of antigen-presenting cells, facilitated by the Major 
Histocompatibility Complex (MHC). Step4 Priming and Activation: 
Recognition and binding of antigens by immune cells within lymph 
nodes instigate their activation and proliferation, instigating their 
trajectory towards the tumor site. Step5 Immune Cell Trafficking and 
Infiltration: Post-activation, immune cells egress from the lymph 
nodes, traverse the circulatory system, and subsequently infiltrate the 
tumor. Step6 Recognition of Cancer Cells: Within the confines of the 
tumor microenvironment, T cells recognize and affix to antigens 
expressed on the tumor cells. Step7 Elimination of Cancer Cells: T 
cells discharge cytotoxic molecules, culminating in the annihilation of 
tumor cells. This sequence engenders the release of additional 
antigens, thereby perpetuating the cycle. Our results showed a 
significant decrease in anti-cancer immunity status across the cycle in 
Cluster 1, compared to Clusters 2 and 3, indicating that patients in 

FIGURE 2

Identification of tumor infiltrating immunocytes and enrichment analysis of LMS groups. (A) Univariate and multivariate Cox regression analyses to 
verify the prognostic values of various clinicopathological factors and LMS. Brown: Univariate Cox regression; Blue: Multivariate Cox regression. (B) A 
nomogram was created that included both the LMS and clinical factors. (C) Radar plot showed the proportions of infiltrating immunocytes in the high 
and low LMS groups. (D,E) GSEA Hallmark enrichment analysis in the high (D) and low (E) LMS groups. *** p  <  0.001.

https://doi.org/10.3389/fmicb.2023.1202454
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Deng et al. 10.3389/fmicb.2023.1202454

Frontiers in Microbiology 08 frontiersin.org

FIGURE 3

Immune characteristics among glycolysis and lactate metabolic patterns in LUAD. (A) Comparison of glycolysis and lactate metabolic gene sets 
enrichments between high and low LMS groups. (B) Kaplan–Meier overall survival curves for LUAD patients among different clusters. (C) Box plot 

(Continued)
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Cluster 1 may exhibit a constrained tumor immune activation and 
immune infiltration into the TIME (Figure 3E).

We used established gene markers to confirm that most of the 
tumor infiltrating lymphocytes, such as activated CD8+ T cells, 
dendritic cells (DCs), CD56+ natural killer cells, macrophages, and 
natural killer T cells, exhibited significantly higher levels in Cluster 3 
and lower levels in Cluster 1 (Figure 3F). We used the ESTIMATE 
immune score as a surrogate for immune infiltration and found that 
Cluster 1 had the lowest immune score (Supplementary Figure S4B). 
Our findings suggested that Cluster 1 represented a non-inflamed 
TIME phenotype that may exhibit insensitivity to immune checkpoint 
blockade (ICB) therapy, while Cluster 3 represented an inflamed 
phenotype that may exhibit sensitivity to such therapy. The 
IMmotion150_Teff signature, JAVELIN Pathway, and Tumor 
inflammation signature from the four reported immune-related 
pathways exhibited significantly lower levels in Cluster 1, while most 
of the pathways reported by Mariathasan et  al., which possessed 
immunotherapy efficacy predicting value, were upregulated in Cluster 
1 when compared to Clusters 2 and 3 (Figure  3G; 
Supplementary Figure S4C). Using the Tumor Immune Dysfunction 
and Exclusion (TIDE) algorithm, we predicted that Cluster 1 was less 
responsive to immunotherapy than Clusters 2 and 3 (Figure 3H).

Chemo and targeted therapy response and 
cancer stemness levels among identified 
clusters

Chemoresistance is a significant obstacle that affects the success 
of chemotherapy and targeted therapy in lung adenocarcinoma 
detected at an advanced stage (Du et al., 2021). We calculated in vivo 
drug sensitivity for several chemotherapy and targeted therapy drugs 
and compared sensitivity between glycolysis-based and lactate-based 
clusters. Cluster 1 had significantly reduced sensitivity to Erlotinib, 
Gefitinib, Docetaxel, Paclitaxel, Vinblastine, and Vinorelbine, 
indicating a decrease in sensitivity to these agents. Conversely, Cluster 
1 exhibited higher sensitivity to Crizotinib and Sorafenib (Figure 4). 
The stemness of the three clusters was assessed using the OCLR 
algorithm. Observations of mRNAsi values indicated that Cluster 1 
exhibited increased tumor stemness, whereas Cluster 3 had 
predominantly low values (Figure 5A). In addition, Cluster 1 showed 
enrichment in the majority of the 26 stemness gene sets, as shown in 
Supplementary Figure S3D.

Correlations between 
transcriptome-proteome in the WGCNA 
identifying module

To identify candidate module genes, we performed WGCNA on 
the GSE72094 cohort in response to the unfavorable survival and 

immunotherapy efficacy in Cluster 1 patients (Figure 5B). Seven gene 
modules were identified with similar expression patterns, out of which 
the turquoise module appeared to have the strongest positive 
correlation with Cluster 1 (ME = 0.35, p = 3e-14) and the most negative 
association with Cluster 2 (ME = -0.25, p = 8e-08). Therefore, the 
turquoise module with 5,133 genes was selected as the candidate 
module for further analysis.

Multi-omics analysis can minimize the biological bias in single-
omic data and illuminate various cellular aspects based on the 
distinct omics used for the study. We  performed transcriptome-
proteome analysis to gain a thorough understanding of molecular 
interactions in the candidate module. 1,633 correlation pairs were 
selected and illustrated in a nine-quadrant plot (Figure 5C). Most 
genes were assigned to the second quadrant, which indicated higher 
protein expression levels compared to gene expression, followed by a 
high percentage of genes consistent with proteins in the third 
quadrant. Proteomap pathway analysis was performed to classify the 
functions of these proteins. The results revealed that the protein 
changes have a significant effect on various pathways including 
Metabolism, Genetic Information Processing, Cellular Processes, and 
Environmental Information Processing with a pronounced focus on 
the Glycolysis pathway (Figure 5D).

Glycolysis-lactate score as a prognostic 
tool for LUAD patients

In the initial step, we performed a univariable Cox regression 
model to identify 1,290 genes in the turquoise module with prognostic 
values. These genes underwent a ten-fold cross-validation LASSO 
method, resulting in 19 genes which were selected to constitute the 
glycolysis-lactate score (Supplementary Figure S4E). Using Cox 
proportional hazard regression, we created the glycolysis-lactate score 
based on the following 19 genes:

 

glycolysis lactate score SLC A1 SLCO C1− = ×( ) + − ×( )
+

0 080 2 0 008 4

0

. .

.. .

. .

053 0 072

0 010 2 13 0 062

×( ) + − ×( )
+ − ×( ) + − ×

EHBP1 RAPGEF6

SLC A RPS66

0 004 0 013

0 065 4 0 041

KA3

BBS5 GJB3

EIF E3

( )
+ − ×( ) + ×( )
+ − ×( ) + − ×

. .

. . IIRX2

ZNF MLLT1

SLC 6A

( )
+ − ×( ) + − ×( )
+ − ×( ) + −

0 080 319 0 222

0 010 2 11

. .

. 00 335

0 060 2 0 027

0 059

.

. .

.

×( )
+ − ×( ) + − ×( )
+ ×(

ASTE1

CCDC 8A ISCU

ASCC1)) + ×( )
+ − ×( )

0 008

0 071

.

. .

RHOV

LIPT1

We observed that patients with a higher glycolysis-lactate score 
exhibited significantly unfavorable survival in the GSE72094 training 
cohort (Figure 6A). Importantly, we validated the glycolysis-lactate 
score in the external TCGA-LUAD and GSE31210 cohort, high 

FIGURE 3 (Continued)

displays the differences of 13 ssGSEA glycolysis and lactate results among the three clusters. (D) Gene Ontology enrichment analysis shows biological 
process differences between Cluster 2 and Cluster 1 (Up) or Cluster 3 and Cluster 1(Down). (E) Different activation status of cancer immune cycles 
among three clusters. (F) Infiltration status of immune cells in TIME among three clusters. (G) Box plot shows the difference among three clusters in 
IMmotion150_Teff, IMmotion150_Myeloid, JAVELIN and Tumor inflammation signature. (H) The proportion of immunotherapy responders and non-
responders in the three clusters estimated by TIDE algorithm. * p  <  0.05, ** p  <  0.01, *** p  <  0.001.
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glycolysis-lactate score group exhibited inferior overall survival 
outcome in both cohorts. Notably, our findings indicate that the 
glycolysis-lactate score demonstrated negative predictive value for 

progression free survival in GSE31210 cohort. We  also imported 
information on patients’ age, sex, smoking status, tumor stage, TP53/
KRAS/STK/EGFR mutation status, and risk score to construct a 

FIGURE 4

Chemo and targeted therapy response and cancer stemness among clusters. Box plots for the sensitivity of chemotherapy and target therapy drugs 
among three glycolysis-lactate clusters.
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nomogram that demonstrated a high prognostic value for 1-, 3-, and 
5-year survival (Figure 6B). The ROC analysis showed that the 1-, 3-, 
and 5-year AUC values are 0.749, 0.790, and 0.829 for OS 
(Supplementary Figures S4F,G). Our results suggest that glycolysis-
lactate score could serve as a valuable prognostic tool for individual 
LUAD patients.

Using glycolysis-lactate signature to 
predict immunophenotyping and 
immunotherapy efficacy

To evaluate the immune characteristics of LUAD patients 
accurately, we conducted a correlation analysis of the 19 genes in our 
glycolysis-lactate score and immune infiltrating cells. As a result of 
analyzing GSE72094 and TCGA-LUAD cohorts, we  found that 
SLC2A1 and IRX2 exhibited correlations with most immune 
infiltrating cells (Figure  6C). CD8+ T cells manifested significant 
correlations with 17 genes in the glycolysis-lactate score, excluding 

RHOV and EHBP1. Interestingly, we discovered that most of the 19 
genes correlated with the infiltration of memory resting CD4+ T cells, 
memory activated CD4+ T cells, and resting dendritic cells in the 
GSE72094 cohort but not in CD8+ T cells 
(Supplementary Figures S5A,B). We hypothesized that these 19 genes 
could serve as a glycolysis-lactate gene signature to predict immune 
characteristics. Thus, we adopted the ssGSEA algorithm to construct 
a glycolysis-lactate gene signature in the TCGA-GEO combined 
dataset, where 1,308 samples were classified into the glycolysislactate_
high and glycolysislactate_low groups. Survival analysis showed that 
the glycolysislactate_high group presented poor survival outcomes in 
the TCGA-LUAD cohort while indicating an extended survival in the 
GSE72094 cohort (Figure 6D).

A Tracking Tumor immunophenotype analysis was conducted to 
demonstrate the relationship between cancer cell cycles and glycolysis-
lactate gene signature. Cancer antigen presentation, regulatory T cells 
(Tregs) recruiting, infiltration of immune cells into tumors showed 
significant positive correlations whereas B cell and Eosinophil 
recruiting were negatively associated with glycolysis-lactate signature 

FIGURE 5

Correlations between transcriptome-proteome in the WGCNA identifying module. (A) Box plot of the comparison of the mRNAsi among three 
clusters. (B) Heatmap of the correlation between module eigengenes and clinicopathological characteristics as well as the three clusters. (C) Nine-
quadrant diagram for the transcriptome-proteome correlations. The horizontal axis represents the log2 fold change of genes and the vertical axis 
represents the log2 fold change of proteins. (D) Proteomap displays the relative abundance of proteins in the module turquoise with functional cellular 
compartments.
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both in TCGA-LUAD and GSE72094 cohorts (Figure 6E). Positive 
correlations were observed between the glycolysis-lactate signature 
and the infiltration of tumor lymphocytes such as resting and activated 
dendritic cells, resting mast cells, memory resting CD4+ T cells and 
activated NK cells, while memory activated CD4+ T cells, plasma 
cells, CD8+ T cells, Macrophages M0 and naïve B cells were negatively 
correlated (Figure 6F). Moreover, we conducted an immunotherapy 
efficacy prediction, and our signature was significantly negatively 
correlated with IMmotion150_Teff (R = −0.076, p = 0.0056), 
IMmotion150_Myeloid (R = −0.075, p = 0.007), JAVELIN signature 
(R = −0.062, p = 0.025) and Tumor Inflammation Score (R = −0.072, 
p = 0.0092) (Figure  6G). The glycolysislactate_low group showed 
significant upregulation of most 21 pathways associated with ICB 
treatment efficacy, except cytokine-cytokine receptor interaction, 
systemic lupus erythematosus and APM signal pathways (Figure 6H). 
In conclusion, the glycolysis-lactate signature constructed by us could 
be used to predict the immune infiltration and efficacy of ICB therapy 
in LUAD patients.

Elevated glycolysis-lactate signature in 
LUAD epithelial cells and metastatic tissues 
at single-cell level

We further verified our glycolysis-lactate signature on the single-
cell level using the classic LUAD scRNA-seq data (GSE131907). 58 

LUAD samples were annotated into B cells, conventional CD4 T cells, 
CD8+ T cells, exhausted CD8+ T cells, DC cells, Endothelial cells, 
Epithelial cells, Fibroblasts cells, Mast cells, Monocytes/Macrophages, 
Oligodendrocytes and Plasma cells as indicated in 
Figure 7A. Glycolysis-lactate signatures were particularly elevated in 
epithelial cells, especially in the tumor mass and brain metastasis 
tissue (Figures 7B,C). The metastatic tissue exhibited a significantly 
higher level than primary lung tumor tissue (Figure 7D).

Glycolysis-lactate gene signature predicts 
histological subtypes of LUAD

LUAD is characterized by cells of various histological subtypes, 
exemplifying intratumor heterogeneity. Subtypes such as the lepidic 
are generally associated with a favorable prognosis, whereas the solid 
and micropapillay subtypes are linked to poorer prognostic outcomes. 
To elucidate the relationship between these histological subtypes and 
our glycolysis-lactate signature, we  first employed TCGA-LUAD 
RNA-seq data for internal validation. The results showed that the 
proportion of solid and micropapillary subtypes was higher in the 
glycolysis-lactate-high group compared to the glycolysis-lactate-low 
group (Supplementary Figure S6). This initial finding prompted us to 
further investigate this association using an external dataset. We then 
utilized the GSE58772 dataset, which uniquely features subtype 
classification of LUAD pathology, serving as our external validation. 

FIGURE 6

Glycolysis-lactate score construction and clinical significance as well as immune characteristic. (A) Kaplan–Meier analysis shows overall survival 
differences between high and low glycolysis-lactate score in GSE72094, TCGA-LUAD and GSE31210 cohorts and progression free survival differences 
in GSE31210 cohort. (B) A nomogram was created that included both the glycolysis-lactate score and clinical factors. (C) Correlation heatmap 
between glycolysis-lactate gene signature and infiltrating immune cells in GSE72094 and TCGA-LUAD. (D) Kaplan–Meier analysis shows overall survival 
differences between glycolysislactate_high and glycolysislactate _low signature groups in GSE72094 (Up) and TCGA-LUAD (Down). (E) Correlation 
heatmap between glycolysis-lactate gene signature and cancer immunity cycles in the GSE72094 and TCGA-LUAD, respectively. (F) Lollipop diagram 
was generated to show the association between immune cells and glycolysis-lactate gene signature. (G) Correlation between glycolysis-lactate 
signature and IMmotion150_Teff, IMmotion150_Myeloid, JAVELIN and Tumor inflammation signature, respectively. (H) Enrichment of each 
immunotherapy related pathways between high and low glycolysis-lactate signature groups. * p  <  0.05, ** p  <  0.01, *** p  <  0.001, ns not significant.
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Consistent with our findings from TCGA and previous studies, 
we found that all patients with the lepidic subtype were classified into 
the glycolysis-lactate-low group. Additionally, a trend was observed 
that the proportion of patients in the glycolysis-lactate-high group 
increased with the severity of LUAD histological subtypes (Figure 7F). 
These pattern implies that our glycolysis-lactate signature can 
effectively predict the histological subtypes of LUAD.

Discussion

The microbiome inhabits various parts of the human body, 
including the gut, skin, and oral cavity, and modulates host immunity, 
metabolism, inflammation, and disease susceptibility (Dominguez-
Bello et al., 2019). The literature offers conflicting reports regarding 
changes in the lung microbiome composition and diversity in lung 
cancer patients. In a meta-analysis by Najafi et  al., the relative 
abundance of Actinobacteria phylum, Corynebacteriaceae and 
Halomonadaceae families, and Corynebacterium, 
Lachnoanaerobaculum, and Halomonas genera were significantly 
lower in lung tumor tissues (Najafi et al., 2021).

Our LMS presents unique findings regarding the potential 
prognostic value of the cancer resident microbiome, which can serve 
as a strong foundation for future investigations into the use of 
microbiomes as cancer biomarkers. Among the 18 microbes identified 
in our LMS, Lambdapapillomavirus was found to belong to the 
Papillomaviridae family, which has been highly correlated with 
cervical cancer in women (Burd and Dean, 2016). Our results also 
indicate that high abundance of Lambdapapillomavirus is an 
unfavorable prognostic factor for patients with lung adenocarcinoma. 

Faecalibacterium is a genus of bacteria that primarily exists in the 
human gut, and its sole known species, Faecalibacterium prausnitzii, 
is an important commensal bacterium (Lopez-Siles et al., 2017). In 
line with our findings that the abundance of Faecalibacterium is a 
favorable factor for cancer patients, Ma et  al. found that 
Faecalibacterium prausnitzii inhibits the secretion of IL-6 and the 
phosphorylation of JAK2 in breast cancer, subsequently suppressing 
the progression of breast cancer cells (Ma et al., 2020). The microbiome 
plays a crucial role in cancer development and responses to therapy 
by producing metabolites, such as short-chain fatty acids, which affect 
epigenetic regulation, immune cell differentiation and function, 
angiogenesis, and apoptosis (Hou et al., 2022). For example, certain 
bacteria can confer resistance to chemotherapy, metabolizing drugs 
into inactive forms or activating drug-detoxifying enzymes, thus 
decreasing the efficacy of chemotherapy (Weersma et  al., 2020). 
Altering the microbiome can potentially enhance the anti-tumor 
immune response by changing immune cell metabolism or function. 
Sivan et al. (2015) showed that Bifidobacterium and B fragilis can 
enhance the efficacy of checkpoint blockade immunotherapy in 
mouse models, indicating promising prospects for combining 
immunotherapy with microbiome-targeted therapy to overcome 
resistance mechanisms or enhance clinical efficacy.

Glycolysis is one of the most common metabolic pathways of 
reprogramming, that converts glucose into pyruvate and lactate, 
generating ATP and NADH as energy sources under aerobic or 
anaerobic conditions (Ganapathy-Kanniappan and Geschwind, 2013). 
Many cancer cells enhance glycolysis, allowing them to adapt to 
hypoxic and nutrient-poor conditions and evade immune surveillance 
(Lannering et  al., 1988). This aberrant glycolysis in tumors can 
increase lactate production that alters the pH of the tumor 

FIGURE 7

The role of glycolysis-lactate signature on the single cell level and its association with histological subtypes. (A–D) UMAP plots of GSE131907 and each 
cluster was marked by different cell types (A,B), sample sources (C) and tumor stages (D). (E) Distribution of glycolysis-lactate signature on the single 
cell level. (F) A Sankey diagram was illustrated to visualize the relationship between glycolysis-lactate signature and histological subtypes using the 
GSE58772 dataset.
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microenvironment, affecting both cancer cells and immune cells 
(Vaupel and Multhoff, 2021). One of the mechanisms by which 
glycolysis influences lung cancer is through its effect on hypoxia-
inducible factor 1 (HIF-1), which is activated by low oxygen levels and 
high glycolytic activity in tumor cells, leading to increased expression 
of vascular endothelial growth factor (VEGF), matrix 
metalloproteinases (MMPs), and glucose transporters (GLUTs). HIF-1 
also suppresses the anti-tumor immune response by inducing Tregs, 
myeloid-derived suppressor cells (MDSCs), and immunosuppressive 
cytokines such as IL-10 and transforming growth factor-beta (TGF-
beta) (Corzo et al., 2010; Xu Y. R. et al., 2022). Therefore, targeting 
glycolysis or its pathway regulators may enhance anti-tumor immunity 
by reducing immunosuppression or increasing the immunogenicity 
of cancer cells (Vaupel and Multhoff, 2021).

The reciprocal association between glycolysis and the microbiome 
in cancer is complex. Glycolysis can influence the composition and 
function of the microbiome by altering glucose availability, creating 
an acidic environment that may favor certain microbial species over 
others (Wang et al., 2019). Conversely, the microbiome can influence 
glycolysis by producing SCFAs or indole derivatives that can enter 
cancer cells via transporters or receptors, regulating critical enzymes 
or signaling pathways involved in glycolytic regulation. Studies on 
metabolic modeling of host–microbe interactions have shown that 
anaerobic microorganisms perform glycolysis in carbohydrate 
metabolism (Bhalla et al., 2022). Understanding how glycolysis and 
the microbiome interact in cancer may provide novel insights into 
tumor biology and immunology, as well as new therapeutic targets or 
strategies to improve cancer treatment outcomes.

To fully comprehend our glycolysis-lactate signature, it is 
imperative to delve into the biological roles of the 19 selected genes. 
SLC2A1 encodes a glucose transporter protein, GLUT1, which plays 
a key role in the uptake of glucose by cells, transporting glucose 
from outside the cell to the inside, thereby providing raw materials 
for glycolysis (Liu et  al., 2022). The study by Xu Y. et  al. (2022) 
suggests that miRNA-199a-5p promotes the malignant progression 
of non-small cell lung cancer by targeting SLC2A1. SLCO4C1 
encodes a member of the Organic Anion Transporting Polypeptides 
(OATPs) family, primarily expressed on the basolateral side of renal 
tubular epithelial cells, responsible for transporting substances from 
the cell into the blood. Studies have shown that SLCO4C1 promotes 
the metastasis and invasion of endometrial cancer, influences the 
epithelial-mesenchymal transition (EMT) phenotype of endometrial 
cancer cells, and regulates the expression of EMT-related proteins 
(Hu et al., 2020). EHBP1 is an adaptor protein that regulates vesicle 
transport by recruiting members of the Rab8 family and Eps15 
homology domain-containing proteins 1/2 (EHD1/2) (Rai et al., 
2020). It also connects the endoplasmic reticulum to the actin 
cytoskeleton. Research indicates that EHBP1 plays a role in 
regulating the transport of Na + -K + -ATPase from the Golgi to the 
basal membrane in the retina of Drosophila (Nakamura et al., 2020). 
In tumor research, an EHBP1-MET fusion was found in a patient 
with intrahepatic cholangiocarcinoma, increasing sensitivity to 
crizotinib (Yu et al., 2020). RAPGEF6 encodes a guanine nucleotide 
exchange factor that plays a crucial role in cell signaling. By 
activating Rap small GTPases, it influences a variety of cell 
functions, including cell proliferation, migration, and cytoskeleton 
remodeling (Maeta et al., 2018). A study by Lindholm et al. (2019) 

found that RAPGEF6 is regulated by miR-342-5p in HER2+ breast 
cancer cells, and high RAPGEF6 expression levels are closely 
associated with better survival. SLC2A13 is a H+-myo-inositol 
transporter, which is intimately related to sugar metabolism. A study 
by Le et al. (2021) found that metformin could restore the expression 
of the SLC2A13 gene, which is related to improved insulin sensitivity 
and obesity. It was also found that SLC2A13 expression was induced 
in human breast adenocarcinoma MCF7 cells after serum starvation, 
making it a potential marker for various cancer stem cells (Lee et al., 
2011). RPS6KA3 is a member of the mitogen-activated protein 
kinase family, which responds to growth factors and other cell 
signals to promote cell growth and proliferation. A study by Guo 
and Kong (2021) revealed that RPS6KA3 plays a significant role in 
breast cancer proliferation, migration, and invasion. BBS5, which is 
part of the BBSome complex, plays a key role in protein transport 
within cilia, allowing the cilia to function as a sensory and signaling 
center for cells (Bales et al., 2020). Next, GJB3, which encodes a gap 
junction protein, enables the exchange of substances between cells, 
including metabolites and secondary messengers. Studies have 
shown that the expression of GJB3 significantly increases in liver 
metastasis of pancreatic ductal adenocarcinoma. Interestingly, GJB3 
can form channels between PDAC tumor cells and accumulated 
neutrophils, transferring cyclic adenosine monophosphate (cAMP) 
from cancer cells to neutrophils, thus supporting their survival and 
polarization (Huo et al., 2022). Another gene of interest is EIF4E3, 
which recognizes and binds to the m7G cap structure at the 5′ end 
of mRNA, playing a crucial role in mRNA expression. Compared 
with normal tissues, the expression of EIF4E3 is lower in squamous 
cell carcinoma of the head and neck. Overexpression of EIF4E3 can 
induce the expression of CCL4/CCL5, playing a significant role in 
monocyte differentiation in the tumor microenvironment (Xu et al., 
2023). Moreover, the protein encoded by IRX2 regulates the 
determination of cell fate, especially in the development of the 
nervous system. IRX2 plays a significant role in lymph node 
metastasis of breast cancer, and its expression significantly increases 
in lymph node metastasis of breast cancer (Werner et al., 2015). 
ZNF319, a member of the Zinc Finger Protein (ZNF) family, exhibits 
low expression in tumor tissues of breast cancer patients. 
Remarkably, in almost all subtypes of breast cancer, high expression 
of ZNF319 is associated with better clinical prognosis (Wang 
L. et al., 2022). Continuing with the discussion, MLLT1 is an acetyl/
acyl-dependent epigenetic reader domain, the dysfunction of which 
has been implicated in the development of some aggressive cancers. 
In cancer stem cells of glioblastoma (GBM), there is a potentially 
harmful frameshift mutation in the MLLT1 gene, which occurs only 
in cancer stem cell samples derived from peritumoral tissues (Marei 
et al., 2022). SLC26A11 plays a key role in intracellular ion balance 
and fluid acid–base balance. In chronic myeloid leukemia (CML), 
there is a fusion between the SLC26A11 gene and RNF213 gene. 
This fusion may disrupt certain specific structural domains of the 
SLC26A11 protein, potentially affecting its normal sulfate transport 
function (Zhou et  al., 2013). The protein encoded by ASTE1 is 
thought to play a role in epigenetic signaling. Research suggests that 
mutations in ASTE1 are induced by the Epstein–Barr virus in gastric 
mucosal cells, leading to the autonomous expression of CXCL9 by 
cancer cells through the NF-κB pathway, increasing IFN-γ in the 
microenvironment and stimulating immune response. The 
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expression of the CCDC28A gene changes in low-grade and high-
grade gliomas, which may be related to the development of these 
diseases (Gahoi et al., 2020). A recent study also found that the 
CCDC28A gene is a significant prognostic marker for patients with 
colon cancer (Zhou et al., 2022). The gene ISCU encodes a protein 
that plays a key role in the biosynthesis of iron–sulfur (Fe-S) 
clusters. In diabetic nephropathy (DN), the ISCU gene may 
influence the level of aerobic glycolysis, which may be related to the 
development of the disease (Montealegre et al., 2022). A study by Xu 
et al. (2021) found that Quercetin can inhibit aerobic glycolysis in 
diabetic nephropathy by regulating the HIF-1α/miR-210/ISCU/FeS 
pathway, thereby combating the development of diabetic 
nephropathy. ASCC1 may affect cellular DNA repair mechanisms, 
and its germline mutation may be  associated with malignant 
progression of Barrett’s esophagus and esophageal adenocarcinoma 
(Orloff et al., 2011). The RHOV gene encodes a protein that may 
play a crucial role in the development and metastasis of lung cancer. 
The expression of the RHOV gene increases in the NSCLC (Wang 
R. et al., 2022). Zhang et al. (2021) suggested that the RHOV gene 
might influence the progression of lung adenocarcinoma by 
activating the JNK/c-Jun signaling pathway. Additionally, a study by 
Chen et al. (2021) indicated that increased expression of RHOV in 
lung adenocarcinoma could be related to disease progression and 
resistance to EGFR-TKI treatment. In Leigh’s disease, mutations in 
the LIPT1 gene may lead to defects in pyruvate dehydrogenase 
(PDH) and α-ketoglutarate dehydrogenase (α-KGDH), which could 
be  related to disease progression (Tort et  al., 2014). Moreover, 
another study found that increased expression of LIPT1  in 
hepatocellular carcinoma could potentially serve as a new 
therapeutic target for the disease (Yan et  al., 2022). Through a 
thorough understanding of the functions of the genes in the 
glycolysis-lactate signature, we found that only SLC2A1, SLC2A13, 
and ISCU have been previously studied for their roles in glycolysis 
and glucose metabolism. Although the proteins encoded by the 
other genes are not specifically involved in glucose metabolism, they 
all participate in basic cellular metabolic functions, such as ion 
transport, protein transport within cilia, and sulfate transport. It’s 
noteworthy that all 19 genes have been found to be involved in the 
progression of various tumors, performing unique functions. This 
suggests that in our future research, we should pay close attention 
to the functions of these genes. Our study has some limitations. 
Firstly, the potential variation in microbiota composition due to 
geographical and demographic differences, which might impact the 
validity of the 18-microbe prognostic score, is not addressed in our 
study. Most current studies on the role of microbiota in lung cancer 
focus on gut microbiota, and intratumoral microbiome studies are 
relatively scarce. Furthermore, at this stage, we  were unable to 
obtain independent datasets with sufficient sample size from 
different regions for validation, which might affect the 
generalizability of our findings. Secondly, the findings in the 
proteomics and transcriptomics were not from the same sample, 
which may have influenced the reliability of the results to some 
extent. Thirdly, due to the lack of a prospective study, we  only 
generated our results from retrospective data. Lastly, tumor 
immunotherapy consists of complex microorganisms, immune cells, 
and glycolysis signaling pathways, which indicates the role of 
microbiomes and glycolysis requires further validation both in vivo 
and in vitro.

Conclusion

In summary, our study demonstrated that an 18-microbe 
prognostic score and a 19-gene glycolysis-lactate signature are 
predictors of the prognosis of patients with lung adenocarcinoma. The 
LMS, glycolysis-lactate score, and glycolysis-lactate signature have the 
potential to serve as predictors of immunotherapy efficacy and 
histological subtype, providing valuable information for 
precision therapy.
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