
TYPE Methods

PUBLISHED 20 July 2023

DOI 10.3389/fmicb.2023.1201064

OPEN ACCESS

EDITED BY

Javier Pascual,

Darwin Bioprospecting Excellence, Spain

REVIEWED BY

Athanasios Zervas,

Aarhus University, Denmark

Leandro de Mattos Pereira,

University of Porto, Portugal

*CORRESPONDENCE

Eric W. Triplett

ewt@ufl.edu

RECEIVED 06 April 2023

ACCEPTED 03 July 2023

PUBLISHED 20 July 2023

CITATION

Petrone JR, Rios Glusberger P, George CD,

Milletich PL, Ahrens AP, Roesch LFW and

Triplett EW (2023) RESCUE: a validated

Nanopore pipeline to classify bacteria through

long-read, 16S-ITS-23S rRNA sequencing.

Front. Microbiol. 14:1201064.

doi: 10.3389/fmicb.2023.1201064

COPYRIGHT

© 2023 Petrone, Rios Glusberger, George,

Milletich, Ahrens, Roesch and Triplett. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

RESCUE: a validated Nanopore
pipeline to classify bacteria
through long-read, 16S-ITS-23S
rRNA sequencing
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Patricia L. Milletich, Angelica P. Ahrens,

Luiz Fernando Wurdig Roesch and Eric W. Triplett*

Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of

Florida, Gainesville, FL, United States

Despite the advent of third-generation sequencing technologies, modern

bacterial ecology studies still use Illumina to sequence small (∼400 bp)

hypervariable regions of the 16S rRNA SSU for phylogenetic classification. By

sequencing a larger region of the rRNA gene operons, the limitations and biases

of sequencing small portions can be removed, allowing for more accurate

classification with deeper taxonomic resolution. With Nanopore sequencing now

providing raw simplex reads with quality scores above Q20 using the kit 12

chemistry, the ease, cost, and portability of Nanopore play a leading role in

performing di�erential bacterial abundance analysis. Sequencing the near-entire

rrn operon of bacteria and archaea enables the use of the universally conserved

operon holding evolutionary polymorphisms for taxonomic resolution. Here, a

reproducible and validated pipelinewas developed, RRN-operon Enabled Species-

level Classification Using EMU (RESCUE), to facilitate the sequencing of bacterial

rrn operons and to support import into phyloseq. Benchmarking RESCUE showed

that fully processed reads are now parallel or exceed the quality of Sanger, with

median quality scores of approximately Q20+, using the R10.4 and Guppy SUP

basecalling. The pipeline was validated through two complex mock samples, the

use of multiple sample types, with actual Illumina data, and across four databases.

RESCUE sequencing is shown to drastically improve classification to the species

level for most taxa and resolves erroneous taxa caused by using short reads such

as Illumina.
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16S rRNA, bacterial classification, rrn, 16S-ITS-23S, microbiome, Nanopore, Illumina,

sequencing

1. Introduction

Since the introduction of next-generationDNA sequencing technologies and the first 16S

rRNA gene phylogenetic classification publication in 1977 (Fox et al., 1977), molecular use of

the 16S rRNA gene has grown and is now implemented in many laboratories and diagnostic

clinics (Woo et al., 2008). Although only a 5-year gap exists between the rollout of second-

generation technologies, such as Roche 454/Illumina, and third-generation technologies,

such as Pacific BioSciences (PacBio) and Oxford Nanopore Technologies (ONT) (Malla

et al., 2019), Illumina is preferred for its accuracy. As Illumina amplicon sequencing is FDA-

approved, it is also preferred by many diagnostic genomic cores (Collins and Hamburg,

2013; Laehnemann et al., 2016). Hence, the literature is generally limited to the analysis

of one or two small hypervariable regions on the 1540 bp 16S rRNA gene, given the

constraints of paired-end sequencing length by the Illumina platform (Bukin et al., 2019).
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Although individual regions sequenced on Illumina such as

V3V4, V4, internal transcribed spacer (ITS), and 23S capture

the sequence divergence of many bacterial species (Pei et al.,

2009; Snyder et al., 2011; Yarza et al., 2014; Russell et al., 2019;

Kui et al., 2021), taxonomic classification and relative abundance

calculations can differ greatly based on the hypervariable region

sequenced or the primer-set selection, which may misrepresent

and also completely omit taxa (Graspeuntner et al., 2018; Darwish

et al., 2021). With the recent FDA approval of ONT for clinical

diagnostics and an increased interest in a deeper understanding

of environmental microbiomes as technologies become more

accessible, it is timely that long-read pipelines be established with

improved accuracy and confidence in classification compared to

short-read sequencing (Yarza et al., 2014; Martínez-Porchas et al.,

2016; PRWeb, 2020; De Coster et al., 2021).

The read length constraints of Illumina ultimately limit the

accuracy of taxonomic assignment. The invention of single-

molecule sequencing such as PacBio and ONT has been the long-

read answer, providing reads longer than 300 bp and has been

essential for closing genome assemblies (De Maio et al., 2019;

Amarasinghe et al., 2020; Petrone et al., 2022). Although ONT

was once considered to have inferior quality, their continuously

updating chemistry and flowcells are now seeing extremely accurate

basecalling in sequencing (Petrone et al., 2022; Sereika et al.,

2022, p. 4). Another point of concern in sequencing experiments

revolves around the cost per base generated. Some researchers

have found approximately $200 per gigabase (Gb) generated for

Illumina MiSeq 2 x 250 bp, $1,000 for PacBio RSII, and the

listed cost for ONT is ∼$750 (Goodwin et al., 2016). In practice,

however, researchers can find a reducing cost that is ∼$100 per

Gb realistically for ONT or less, as owning a $1,000 MinION

is achievable and most laboratories are accustomed to sending

in samples to a core for Illumina or PacBio due to the drastic

difference in machine costs (Ameur et al., 2019; Zhang et al., 2020).

While the near entirety of the bacterial rrn operon contains

mostly taxonomic diversity, such as 16S rRNA, ITS, and the 23S

rRNA (omitting the 5S rRNA) genes, it has only recently become

feasible to use long-read sequencing to achieve this genetic capture

(Cuscó et al., 2018; Graf et al., 2021; Kinoshita et al., 2021;

Kui et al., 2021). Here, we developed and validated a novel rrn

sequencing pipeline, RESCUE, for robust taxonomic identification

across multiple sample types, using the newest Nanopore chemistry

(Kit12 Q20+), flow cells (R10.4), and SUP Guppy (v6.1.7) (Oxford

Nanopore Technologies Ltd., 2000). To assess the reliability

and generalizability of the pipeline, the RESCUE and Illumina

MiSeq methodologies are compared in human saliva samples

and commercially available mock communities, comparing results

obtained with several commonly used taxonomic databases.

In attempts to draw accurate comparisons to previously

generated Illumina MiSeq data (V3V4) through amplification of

the same DNA aliquots using RESCUE rRNA sequencing, we

employed an in silico technique in benchmarking to bridge known

confounding variables. By bioinformatically extracting the V3V4

hypervariable regions from the RESCUE-generated reads and using

four diverse databases, the effect of amplicon length on species-level

assignment can be more easily seen as this comparison directly

compares how a classification would differ if an identical read was

shorted to mirror a V3V4 amplicon.

2. Materials and methods

2.1. Nanopore experimental design with
the R9.4 flow cell

For both trials mentioned later, a detailed graphical

layout to understand the sample flow can be better seen

(Supplementary Figure 1). For the first experiment, variable

rrn amplicon length capture was tested across multiple sample

types by optimizing PCR extension time. Five polymerase

extension times were compared: 1, 4, 8, 16, and 32min, across six

DNA sample types from bulk soil, rhizosphere, apoplastic fluid of

S. lycopersicum, a Zymo microbial DNA mock community, human

saliva, and human feces. Some extension time and sample type

combinations are not presented due to a lack of amplification in

the saliva and bulk soil samples at 1min and non-specific binding

appearing at approximately 8min. A total of 20 samples were

multiplexed on the R9.4 flow cell.

2.2. Nanopore experimental validation
design with the flow cell R10.4

To test the application of the rrnRESCUE pipeline to accurately

classify bacteria, perform in a full-scale experiment, and to compare

the results generated by the Illumina platform, four R10.4 (FLO-

MIN112) flow cells were loaded with a full 96-plex of barcoded

samples on each (Ahrens et al., 2022). Twenty-one saliva samples

had also been previously sequenced on the Illumina MiSeq (2 x 300

bp) platform (Ahrens et al., 2022). Two additional saliva samples

were provided by a collaborator at the University of Florida’s

College of Dentistry (P65 and P95), amplified at 1 and 4min. A

ZymoBIOMICS Microbial Community DNA Standard (Cat. No.

D6305) was included on each run as well (“Mock,” N = 4). On

the fourth flow cell, four biological replicate extractions of the

ZymoBIOMICS Gut Microbiome Standard (Cat. No. D6331) were

included to test a known gut community (“Gut,” N = 4). All

samples were amplified at 4-min extension times using 10 ng of

input DNA.

2.3. PCR design, quantification, and
purification

A graphical abstract of the steps and softwares leveraged

by RESCUE can be summarized in (Figure 1). Primers used in

the rrn reactions were 27F (5’-AGRRTTYGATYHTDGYTYAG-

3’) and U2428R (5’-CCRAMCTGTCTCACGACG-3’) (Graf et al.,

2021). A more detailed analysis of methods is published on

GitHub https://github.com/josephpetrone/RESCUE/blob/master/

detailed_steps.md (Petroovius, 2023b). Custom barcodes were

adapted from PacBio 16S barcodes (Procedure Checklist., 2021).

96-well plates were multiplexed with eight forward primers

and twelve reverse primers. Phusion Hot Start II High-Fidelity

polymerase (cat no. F549L, Thermo Fisher Scientific, Carlsbad CA)

and 10 ng of source DNA were used in each amplification. While

standardized protocols such as the “earth microbiome project” call
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for a low-fidelity Taq polymerase, we chose to employ a high-

fidelity polymerase to mitigate any additional amplification errors.

Sample DNA extraction was performed as described previously

(Russell et al., 2019; Ahrens et al., 2022). Thermocycling conditions

included the following: 98◦C for 30 s initially, 30 cycles of 98◦C for

10 sec, 71.5◦C for 30 sec, 72◦C for “N min,” followed by a final

extension at 72◦C for 7.5min carried out on an Eppendorf nexus

GX2 mastercycler (Eppendorf AG, Hamburg, Germany). “N min”

used includes 1, 4, and 8min. To carry out sequencing on the R10.4

flow cell, 4min was exclusively used.

PCR products were quantified directly using Qubit 2.0

fluorometer and HS 1X buffer (Thermo Fisher Scientific, Waltham,

MA, USA) to ensure even throughput in the DNA pool. A

minimum of 3 µg of pooled DNA was used for multiple library

constructions. AMPure XP beads (Beckman Coulter Inc.) were

added at 0.6X v/v concentration for purification, and the elution

was carried out in 100 µL of EDTA-free elution buffer.

2.4. Library preparation and sequencing

A 1:10 dilution of the amplicon pool was quantified using Qubit

1X dsDNA HS kit, and 1.5 µg was aliquoted and brought to 50

µL with sterile nuclease-free water. For the R9.4 experiment, the

DNA was processed using ONT ligation sequencing kit-10 (SQK-

LSK110) and loaded onto an R9.4 FLO-MIN106D flow cell. For

the R10.4 trials, the newest ONT ligation sequencing kit-12 (SQK-

LSK112) was used, and the library was loaded onto four R10.4

FLO-MIN112 flow cells. To avoid wasting throughput on sheared

amplicons, vortexing was replaced with gentle flicking, and wide-

bore tips were used for DNA handling. Libraries were sequenced

for 72 h on the GridION Mk1. The R9.4 and R10.4 flow cells

were sequenced through MinKNOW v21.11.6 and MinKNOW

v21.11.7, respectively.

2.5. Read processing and classification

All R10.4 data were first re-basecalled using Guppy v6.1.5 on

the super high accuracy basecalling modal “SUP.” Basecalled reads

were then ran through the RESCUE pipeline at this stage, available

at https://github.com/josephpetrone/RESCUE (Petroovius, 2023a).

The reads were run through Duplex Tools v0.2.9 (Duplex Tools.,

2022) to split concatenated reads by Nanopore adapter ten times.

Single fastq reads were observed to be made up of continual

sequences “concatenated” together due to quick succession through

the pore and consisted of entire 4.5 kb reads digitally stitched

together. Ten rounds were needed despite the “allow-multiple”

option being selected as each round produced additional splitting.

This step has been fixed in the newest Guppy release (v6.1.7)

with “—do_read_splitting” enabled. The split reads were then re-

filtered by average Phred ≥ 10 using NanoFilt v2.7.1 (De Coster

et al., 2018). Cutadapt v3.4 (Martin, 2011) was run to demultiplex

samples, with the requirement that all 16 bases of each dual

barcode align with zero mismatches and the barcodes be found

in the correct orientation, such that all negative strands were

reverse complemented. The demultiplexing stage also utilizes a

minimum and maximum, trimmed-read cutoff of 3 kb and 7 kb,

respectively. Cutadapt was then used again to remove all non-

biological nucleotides including DNA primers. NanoPlot v1.30.1

(De Coster et al., 2018) was used for descriptive statistics on

the runs.

The reads were then classified using the EMU v3.4.1 (Curry

et al., 2021, 2022) program by mapping in four published

and verified databases: an rrn operon database, ncbi_202006

“NCBI RRN” (Kinoshita et al., 2021), and three full-length 16S

databases, Silva-138, EMU, and Ribosomal Database Project “RDP”

(McMurdie and Holmes, 2013; RStudio Team, 2020). The main

database of RESCUE, the NCBI RRN, was made by Kinoshita et al.

(2021) by pulling rrn operon DNA sequences from NCBI RefSeq

and reviewing GenBank entries. The database was formatted for

EMU here, and the taxids were updated to the current denotations.

The RESCUE pipeline contains command-line flags to choose one

of the four databases mentioned, any database hosted by the EMU

server, and a self-created database with a -d flag in the RESCUE

package that points to a database folder. The phyloseq object

generated includes classified read counts, the taxonomy of the

database hits, and a personalized mapping file, which was modeled

after the Qiime format (Caporaso et al., 2010).

2.6. Illumina MiSeq sequencing and
RESCUE comparisons

For the Illumina sequencing comparisons against the Nanopore

data, the trimmed and merged fastq output from Illumina MiSeq

V3-V4 (2 X 300 bp), described as previously published (Russell

et al., 2019; Ahrens et al., 2022), was used in the analysis. The

original DNA aliquot used for sequencing the Illumina datasets was

also used with the described RESCUE primers to amplify the rrn

operon and sequence with Nanopore. The raw fastq files for each

MiSeq sample (one fecal and one saliva for R9.4; 21 saliva samples

in total for R10.4) were run through the EMU classifier and four

mentioned databases. The default compositional values obtained

for the Zymo mock communities were found through the online

manual for the theoretical 16S rRNA abundances (ZYMOResearch,

2022).

2.7. Pseudo-V3V4 generation

The hypervariable V3V4 regions were extracted and trimmed

from the rrn reads in silico using Cutadapt v3.4 (Martin, 2011) to

mimic the exact primer binding sites of the MiSeq V3V4 primers

previously used. The extracted V3V4 reads were then classified

through the EMU program using the four databases. The Pseudo-

V3V4 reads serve to definitively show that shortening the size of

an amplicon has negative impacts at species-level classifications.

These reads also serve as an important comparison to the true

Illumina data, as any differences between them show differences

that a researcher might expect when varying library prep and

sequencing platforms.
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2.8. Phyloseq handling and NMDS creation

Phyloseq v1.38.0 was used to produce a phyloseq object from

the EMU output files. To generate the phyloseq object from four

separate databases at both the species and genus levels, first, the

RESCUE output csv was read through the provided RScript and

converted into a large data frame with taxa as rows and sample

names as columns to create an OTU table. The OTU tables were

then aggregated on a dataframe that only included both the species

and genus columns. This was done to remove results that did

not have classification at the genus level and to standardize the

nomenclature of the taxa before assigning OTUs. Cases where the

species-level taxonomy was blank were given an “Unclassified”

designation before aggregating. Samples were rarefied to 1,900

reads and filtered to remove taxa that were not present at >5 reads

in 3 samples. To generate the NMDS plots, the “ordinate” package

was used with the grouping column set to “read type,” “Bray,”

or “binomial” as the method, and a max of 1,000 permutations

were allowed before reaching the best RMSE solution twice. The

ordination data was then graphed with ggplot2.

3. Results

3.1. Nanopore R9.4 trial run metrics and
read recovery

The first multiplexed library was run on an R9.4 flow cell until

exhaustion (∼72 h) and base-called with Guppy v5.1.12 (SUP). A

detailed graphical flowchart of the sample design can be found

(Supplementary Figure 1). A total of 1.344 x 106 reads ≥ Phred

Q10 (5.627 Gb) were generated, with a mean quality score of 13.1

and a mean sequence length of 4,578 nucleotides (Table 1). Small

peaks were visible in the raw read histogram of the MinKNOW

GUI at 10 kb, 15 kb, and 20 kb, which corresponded to the incorrect

stitching of multiple unique strands passing through a pore in

quick succession. These reads are referred to as concatenated

reads as they are artificially stitched together during the ONT

raw file generations. Two rounds of read splitting on internal

adapters recovered an additional 15,079 reads for a total of 1.359

x 106 reads (Table 1). Demultiplexing this 20-plex run with the

first, barcode mismatch-tolerable iteration of the demultiplexer

attributed 9.38 x 105 reads to a correct barcode pair, with an average

of 4.66 x 104 reads/sample, ranging from 1.21 x 104 to 9.08 x

104 reads/sample. As 76 barcodes were unused on the flowcell,

we had the ability to attempt demultiplexing as if 96 samples

were run. This uncovered that 0.0059% of the reads incorrectly

demultiplexed into these unused barcodes. The per-sample relative

abundance threshold was then set to 0.0059%, to account for

the percentage of reads demultiplexed into the unused barcode

combinations across the R9.4 run. This threshold was used to

remove the possibility of taxa only being present due to the slight

chance of improper demultiplexing by using reads in the null

controls as an internal validation mechanism. Over 70% of the

reads post-trimming retained an average Phred score above Q12

(93.7% raw read accuracy).

3.2. Increasing polymerase extension time
to detect unlinked-rrn taxa

Bacterial genomes with 64-128Kb of intergenic space between

the 16S and 23S rRNA genes could theoretically be detected at

an extension time of 8min, with the extension time of Phusion R©

High-Fidelity Hot Start Polymerase at 15–30 s per kilobase. It is

important to note that a long amplification polymerase may be

better suited for capturing longer rrn amplicons, but a tradeoff

with accuracy is to be expected. Although significant smearing was

observed in the rrn PCR products (Figure 2A), the N50 observed

from the sequencing output was approximately 4.2 Kb (Table 1).

In the final trimmed reads, the average and median read lengths

converged at approximately 4.5 Kb.

Distinct peaks in read lengths across the R9.4 trial appeared

unique to the sample type and their respective taxa, almost

as a visual phylogenetic fingerprint (Figure 2D). Extension time

appeared to only affect the quantity of DNA produced in the

PCR process, as opposed to increasing the sequence length, as the

average DNA concentration increased across the extension times,

1, 4, and 8min (4.9, 11.6, and 16.6 ng/µL, respectively). When

separated by sample type, overall alpha diversity does not change

significantly (Kruskal–Wallis: p = 0.88), (Figure 2B). Optimal

extension time and the resulting microbial diversity may vary by

sample type, as was observed in the saliva samples P65 and P95, for

which alpha diversity increased with extension time (1–4min). A

4-min extension time produced the most amplicon product, with

less smearing than was observed at higher extension times.

3.3. R9.4 rrn analysis can accurately classify
species in the mock community

As expected, the lowest species richness in the R9.4 trial was

observed in the commercial Zymomicrobial DNA standard (mock)

samples, designed to include only eight taxa (Figure 2C). After

rarefaction at 1,900 reads and abundance filtering for barcode

crosstalk, taxonomic classification, and relative abundances were

comparable to the mock community composition and abundances

listed by the manufacturer (Figure 3E). All eight species were

resolved at the species level in the rrn samples. An additional

classification of Bacillus spizizenii, a subspecies of Bacillus subtilis,

was identified with the lowest relative abundance average of

1.1% (Figure 3E). The relative abundances of Staphylococcus

aureus appeared slightly over-represented by rrn sequencing,

while Enterococcus faecalis was slightly under-represented when

compared to the expected theoretical values of the mock. However,

this variation does not appear to be in response to extension times.

Non-metric multidimensional scaling (NMDS) demonstrated

distinct clustering of rrn samples by sample type on the rarefied

and filtered dataset. Distinct clusters were observed across all

sample types, with extension times tightly clustering (Figures 3A–

D). Separation based on the sample host, such as a human or plant,

was also observed in several distance matrices (Bray, Binomial,

Manhattan, and Jaccard). The Illumina MiSeq V3V4 data for the

fecal and saliva sample clustered alongside the Pseudo-V3V4 reads

in their respective rrn sample type clusters (Figures 3A–D).
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FIGURE 1

Graphical abstract of the RESCUE, rRNA operon Nanopore sequencing pipeline.

TABLE 1 ONT R9.4 read quantity, quality, and length statistics for the R9.4 Kit 10 run.

R9.4

Run

Step Reads

(•106)

Bases
(Gb)

Avg

Len

Med
Len

Avg

Q-score

MedQ-
score

%≥Q12 %≥Q15

Run1 1-Basecalling 1.34 5.63 4,186 4,578 13.1 12.9 67 17

2-Read Splitting 1.36 5.63 4,140 4,571 13.1 12.9 67 17

3-Demultiplexing 0.996 4.47 4,491 4,625 13.2 13.1 69 19

4-Trimming 0.938 4.22 4,498 4,521 13.3 13.2 70 20

Each step listed along the pipeline can be seen in each row. Starting at the demultiplexing step, all unclassified or not demultiplexed data was removed from the statistics.

3.4. R10.4 and Kit12 chemistry significantly
increase read accuracy

Four fully multiplexed libraries, each with 96 samples, were run

on the newer R10.4 flow cells and prepared using the most current

Kit12 Q20+ ligation sequencing kit (SQK-LSK112). An average of

11.46 Gb of data (≥ Q10) were generated on each flow cell after

basecalling with Guppy v6.1.7 SUP. Albeit an initial Q-score cutoff

of Phred-10, the four runs averaged having over 70% of the reads

>Q15. Initially, the first run was basecalled on Guppy v5.1.13, with

a mean Q-score of 16.3. After re-basecalling with the newest Guppy

(v6.1.7), the average Q-score increased by almost a full Phred point,

17.3. Reads were split ten times to ensure no concatenated reads

remained. This resulted in the splitting and recovery of 9.0 x 105

additional reads on average, with run 2 recovering about 1.35 x

106 reads (Table 2). Re-filtering the split reads by average Q-score

resulted in a median read length of 4,450 nucleotides with an

average Q-score of 17.8.

Demultiplexing constraints on the R10.4 were stringent,

ensuring the quality of the alignments over the quantity of

reads remaining. No mismatches were allowed in either dual-

indexed barcode, and a read length between 3 and 7 kb was

required. After demultiplexing, an average of 1.09 x 106 reads per

flow cell remained, a 36% retention from the pipeline’s previous
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FIGURE 2

Agarose gel of the library and alpha diversity of the r9.4 analysis. (A) Gel electrophoresis (1% agarose) results for the R9.4 trial by sample type and

extension time. Sample type is shown above each section of the gel while the “Ext_min” row refers to the PCR extension time used. A total of 4 µL of

PCR product was mixed with 1 µL of 6x Tri-Track loading dye before loading 4 µL into the gel. Gels were run for 30min at 100V and shown against 1

µL of a Promega Benchtop 1Kb Ladder. Reverse barcode numbers (Rev) are depicted. (B) Alpha diversity measures of Shannon diversity plotted

across all extension times tested. Samples are rarefied to 12,171 reads/sample. (C) Species richness is plotted for each rarefied sample on the x-axis

while the Shannon diversity index is plotted on the y-axis. Extension time variables can be seen as the color of the data point. (D) Read lengths of

demultiplexed, untrimmed reads by extension time and sample type.

filtering step (an average of 3.05 x 106 reads). Altering mismatch

parameters is explored further in Supplementary Table 1. Non-

biological nucleotides were removed, resulting in an increase in the

median quality scores to approximately Q20.1 with 91% of the total

reads being ≥ Q15 and an average read length of 4,488 ± 26 bases

(Table 2). A per-sample relative abundance of 0.0073% was used to

remove the possibility of barcode crosstalk based on the percentage

of reads in the null control barcode.

3.5. RRN RESCUE enables deeper
classification with superior evenness
compared to short-read methodologies

To test our hypothesis that short reads can negatively impact

classification, irrespective of the sequencing platform used, four

rRNA gene datasets (EMU, RDP, Silva-138, and NCBI RRN) were

used to classify the same saliva DNA sources (n = 21) from
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FIGURE 3

Sample type and trial comparisons. Non-metric multidimensional scaling (NMDS) ordination plot using “Bray” (A), “binomial” (B), “Manhattan” (C), and

“Jaccard” (D) distance matrix. Calculations metrics from the “ordinate” function of the Phyloseq package. All samples were rarefied to the lowest

throughput of 12,171 reads/samples, transformed to relative abundance at the species level, and thresholded to a minimum of 0.0059 relative

abundance before plotting. Samples are grouped by color while extension time variables are shown by the data point’s shape. (E) Relative

abundances observed in the Zymo Community DNA standard across PCR extension times are plotted for the R9.4 trial against the theoretical

(expected) abundances from the manufacturer (Mock). All samples are rarified.

Illumina V3V4, 16S-ITS-23S ONT (rrn), and Pseudo-V3V4. The

Pseudo-V3V4 reads were extracted from the full rrn reads in

silico to artificially mimic the size of a V3V4 amplicon while still

being generated from the RESCUE rrn primers. In this analysis,

differences between the Pseudo-V3V4 reads and the rrn reads

can be attributed to read length while differences in the Illumina

V3V4 data can be attributed to primer bias, library prep, and

sequencing platform biases. Communities found by rrn sequencing

were significantly more diverse at the species level than those from

the two short-read sets (Illumina and Pseudo-V3V4) across almost

all the databases (Simpson’s index at species level, Kruskal–Wallis:

p = 0.0022, p = 7.6 x 10−9, p = 0.034, p = 5.4 x 10−10; Emu,

RDP, NCBI RRN, and Silva-138, respectively) (Figure 4A). The rrn

reads were significantly more diverse compared to the Illumina and

Pseudo-V3V4 data across all databases (Simpson’s index at species

level, Wilcox: [p = 0.0015 and p = 0.0028], [p = 3.0 x 10−6 and p

= 1.9 x 10−9], [ p = 0.92 and p = 0.031], [p = 3.7 x 10−12 and p =

3.9 x 10−8]; [rrn vs. Illumina & rrn vs. Pseudo-V3V4] Emu, RDP,

NCBI RRN, and Silva-138, respectively).

RRN reads also contained a greater number of unique species

than Pseudo-V3V4 reads in all databases except the NCBI RRN

database (observed richness, Wilcox: p = 0.023, p = 4.0 x 10−8,

p = 0.44, p = 2.9 x 10−8; EMU, RDP, NCBI RRN, and Silva-

138, respectively) (Figure 4B). More taxa were observed in Illumina

V3V4 reads as compared to rrn reads through the EMU and NCBI

RRN database despite the lower Simpson diversity (Wilcox: p =

0.0082, p= 0.005).

Between the samples and within each read type, a pattern

emerges of the variability among classifications when using

short reads across all four databases. The beta-dispersion

distance between samples of rrn reads is significantly less than

both Illumina and Pseudo-V3V4 reads (ANOVA: p = 1.1 x

10−9; t-test: p < 0.0001, p < 0.0001; Illumina and Pseudo-

V3V4, respectively), while any difference between Illumina and

Pseudo-V3V4 reads are negligible (Figures 4C, D). The rrn

RESCUE community clustered more tightly compared to those

of Illumina and Pseudo-V3V4. Stratifying beta-dispersion to

show differences between databases and not just read type

allows the ability to detect database inherent biases. At the

species level, the SILVA-138 database produced classifications

that were significantly closer to the centroid than to all other

databases (Wilcox: p =< 0.001) (Supplementary Figure 3C). At

the genus level, the database classifications were much more even

and Silva-138 produced genera classification without significant

differences in beta-dispersion compared to the other databases

(Supplementary Figure 3D).

These significant findings interestingly seem to reverse

when looking at the same metrics but at the genus level

(Supplementary Figures 3A, B). No significant differences were

found between the rrn and Pseudo-V3V4 reads for the Simpson

index, and only one significant difference was observed between the

rrn and Pseudo-V3V4 reads when using the RDP database (Wilcox:

p= 0.0013). As for the Illumina reads at the genus level, the samples

were consistently more significantly diverse and contained more

unique genera than Pseudo-V3V4 and rrn data for all databases

except for the RDP database. This may show how genus-level

analysis does not significantly differ but increasing read size to the

entire rrn operon enables species-level classification.
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TABLE 2 Read quantity, quality, and length statistics for the R10.4 Kit 12 runs.

R10.4

Run

Step Reads

(•106)

Bases
(Gb)

Avg

Len

Med
Len

Avg

Q-score

MedQ-
score

%≥Q12 %≥Q15

Run1 1-Basecalling∗ 2.32 9.78 4,207 4,447 16.3 16.6 89 66

1-Basecalling 1.85 9.99 5,406 4,480 17.1 17.3 94 73

2-Read Splitting 2.99 9.95 3,331 4,395 17.6 17.9 93 75

3-Filtering 2.92 9.72 3,333 4,406 17.8 18.0 95 77

4-Demultiplexing 0.995 4.41 4,660 4,615 19.3 19.6 99 91

5-Trimming 0.995 4.25 4,490 4,502 19.9 20.2 99 92

Run2 1-Basecalling 2.29 12.65 5,517 4,488 17.2 17.4 92 72

2-Read Splitting 3.64 12.60 3,456 4,428 17.6 17.9 91 74

3-Filtering 3.55 12.25 3,452 4,432 17.9 18.1 94 76

4-Demultiplexing 1.19 5.52 4,656 4,608 19.4 19.7 99 90

5-Trimming 1.19 5.33 4,494 4,489 20.0 20.3 99 92

Run3 1-Basecalling 2.19 12.67 5,772 4,634 16.9 17.1 89 68

2-Read Splitting 3.24 12.62 3,895 4,466 17.4 17.8 89 71

3-Filtering 3.15 12.33 3,906 4,469 17.6 17.9 91 73

4-Demultiplexing 1.19 5.51 4,650 4,604 19.5 19.9 98 91

5-Trimming 1.19 5.33 4,496 4,483 20.1 20.5 98 92

Run4 1-Basecalling 2.52 10.54 4,185 4,481 16.9 17.1 89 68

2-Read Splitting 2.60 10.53 4,056 4,479 16.9 17.1 89 68

3-Filtering 2.58 10.46 4,058 4,480 17.0 17.2 90 69

4-Demultiplexing 1.00 4.64 4,629 4,534 18.6 18.9 98 87

5-Trimming 1.00 4.48 4,470 4,401 19.3 19.5 98 88

For the demultiplexing and trimming steps, statistics exclude any unclassified reads as well as demultiplexed data. NanoStat was used on raw fastq files to generate the output. For Run1, the

initial basecalling was also performed with Guppy v5.1.12, denoted by “∗”. Avg, average; Med, median.

3.6. R10.4 improves species-level
confidence in mock samples

To determine whether RESCUE sequencing with the ONT

R10.4 kit-12 chemistry was more effective in species-level detection

of mock bacterial communities, four replicates of both the

ZymoBIOMICSMicrobial DNA Standard and ZymoBIOMICSGut

Microbiome were included across the four runs. This analysis is

entirely on RESCUE rrn reads and does not use any short-read

comparison. First, true error rates of RESCUE reads were analyzed

by aligning all classified reads from the Zymo samples against their

representative genomes available on the manufacturer’s website.

Despite retaining a higher error rate at the beginning of the reads

aligning to the Zymo mock provided genomes, the error rates

toward the middle of the 4.5 kb rrn gene sequence allow for ∼99%

accuracy toward the main portion of the hypervariable region that

allows for species-level classification (Supplementary Figure 2).

RESCUE sequencing could accurately resolve the correct

composition down to the species level for all eight bacterial taxa

of the first mock community using any of the four classification

databases (Table 3; Figures 5B, 6B). Using the EMU database led

to the identification of a small percentage of Bacillus halotolerans

(0.29%, Figure 5B), but this disappeared after per-sample taxa

filtering at the rate of barcode false attribution observed in the

dataset (0.0073 relative abundance, Table 3). Moreover, using the

RDP dataset led to the identification of a substantial portion of

Bacillus subtilis as one of two subspecies, Bacillus spizizenii (16.9

%) or Bacillus intestinalis (0.30 %), and the identification of an

additional uncultured soil bacterium (0.98%) (Table 3). The relative

abundances across four databases (NCBI RRN, EMU, Silva-138,

and RDP) were comparable, except for the subspecies classification

of Bacillus spizizenii and Bacillus subtilis using the RDP. As for

zymo mock classifications using the Silva-138 database, strikingly

only Klebsiella pneumoniae (6.17%) and Streptococcus pneumoniae

(93.22%) were detected after abundance thresholding. This strange

occurrence would not be resolved if looking at the genus level.

Within samples and across four runs, the batch effects of RESCUE

with themock sample were low, with the highest standard deviation

among replicates being approximately 1.5% (Figures 5A, B). At the

genus level across all four databases, any incomplete taxa missing

genus-level classification are completely removed from the datasets

(Figure 5A). Among databases, the genus level classification was

nearly identical for each sample except for the Silva-138 samples;

however, relative abundances did vary, e.g., Bacillus was twice the

anticipated abundance (observed average = 25.10%; theoretical

= 17.40%).
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FIGURE 4

Alpha- and beta-diversity measures of the R10.4 rrn Illumina comparison. (A) Alpha diversity by the measure of Simpson Evenness and (B) Observed

richness. The database is faceted on top of each read grouping by database while the sequence type can be seen as red (Illumina), green

(Pseudo-V3V4), and blue (RRN). Kruskal–Wallis and pairwise chi-squared were done and p.adj is shown. (C) Beta-dispersion metrics of distance to

the centroid. Sprawl between sample centers can be seen on the y-axis while each sequence type is plotted separately on the x-axis.

Non-parametric ANOVA and pairwise t-test are shown here. (D) Beta-dispersion PCoA by Bray–Curtis distance matrix. Each sequence type can be

seen as a distinct shape or by color: Illumina (black), Pseudo-V3V4 (red), and RRN (green).

Using RESCUE, similar species-level diversity of the second

mock, the gut mock community, was observed across all three

read types, except for Akkermansia muciniphila, which fell below

the limit of detection ∼0.97% (Figures 6A, B). For two theoretical

taxa, Veillonella rogosae and Prevotella corporis, there were

misclassifications among other species of the genera across all

four databases (Table 4). Veillonella rogosae was the only listed

Veillonella bacterium included in themock culture at an abundance

of 15.87%, and all four databases were able to classify varying

amounts (0.69, 3.72, and 6.79, 3.18%; NCBI RRN, RDP, EMU, Silva,

respectively). Yet, all four databases primarily classify the bacterium

as Veillonella parvula (11.56, 18.41, 28.63, 21.27%; NCBI RRN,

RDP, EMU, Silva, respectively). Three databases also picked up

Veillonella dispar except for Silva-138 (17.25, 0.33, 0.59%; NCBI

RRN, RDP, EMU, respectively). NCBI RRN also uniquely detected

Veillonella atypica while RDP also classified Veillonella sp. SY-2

(11.33%), Veillonella sp. oral clone VeillD5 (1.01%), and uncultured

Veillonella sp. (0.9%).

Prevotella corporis, which should have had an abundance

of ∼5%, was present at a higher abundance using any of the

four databases (12.64, 8.52, 17.8, and 19.46%; NCBI RRN, RDP,

and EMU, respectively). The RDP database classified 9.08% of
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TABLE 3 ONT R10.4 output classification of the 4.5 kb rrn reads within the ZymoBIOMICS microbial DNA standard.

Genus Species NCBI RRN EMU RDP Silva-138 Theoretical

Uncultured soil bacterium 0.98

Bacillus Bacillus halotolerans 0.29

Bacillus Bacillus intestinalis 0.30

Bacillus Bacillus spizizenii 16.92

Bacillus Bacillus subtilis 25.89 24.88 6.02 17.40

Bacillus Uncultured Bacillus sp. 0.13

Enterococcus Enterococcus faecalis 4.10 4.50 4.47 9.90

Escherichia Escherichia coli 3.33 3.34 3.23 10.10

Klebsiella Klebsiella pneumoniae 6.17

Limosilactobacillus Limosilactobacillus fermentum 17.25 16.54 16.97 18.40

Listeria Listeria monocytogenes 14.81 13.85 13.43 14.10

Pseudomonas Pseudomonas aeruginosa 1.35 1.20 1.22 4.20

Salmonella Salmonella enterica 1.47 1.41 1.44 10.40

Staphylococcus Staphylococcus aureus 30.95 33.33 32.67 15.50

Staphylococcus uncultured Staphylococcus sp. 0.13

Streptococcus Streptococcus pneumoniae 93.11

Streptococcus uncultured Streptococcus sp. 0.14

Relative abundances are shown as the average across four replicates after applying sample abundance threshold filtering. Four databases were tested: the NCBI RRN database (NCBI RRN), the

Ribosomal Database Project (RDP), the EMU database (EMU), and the Silva-138 database (Silva-138). The values for the relative abundance of the Mock were obtained through the supplier’s

website and attached documents. Taxa that were not found using specific databases are presented as missing values.

the community as an undefined Prevotella sp. S4-BM14 while

the NCBI RRN database uniquely identified 4.83% as Prevotella

melaninogenica. The Silva-138 database performed better in this

mock compared to the previous; however, incorrect taxa were

still abundantly present. Silva-138 classified 18.33% of reads to

Myroides odaratimimus, 0.51% of reads to Mycoplasma arthritidis,

and 9.2% of reads to Klebsiella pneumoniae despite this taxon

not being present in the sample. The RDP database produced

the most “uncultured” taxa, even upon application of the relative

abundance filter. As with the Zymo standard community, the

relative abundances of the gut mock community were much closer

to each replicate and database at the genus level than to the

theoretical composition, but the abundances found were all within

the documented deviation of 15% for each taxon in the community

(Figure 6A).

3.7. RESCUE improves resolution accuracy
and bridges database variability

To determine whether RESCUE could be used in place of the

standard Illumina sequencing, three read types were compared

across four databases for the human saliva samples (N = 21 each):

Illumina MiSeq V3V4 generated reads, 16S-ITS-23S ONT reads,

and Pseudo-V3V4 reads subset from the ONT data. NMDS analysis

at the species level, using Bray and binomial metrics, revealed

a strong clustering of similarity by classification database, with

additional sub-clusters between the sequence types (Figures 7A–D).

At the species level, the Pseudo-V3V4 classifications clusteredmore

closely to the Illumina V3V4 classifications within each respective

database (Figures 7A, B, orange and purple). The rrn reads formed

distinct clusters apart from the Pseudo-V3V4 reads and Illumina

reads for both the RDP and Silva databases. This distinction can

not only be best seen using Bray–Curtis metrics (Figure 7A) but can

also be seen using binomial metrics, especially for RDP (Figure 7B).

At the genus level, the actual bacterial classification was

shown to be similar across the three read types, allowing for

NMDS separation to examine the bias of the sequencing platform

and primers (Figures 7C, D). Even across databases, the rrn

and Pseudo-V3V4 classifications are tightly clustered together

at the genus level using Bray metrics (Figures 7C, D), with the

classifications of Illumina reads through the NCBI RRN and

EMU databases sharing some overlapping with the Nanopore-

based data. Using the binomial metric at the genus level, which

unweights high-abundance taxa, the read types are clustered by the

database. Pseudo-V3V4 communities bridged the clusters formed

between Illumina and rrn sequences, especially in the EMU and

RRN databases.

The outlier behavior of the RDP and SILVA databases

was assessed against human saliva samples (Figure 8). In this

analysis, Pseudo-V3V4 and Illumina data were compared

against the rrn reads across all four databases. A large share

of the classification levels of the Illumina and Pseudo-V3V4

reads through the RDP database do not retain genus-level

classifications and are listed as “Unclassified” (Figure 8).

The short-read data for both the RDP and Silva database

visibly stand out when compared against the rrn reads
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FIGURE 5

Relative abundances of taxa found in the ZymoBIOMICS Microbial DNA Standard communities. Panels show relative abundance at the genus level (A)

and the species level (B). Taxa are colored by species or genus found in the legend of each plot. The values for the relative abundance of the mock

were pulled from the website of the supplier. For species level, relative abundances can be more accurately seen as their abundance in each bar

graph to 2 digits. Each barplot on the x-axis represents the replicate number of the Zymo samples used.
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FIGURE 6

Relative abundances of taxa found in the ZymoBIOMICS Gut Microbiome Standard communities. Panels show relative abundance at the genus level

(A) and the species level (B). Taxa are colored by species or genus found in the legend of each plot. The values for the relative abundance of the

mock were pulled from the website of the supplier. For species level, relative abundances can be more accurately seen as their abundance in each

bar graph to 2 digits. Each barplot on the x-axis represents the replicate number of the Zymo samples used.
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TABLE 4 ONT R10.4 output classification of the 4.5 kb rrn reads in characterizing the ZymoBIOMICS gut microbiome standard.

Genus Species NCBI RRN EMU RDP SILVA Theoretical

Akkermansia Akkermansia muciniphila 0.97

Bacteroides Bacteroides fragilis 15.55 15.53 15.77 4 9.94

Bifidobacterium Bifidobacterium adolescentis 1.68 1.66 1.67 1.15 8.78

Clostridioides Clostridioides difficile 4.52 4.38 4.41 4.13 2.62

Clostridium Clostridium perfringens <0.01

Enterococcus Enterococcus faecalis <0.01

Escherichia Escherichia coli 8.12 8.08 8 3.56 12.12

Faecalibacterium Faecalibacterium prausnitzii 9.43 9.32 2.28 17.63

Faecalibacterium uncultured Faecalibacterium sp. 6.92

Fusobacterium Fusobacterium nucleatum 4.25 4.21 4.1 5.3 7.49

Klebsiella Klebsiella pneumoniae 9.2

Limosilactobacillus Limosilactobacillus fermentum 1.03 1.01 1 9.63

Methanobrevibacter Methanobrevibacter smithii 0.07

Mycoplasma Mycoplasma arthritidis 0.51

Myroides Myroides odoratimimus 18.33

Prevotella Prevotella corporis 12.64 17.8 8.52 19.46 4.98

Prevotella Prevotella melaninogenica 4.83

Prevotella Prevotella sp. S4-BM14 9.05

Roseburia Roseburia hominis 1.73 1.71 0.92 1.7 9.89

Streptococcus Streptococcus pneumoniae 7.85

Veillonella Veillonella rogosae 0.69 6.79 3.72 3.18 15.87

Veillonella uncultured Veillonella sp. 0.9

Veillonella Veillonella atypica 6.58

Veillonella Veillonella dispar 17.25 0.59 0.33

Veillonella Veillonella parvula 11.56 28.63 18.41 21.27

Veillonella Veillonella sp. oral clone VeillD5 1.01

Veillonella Veillonella sp. SY-2 11.33

Salmonella enterica <0.01

uncultured bacterium adhufec225 0.2

Relative abundances are shown as the average across four replicates after applying sample abundance threshold filtering. Four databases were tested: NCBI RRN database (NCBI RRN),

Ribosomal Database Project (RDP), the EMU database (EMU), and Silva-138 database (Silva-138). The values for the relative abundance of the Mock are obtained through the supplier’s website

and attached documents. Taxa absent using specific taxonomy databases are shown as missing values in their respective cells.

that appear very visually similar in classification across all

four databases.

3.8. Partial 16s rRNA gene sequencing is
ine�ective at species and genus-level
classification

The primary focus of the development of this pipeline that

processes rrn reads for bacterial abundance analysis was to

provide accurate resolution at both the genus and species levels

of all taxa, including those that are difficult to classify. Using a

traditional pipeline such as DADA2 and Silva v138 classification

to process Illumina V3V4 data, the Silva v138 database does

not normally allow for high-resolution classification in oral

microbiome samples, partially due to many database entries not

retaining species-level classification. Of the 50,280 reads obtained

in a past publication (Ahrens et al., 2022) only approximately

95% of the reads are assigned taxonomy at the genus level

and only 37% at the species-level classification. RDP, a more

conservative and accurate database than SILVA or Greengenes

(Edgar, 2018), in the RESCUE pipeline described here, is still

able to classify 50% of reads at the genus-level classification

for our Illumina dataset. Silva-138 with species-level taxonomy

was also used in this benchmarking analysis to compare it to a

traditional pipeline.
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FIGURE 7

Ordination of the R10.4 Illumina comparison. NMDS ordination plots using “Bray” (A, C) and “binomial” (C, D). Phyloseq object was stratified to

species level (A, B) and genus level (C, D). Calculations metrics from the “ordinate” function of the Phyloseq package. All samples were rarefied and

kept in true “counts.” Sequence type variables RRN (purple), Pseudo-V3V4 (orange), and Illumina (green) are shown by the color of the data point.

Database type: Emu (circle), RDP (triangle), RRN (square), and SILVA (cross) can be seen as the shape of each data point.

Using the rrn operon through the RESCUE pipeline shows the

detection of 30 species within the Streptococcus genus (Figure 9A).

For short-read V3V4 regions, using either Illumina or Psuedo-

V3V4 through Nanopore, produces a consensus among species

classifications for each database that differs from the full-length rrn

reads. The short-read classifications even differ greatly among the

four classification databases. For short reads at the species level, the

EMU database classifies primarily S. cristatus and S. pneumoniae,

the RDP and Silva databases are entirely “uncultured Streptococcus

spp.” or “Unclassified,” and the NCBI RRN database is primarily

S. mitis and S. pneumoniae. While all four databases differ for

the V3V4 classification of Streptococcus, the long-read RESCUE

(rrn) classifications all appear to converge among the primary

community of S. mitis, S. oralis, S. sanguinis, and S. infantis.

Running the rrn reads through the Silva-138 database allowed for

species-level classification, but interestingly all Streptococcus species

were classified as Streptococcus pneumonia similar to the behavior

in the mock community.

Short-read V3V4 sequencing is ineffective for the classification

of Streptococcus, a major taxon in saliva that is difficult to

classify at the species level. In silico analysis shows how the

400 bp V3V4 region is unable to provide species-level resolution

by aligning the V3V4 portion of 19 representative Streptococcus

species found in rrn sequencing (Figure 9B). Across the pairwise

alignment of these V3V4 regions, several instances arise where

two distinct species have 100% identical V3V4 hypervariable

regions, such as Streptococcus mitis and Streptococcus infantis.

Most of the remaining comparisons differ by one or two single

nucleotide polymorphisms (SNPs). Using just the V3V4 region for

Streptococcus spp. classification is challenging without the greater

context from the entire rrn operon.

When performing pairwise alignments of the rrn of the same

representative species, each species has a minimum of nine distinct

SNP mutations in the 4.5Kb rrn fragment produced by the rrn

primers (Figure 9C). The same example of S. mitis and S. infantis

described above, now only have 95.7% identity between each other.

This leaves enough context of the rrn operon, with >99% raw read

accuracy, to accurately classify the species level of Streptococcus.

Numerous other examples have been studied, such asAkkermansia,

Enterobacter, Enterococcus, Klebsiella, Listeria, Staphylococcus, and

Prevotella,which all have poor identification even at the genus level

when using the Silva database for V3V4 classification (Abellan-

Schneyder et al., 2021).

4. Discussion

Here, we created and validated a pipeline to sequence, classify,

and analyze samples for their bacterial compositions using 16S-

ITS-23S rRNA amplicons produced by Nanopore sequencing. As

a few laboratories have recently shepherded the turn toward full-

length 16S and 16S-ITS-23S rRNA (Curry et al., 2021; Graf et al.,

2021; Kinoshita et al., 2021; Seol et al., 2022), we sought to assist

in this transition by finding any limitations of moving away from

Illumina and testing the generalizability of Illumina-based results

to rrn based. We combined the best aspects of multiple validated,

third-party, and open-sourced, Nanopore-based programs into

one publicly available workflow. Curry et al. (2021) developed
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FIGURE 8

Relative abundance of the R10.4 Illumina comparison of human saliva. Relative abundances of the rarefied and filtered 21 samples were tested via

three di�erent sequence types (each vertical facet) across four di�erent classification databases (each horizontal facet). The relative abundance of

the species found is plotted, while the samples are colored by genus. Horizontal lines in each genus bar represent the abundance of species found

within that genus.

the EMU classifier that is validated as the best performer on

Nanopore error profiles. Kinoshita et al. (2021) curated a custom

rrn database of 16S-23S rDNA from RefSeq-verified genomes

(Kinoshita et al., 2021). Martijn et al. (2019) designed a primer

that would cover 98.9% of bacterial 23S (U2428R). RESCUE wraps

all these approaches and software into a one-line script, helping

to bridge access to programs and broaden the use of 4.5 kb rrn

amplicons for taxonomic classification.

In testing the initial R9.4 Kit 10 chemistry commonly used

for genome assemblies, accurate species-level classification was

obtained of the Zymo mock community at an average quality score

of the final reads at Q13.3 or ∼95.3% read accuracy (Table 1).
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FIGURE 9

Relative abundance of Streptococcus spp. discovered in the human saliva data across three read types and four databases. (A) Relative abundance of

species-level classification in the Streptococcus genus using RESCUE RRN Nanopore sequencing, Pseudo-V3V4 reads, and true Illumina reads using

the EMU classifier across four databases. (B) In silico pairwise alignment of the 400 bp V3V4 region of 19 representative species in the genus

Streptococcus. (C) In silico pairwise alignment of the 4.5 Kb RRN region of 19 representative species in the genus Streptococcus.

Frontiers inMicrobiology 16 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1201064
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Petrone et al. 10.3389/fmicb.2023.1201064

Although rrn sequencing with the R9.4 flow cells displayed enough

accuracy for species-level classification of most taxa, the accuracy

of using R10.4 flow cells or better in the analysis will increase

the confidence in the findings. Using the R10.4 flow cell and

Kit12 chemistry, final reads inputted into the EMU classifier at

greater than Q20 median accuracy were observed (Table 2), which

corresponds to 99.0% read accuracy with mostly species-level

classification in the microbial mock community. In testing the

gut microbiome mock samples, a lower limit of detection was

found, which caused a failure to detect four taxa, each at <1%

relative abundance. While this could be a true lower threshold of

detection of the pipeline, despite 1% abundance being at least 20

reads, this was not the result of primer bias as Salmonella enterica

was correctly detected in the other mock samples. The raw read

accuracy of ONT chemistry and base callers continue to improve,

as can be seen from the jump in quality just between Guppy v5.1.13

and v6.1.7, and the updated ONT release with Kit14 chemistry.

This increases the throughput of high-quality reads going into the

classifier which increases the depth of detection and resolution

of classification.

To account for the 73 reads identified in the single null

control used in the R10.4 runs, thresholding was increased from

0.0056 to 0.0073% from the R9.4 to the R10.4 runs. RESCUE

users should always include a true null barcode combination of

the 96 provided in multiplexed amplicon libraries to determine

the level of barcode thresholding due to demultiplexing errors.

The demultiplexing incorporated into the RESCUE pipeline is

stringent, as all 16 bases of both barcodes must be found with

100% accuracy, in the correct orientation, and fit under the global

length and Q10 constraints. However, the Phred scores of each

barcode nucleotide are remarkably high on average, often over Q30.

In the RESCUE pipeline options, the implementation of the “-

b” setting allows for multiple mismatches if users choose not to

use the zero-mismatch option. Theoretically, the primers retain 7

substitution differences from one another in a global alignment.

Increasing mismatch allowance appears to retain higher amounts

of reads, as changing mismatch allowance to 1, 2, and 3 errors

per barcode, allow for the retention of 43, 46, and 51% of reads,

respectively (Supplementary Table 1). There appears to be an ideal

spot of around 1 mismatch, as 2 or more begin raising the number

of reads found in the null control sample. This in turn should

increase the downstream abundance filtering to remove this effect.

When comparing the classification of the MiSeq-generated

V3V4 fastq files alongside 4.5 Kb rrn reads and pseudo-V3V4 data

of the same DNA samples, the influence on read length can bemore

accurately determined against the noise of primer and platform

biases. The distance matrices at the species level reliably show how

classifications from full-length 16S rRNA gene databases (EMU,

NCBI RRN, and Silva-138) benefit from longer reads. The genus-

level Bray ordination is more revealing of the inherent differences

in the RESCUE approach vs. Illumina MiSeq which undoubtedly

misses some taxon. The weighted Bray index reveals how Illumina

reads show cluster separation from both Nanopore read types.

These differences hold true between classification databases that

can be attributed to low abundance noise.

After looking at the classification results, short-read V3V4

sequencing makes it exceedingly difficult to classify reads assigned

to specific genera like Streptococcus. The classifier embedded in

RESCUE obtains species-level results, if available, while traditional

pipelines like DADA2 do not by default. This highlights the

ability of 4.5kb rrn reads to obtain an accurate consensus of the

community composition vs. the short-read V3V4 reads, sequenced

through Illumina or Pseudo-V3V4 Nanopore. Multiple databases

are used across 16S rRNA community analysis research, and

as shown here the choice of database impacts the resulting

classification of short-read V3V4 sequencing. Using the long-read

rrn data, the classification is more uniform and converges across

all databases at both species and genus-level. It is important to

note that the EMU classifier and by default RESCUE utilize longest

read scoring, meaning that the longer alignment wins even if this

alignment is only in a certain region of the read. This may explain

why the Zymomock and saliva data were skewed with Streptococcus

pneumoniae.

Some limitations are inevitable as found in our RESCUE

pipeline. Prior in silico classification of available genomes

determined that certain symbiotic and slow-growing taxa in soil

have unlinked rrn operons, where the distances between the

16S and 23S rRNA genes are >1,500 bp (Brewer et al., 2020).

In this study, increasing extension time failed to capture more

diversity, suggesting that unlinked rrn operons are rare in the

samples used here. The largest ITS we found was from Candidatus

Saccharibacteria, with an average total amplicon size of 5,700

bp. Further testing needs to be done to determine if the high

molecular weight (HMW) smearing on the gel was the incomplete

amplification of unlinked rrn operon genomes. One could argue,

however, that the benefit of the increased size of rrn sequencing

over full-length 16S outweighs the omission of unlinked rrn

operons, especially if the sample type is void of these taxa such

as human samples (Kinoshita et al., 2021). Admittedly, some

labs may still choose to use full-length 16S primers due to their

reliability, especially in unknown samples where unlinked rrn taxa

may be present.

One commonly cited barrier to the adoption of Nanopore

sequencing for full-length 16S rRNA genes or larger fragments is

the perceived high error rate of the platform. However, the ONT

platform continues to improve, leading to a significant reduction

in error rates. As Nanopore sequencing technology continues

to advance, the challenges associated with reduced throughput

of clean data, low-prevalence noise taxa in mock samples, and

barcode crosstalk can be mitigated effectively or even resolved.

Our analysis demonstrates that the benefits of increased confidence

across databases, enhanced taxonomic resolution down to species

level, and reduced noise compared to Illumina-based approaches

arguably outweigh the downsides. Our findings show that the ONT

long-read chemistry is now surpassing an average of 99.0% raw read

accuracy in processed reads. Additionally, the RESCUE pipeline

and taxonomic analysis using long-read Nanopore contribute to

the improved resolution required for many bacterial diversity

analyses. While the current accuracy of 99% achieved by ONT is

still notably lower than Illumina sequencing and translates to 45

errors per RESCUE read, the longer read length achievable by ONT

provides sufficient context to achieve species-level classification

despite this error rate. Furthermore, our analysis indicates that the

error distribution in reads from known mocks is less concentrated
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in the middle, implying enhanced resolution in most hypervariable

regions. While ONT and RESCUE may not yet be suitable for

single nucleotide level analysis, the available evidence indicates

that the current error rate and RESCUE parameters enable the

general classification of samples and provide enhanced species-

level resolution.
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