
TYPE Original Research

PUBLISHED 02 August 2023

DOI 10.3389/fmicb.2023.1200983

OPEN ACCESS

EDITED BY

Byeonghwa Jeon,

University of Minnesota Twin Cities,

United States

REVIEWED BY

Jinshil Kim,

National Institutes of Health (NIH),

United States

Catherine D. Carrillo,

Canadian Food Inspection Agency

(CFIA), Canada

*CORRESPONDENCE

Kranti Konganti

kranti.konganti@fda.hhs.gov

RECEIVED 05 April 2023

ACCEPTED 28 June 2023

PUBLISHED 02 August 2023

CITATION

Konganti K, Reed E, Mammel M, Kayikcioglu T,

Binet R, Jarvis K, Ferreira CM, Bell RL, Zheng J,

Windsor AM, Ottesen A, Grim CJ and

Ramachandran P (2023) bettercallsal: better

calling of Salmonella serotypes from

enrichment cultures using shotgun

metagenomic profiling and its application in an

outbreak setting. Front. Microbiol. 14:1200983.

doi: 10.3389/fmicb.2023.1200983

COPYRIGHT

© 2023 Konganti, Reed, Mammel, Kayikcioglu,

Binet, Jarvis, Ferreira, Bell, Zheng, Windsor,

Ottesen, Grim and Ramachandran. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

bettercallsal: better calling of
Salmonella serotypes from
enrichment cultures using
shotgun metagenomic profiling
and its application in an outbreak
setting

Kranti Konganti1*, Elizabeth Reed1, Mark Mammel1,

Tunc Kayikcioglu1, Rachel Binet1, Karen Jarvis1,

Christina M. Ferreira1, Rebecca L. Bell1, Jie Zheng1,

Amanda M. Windsor1, Andrea Ottesen2, Christopher J. Grim1 and

Padmini Ramachandran1

1Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD,

United States, 2Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD,

United States

Most current Salmonella subtyping analyses rely on whole genome sequencing

(WGS), which focuses on the high-resolution analysis of single genomes or

multiple single genomes from the isolated colonies onmicrobiological agar plates.

In this study, we introduce bioinformatics innovations for ametagenomic outbreak

response workflow that accurately identifies multiple Salmonella serovars at

the same time. bettercallsal is one of the first analysis tools to identify

multiple Salmonella enterica serotypes frommetagenomic or quasi-metagenomic

datasets with high accuracy, allowing these isolate-independent methods to be

incorporated into surveillance and root cause investigations. It was tested on an

in silico benchmark dataset comprising 29 unique Salmonella serovars, 46 non-

Salmonella bacterial genomes, and 10 viral genomes at varying read depths and on

previously well-characterized and sequenced non-selective primary and selective

enrichments of papaya and peach samples from separate outbreak investigations

that resulted in the identification of multiple Salmonella serovars using traditional

isolate culturing and WGS as well as nucleic acid assays. Analyses were also

conducted on these datasets using a custom-built k-mer tool, SeqSero2, and

Kallisto to compare serotype calling to bettercallsal. The in silico dataset analyzed

with bettercallsal achieved the maximum precision, recall, and accuracy of 100,

83, and 94%, respectively. In the papaya outbreak samples, bettercallsal identified

the presence of multiple serovars in agreement with the Luminex® xMAP assay

results and also identified more serovars per sample, as evidenced by NCBI SNP

clustering. In peach outbreak samples, bettercallsal identified two serovars in

concordance with k-mer analysis and the Luminex xMAP assay. The genome hit

reported by bettercallsal clustered with the chicken isolate genome, as reported

by the FDA peach outbreak investigation from sequenced isolates (WGS). Overall,

bettercallsal outperformed k-mer, Seqsero2, and Kallisto in identifying multiple

serovars from enrichment cultures using shotgun metagenomic sequencing.
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Introduction

In the United States, Salmonella is a leading bacterial cause of

foodborne outbreaks. Therefore, precise and rapid identification

of Salmonella serotypes from suspect food matrices is critical for

successful source attribution of illness outbreaks (Scallan et al.,

2011). From 2000 to 2020, 2.85% of U.S. foodborne Salmonella

outbreaks were attributed to multiple Salmonella serotypes (CDC,

2022). Recent foodborne outbreaks that have been attributed to

multiple Salmonella serotypes force us to question whether these

are rare events or whether previous methods did not have the

resolution to provide an accurate picture of the complex ecology

that is associated with outbreak etiologies (Hassan et al., 2019; FDA,

2021; Whitney et al., 2021).

Serotyping has been at the core of public health monitoring

of Salmonella infections for over 50 years. Since the 1960’s, public

health scientists in the United States have used serotyping to

identify, subtype, and track Salmonella outbreak strains to their

sources. The U.S. Centers for Disease Control and Prevention

(CDC) has published an atlas of Salmonella in the United States

featuring 32 serotypes of Salmonella commonly associated with

clinical illness (CDC, 2020), thus highlighting the importance

of precise identification and clustering of Salmonella serotypes.

Current surveillance for Salmonella is generally limited to the

detection of only the most abundant serotype(s) in a sample due to

biases in culture-based screening approaches. Thus, some serotypes

that are present in low abundance in an enrichment culture may

remain undetected and, in some cases, even the etiological agent

causing the outbreakmay remain undetected despite epidemiologic

links to the food being tested (Harvey and Price, 1967; Singer

et al., 2009). Next-generation sequencing (NGS) technologies have

ushered in an era of precision analysis, transforming the way

we detect, identify, and conduct source tracking of foodborne

pathogens (Rantsiou et al., 2018; Unno et al., 2018). As we continue

to discovermore information about outbreak etiology, the potential

of quasi-metagenomic (sequencing from enrichments) methods for

rapid detection is becoming abundantly clear (Ottesen et al., 2016,

2020).

Accurate subtyping and subsequent clustering of Salmonella

serotypes associated with a foodborne outbreak event is essential

for successful investigation and traceback to a specific food or

an environmental source. Most metagenomic profiling tools that

use either marker- or k-mer-based approaches for classification

are sensitive down to the species rank (McIntyre et al., 2017)

and cannot accurately discern between highly clonal Salmonella

spp. serotypes. Assembly-based approaches have also been widely

used in metagenomics, especially to obtain cluster information

for traceback (Buytaers et al., 2021). The recent advent of DNA

sketching-based algorithms has enabled much more efficient and

accurate processing of large amounts of data, with the potential

to analyze the sequencing data in “real-time” (Rowe, 2019). In

the case of quasi-metagenomic datasets, we have successfully used

the CFSAN SNP pipeline for clustering and traceback in the past

(Ottesen et al., 2020), but the pipeline performs best when there

is appreciable coverage at all possible sites and when there is a

single etiologic agent (Davis et al., 2015). These criteria are difficult

to achieve in every quasi-metagenomic dataset and are highly

dependent on the food matrix in terms of the relative abundance

of the pathogen of interest and the burden of the microbial

community as a whole. Using approaches like k-mer or assembly-

based methods or adapting tools that are applicable to whole

genome sequencing in a multi-serovar outbreak did not result in

the detection of all the serotypes and the clustering information

for a traceback. We built bettercallsal primarily based on DNA

sketching algorithms (Ondov et al., 2019; Pierce et al., 2019) to

address the need to identify multiple Salmonella spp. serotypes

from metagenomic or quasi-metagenomic datasets. We leverage

the NCBI Pathogen Detection (PD) project (Sayers et al., 2021) and

provide hyperlinks to isolate genome(s) hits via the NCBI Isolates

Browser, which, in turn, allows visualization within the NCBI SNP

Tree Viewer if the genome hit was a member of a clonally related

cluster (Sayers et al., 2021).

This new Salmonella serotyping tool for metagenomic datasets

can have a true impact on understanding differences in the

dynamics of co-occurring Salmonella serotypes and can have a

significant impact on understanding the ecology of this pathogen

with respect to food safety and public health measures. The

bettercallsal workflow is licensed under MIT and is freely available

for download and use at: https://github.com/CFSAN-Biostatistics/

bettercallsal.

Materials and methods

Simulated datasets

Four sets of in silico Illumina datasets were generated with

InSilicoSeq (Gourle et al., 2019) using Salmonella and non-

Salmonella microbial genome assemblies with the 2x300 bp MiSeq

error model. For the first three sets, the microbial community

composition includes 29 Salmonella genomes representing unique

Salmonella serotypes of importance in foodborne diseases, along

with 46 non-Salmonella bacteria and 10 viral and phage species

(Supplementary Table 1).

Although it is rare to notice such a high number of Salmonella

spp. serotypes (n = 29) in a single sample in an outbreak setting,

to test the thresholds of serotype identification with bettercallsal,

simulated reads were generated for the first dataset using the

genome assembly FASTA files from the microbial community

composition (n = 29 + 46 + 10) at an equal coverage of

5X for each of the 29 unique Salmonella serotypes (sal-cov5x)

and with a coverage of 0–12X for the rest of the genomes

(Supplementary Table 1). This same composition of 85 (n = 29

+ 46 + 10) genomes was used to generate the second read

set, with the only change being that the coverage of the 29

unique Salmonella genomes was between 1X and 5X (sal-cov1-5x;

Supplementary Table 1). A third read set was generated with a log-

normal abundance distribution for all 85 genomes (sal-abn) using

the same random seed (−−seed 27) at varying read depths ranging

from 0.5 to 5 million read pairs (Supplementary Table 1). Finally,

to mimic some of the recently identified papaya outbreak samples

in which multi-serovar Salmonella serotypes were isolated from a

single sample (Whitney et al., 2021), we generated four additional

simulated Illumina paired-end datasets using InSilicoSeq (Gourle
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TABLE 1 The Salmonella spp. serotypes in each of the mix1 to mix4

simulated datasets.

Dataset Isolate accession Computed serotype

mix1 GCA_022512175.1 Agona

GCA_022653335.1 Anatum

GCA_020915285.1 Javiana

GCA_007147185.1 Newport

GCA_019151245.1 Senftenberg

mix2 GCA_015076525.1 Duisburg

GCA_009443175.1 Mbandaka

GCA_016347165.1 Nottingham

GCA_007014865.1 Oranienburg

GCA_013764765.1 Sandiego

mix3 GCA_016580005.1 Alachua

GCA_007626015.1 Gaminara

GCA_007381005.1 Reading

GCA_020956055.1 Saintpaul

mix4 GCA_023802815.1 Berta

GCA_006632585.1 Enteritidis

GCA_005557195.1 Gallinarum or Enteritidis

InSilicoSeq was used with −−seed 27 and 2x300 bp MiSeq and 2x150 bp NextSeq error

models. The other 56 non-Salmonella genome accessions that are part of each of the mixes

are described in Supplementary Table 1.

et al., 2019) with the 2x300 bp MiSeq error model. Each dataset

consisted of a mixture of 3–5 unique Salmonella enterica serotypes

along with the same 46 non-Salmonella bacterial and 10 viral

and phage species (mix1 to mix4; Table 1, Supplementary Table 1).

The Salmonella genomes in these mixes are closely related,

with the minimum average nucleotide identity (ANI) between

a pair of genomes at 98.2% and the maximum ANI at 99.4%

(Supplementary Table 1).

The four simulated read generation steps discussed above (sal-

cov5x, sal-cov1-5x, sal-abn, and mix1 to mix4) were repeated to

generate NextSeq datasets. InSilicoSeq does not provide a pre-

computed error model for the Illumina NextSeq platform. To

generate a NextSeq error model using InSilicoSeq, we used the

2x150 bp NextSeq 500 parmesan cheese foodmatrix FASTQ dataset

(SRR12959987) from the METAnnotatorX2 study (Milani et al.,

2021). The only difference is that, for the sal-abn dataset (third read

set), the reads were generated from 0.5 to 10 million read pairs

compared to 0.5–5M read pairs for MiSeq to compensate for the

shorter read lengths of the NextSeq instrument.

Database generation

A custom database was generated via the “bettercallsal_db”

workflow. It automates the process of downloading the

datasets from the NCBI Pathogen Detection (PD) database

and preparing a list of pre-formatted database flat files by taking

the Pathogen Detection Group (PDG) release identifier as input

(Ex: PDG000000002.2537). Whole-genome sequencing (WGS)

of each Salmonella isolate submitted to NCBI PD is cataloged

per the metadata structure along with the in silico serotyping

performed on the isolate assembly by SeqSero2 (Zhang et al.,

2019), which is disseminated via the metadata field called

“computed_serotype.” This field is used to associate the genome

hits with a serotype within the main bettercallsal analysis workflow.

Two database types are created with the “bettercallsal_db”

workflow. The first is a collection of isolate genome FASTA

files based on SNP Cluster participation (“per_snp_cluster”) of

the genome, wherein the single longest contiguous genome by

Scaffold N50 or Contig N50 size is retained per SNP Cluster

ID. The second type of database is a collection of isolates for

each “computed_serotype” (“per_computed_serotype”) based

on the downloaded metadata. Up to 10 genomes are retained

in the per_computed_serotype database based on the following

“waterfall” pseudo-algorithm:

For all rows from the NCBI Pathogens metadata file for

Salmonellawhere “computed_serotype” cell values are not null, i.e.,

for each valid “computed_serotype,” do the following:

1. Use the scaffold N50 size of each isolate to sort the metadata in a

descending fashion. If the scaffold N50 size is not available, use

the contig N50 size for subsequent steps.

2. While sorting, if two genomes’ scaffold N50 sizes are equal for a

given serotype, include both.

3. Retain up to 10 (user-configurable) isolates’ metadata for each

“computed_serotype.” This step has no effect when there are

<10 isolates available for a “computed_serotype.”

4. Finally, fetch the assembly FASTA from NCBI for up to

10 isolates.

For both the per_snp_cluster and per_computed_serotype

databases, all relevant metadata files are also created and indexed

to track accession, SNP Cluster IDs, and serotypes, which are

used during the tabulation of the results. The difference between

the per_snp_cluster and per_computed_serotype databases is that

the first prioritizes genome collection based on SNP clusters, and

therefore, not all serotypes may be represented in the database.

For example, a total of 668 unique serotypes are indexed in v0.3.0

of bettercallsal in the per_snp_cluster database, which includes

all possible foodborne serotypes, whereas ∼1,824 serotypes are

covered in the per_computed_serotype database. A MASH sketch

is created for each database type (Ondov et al., 2016). By default,

the bettercallsal workflow uses the per_snp_cluster database for

two reasons: the first being that the genome FASTA collection

covers all possible serotypes of relevance with respect to foodborne

illnesses, and the second being that the genome assemblies are

not as fragmented when compared to the per_computed_serotype

genome collection, where most of the antigen_formula in silico

predictions are incomplete due to fragmented genome assemblies.

However, the user has the ability to switch the database type. All

the bettercallsal analyses discussed herein were performed against

the PDG000000002.2537 release of the NCBI Pathogen Detection

Database for Salmonella.
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FIGURE 1

An overview of the “bettercallsal_db” and the main bettercallsal analysis workflow. First, the metadata for Salmonella is downloaded from the NCBI

Pathogen Detection project. In the next step, all the GenBank (GCA_) and RefSeq (GCF_) accessions are used to create an accession catalog to query

NCBI and to retrieve assembly statistics, such as contig N50 and sca�old N50. For the “per_snp_cluster” database, a single longest genome by N50

size is retained, and for the “per_computed_serotype” database, up to 10 longest genomes by N50 size are retained for each of the

“computed_serotypes,” as discussed in Materials and methods. Finally, for both database types, the contigs are joined by 10 N’s, and a MASH sketch is

created. Certain pre-formatted flat files were also created and used during the main analysis workflow.
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FIGURE 2

Performance of the bettercallsal workflow on the sal-abn simulated dataset shows that precision, recall, and accuracy increase with increasing read

depth. Beyond 9–10 million read depth (R1+R2), there are diminishing returns for MiSeq (2x300 bp) reads, while similar or better performance is

achieved between 16 and 20 million read depth (R1+R2) for NextSeq (2x150 bp) reads. The maximum precision, recall, and accuracy achieved were

96.1, 89.2, and 95.2% for 9M (R1 + R2) and 10M (R1 + R2) MiSeq reads compared to 100, 82.7, and 94.1% for 16M (R1+R2) NextSeq reads.

FIGURE 3

Performance of bettercallsal on simulated datasets with MiSeq (2x300 bp) or NextSeq (2x150 bp) error models. Salmonella genomes (n = 29) were

generated with an equal 5x coverage (sal-cov5x) and an unequal, i.e., between 1 and 5x coverage (sal-cov1-5x), along with bacterial and viral

genomes (n = 46 + 10), which were generated with coverage between 1 and 12x. The maximum precision, recall, and accuracy of 100, 93, and 97%

were achieved for the sal-cov5x MiSeq dataset compared to 100, 89.6, and 96.4% for the sal-cov5x NextSeq dataset. For the sal-cov1-5x MiSeq

dataset, the maximum precision, recall, and accuracy was 100, 82.7, and 94.1% compared to 100, 79.3, and 92.1%, for the sal-cov1-5x NextSeq

dataset.

Analysis workflow

A brief overview of the bettercallsal workflow, which is

written in Nextflow (Di Tommaso et al., 2017; Ewels et al.,

2020), is presented in Figure 1. The main analysis workflow is

a single-label metagenomic classification, wherein each genome

assembly/accession match is mapped to the corresponding pre-

indexedmetadata. bettercallsal identifies multi-serovar populations

in metagenomic and quasi-metagenomic sample datasets by first

incorporating genome filtering to remove very low abundance hits,

followed by read alignment and read counting to assign serotypes

for a given dataset. It relies on themetadata of the Salmonella isolate
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assemblies made available by the NCBI Pathogen Detection (PD)

project, which is continually updated based on the submission of

new isolates from several participating U.S. public health agencies

and international partners. If the input reads are paired-end, they

could be merged on overlap using BBMerge (Bushnell et al., 2017).

TABLE 2 Comparison of maximum achieved precision and recall on

simulated reads with 29 Salmonella serotypes (sal-abn, sal-cov5x, and

sal-cov1-5x) and various mixes (mix 1–mix 4) between bettercallsal and

the custom k-mer method.

Dataset bettercallsal Custom k-mer

sal-abn-MS 96.1%, 89.2% 87.5%, 72.4%

sal-abn-NS 100%, 82.7% 87.5%, 72.4%

sal-cov5x-MS 100%, 93.1% 87.5%, 72.4%

sal-cov5x-NS 100%, 89.6% 84.5%, 72.4%

sal-cov1-5x-MS 100%, 93.1% 87.5%, 72.4%

sal-cov1-5x-NS 100%, 79.3% 84.5%, 72.4%

mix1 to mix4-MS 100%, 100% 35.7%, 100%

mix1 to mix4-NS 100%, 100% 38.4%, 100%

The Illumina MiSeq simulated dataset is noted with the -MS suffix, while the NextSeq dataset

is noted with the -NS suffix.

The analysis starts with a “screen” command from MASH

(Ondov et al., 2019) to generate a list of genome matches based

on the fraction of bases shared between the genome sketch and

the sequencing read sketch for each sample dataset, which is then

sorted in descending order. Up to the top 10 unique MASH

“screen” hits are used to perform additional genome fraction

filtering with sourmash (Pierce et al., 2019), which is also used to

generate an average nucleotide identity (ANI) containment matrix.

Subsequently, an “on-the-fly” KMA (k-mer alignment; Clausen

et al., 2018) genome indexing and alignment is performed to

further refine the genome hits. The KMA results are used to

generate read counts with Salmon (Patro et al., 2017) in “−−meta”

mode. The above workflow is run in parallel for all samples,

the results are aggregated, and the serotype is assigned based on

the “computed_serotype” column associated with each genome

accession. All parameters of each tool are user-configurable via

command-line options, including the threshold for filtering the top

unique serotype hits after the MASH “screen” step (−−tuspy_n).

A brief MultiQC (Ewels et al., 2016) report is generated in the final

step of the workflow. The stand-aloneMultiQCHTML report (data

availability) contains multiple relevant sequence quality metrics

and visualizations, an ANI matrix between samples and genomes,

an aggregated results table of serotype calls with integrated

hyperlinks to the NCBI PD Isolates Browser, and a Salmon read

TABLE 3 Salmonella enterica serovars detected in papaya outbreak samples from Farm A by bettercallsal, xMAP, custom k-mer, SeqSero2, and Kallisto

analyses.

Papaya farm A
sample#

bettercallsal k-mer SeqSero2 Kallisto xMAP

1 No call Senftenberg No call No call Agona

2 Agona, Gaminara, Thompson, Senftenberg Agona, Senftenberg No call Agona, Thompson Senftenberg, Thompson

3 Agona, Kiambu, Senftenberg Agona, Senftenberg No call Agona Agona, Senftenberg

7 Barranquilla∗ , Gaminara, Senftenberg Senftenberg No call Gaminara Senftenberg

9 Senftenberg Senftenberg Senftenberg Senftenberg Senftenberg

14 Gaminara No call No call Gaminara Kiambu

15 Agona, Kiambu, Senftenberg Agona, Senftenberg Kiambu Agona Senftenberg

Luminex xMAP calls represent culture ground truth, but bettercallsal identified additional serotypes such as Agona, Gaminara, and Kiambu that were detected in samples 2, 7, and 15 when

compared to xMAP.
∗In the NCBI Pathogen Detector SNP Tree Viewer, the genome with serotype Barranquilla that our sample is closest to, clusters with isolates either deposited as or with the SeqSero

“computed_serotype” S. Gaminara.

TABLE 4 Salmonella enterica serovars detected in papaya outbreak samples from farm C by bettercallsal, xMAP, k-mer, Kallisto, and SeqSero2 analyses.

Papaya farm C sample# bettercallsal k-mer SeqSero2 Kallisto xMAP

2 No call No call No call No call No call

5 Newport Newport Infantis Newport Infantis, Newport

6 Infantis Infantis Infantis Infantis Infantis

7 Newport Newport Newport Newport Salmonella group

10 No call No call No call No call No call

11 Newport Newport No call Newport Salmonella group

12 No call No call No call No call No call

13 Newport Newport No call Newport Newport

k-mer analyses and Kallisto analyses also identified several other false-positive Salmonella serotypes. Luminex xMAP calls represent the ground truth of the culture.
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TABLE 5 Salmonella enterica serovars detected in a peach outbreak by bettercallsal, custom k-mer, and SeqSero2 analyses.

Sample bettercallsal k-mer SeqSero2 Kallisto

Spiked Peaches Gaminara Gaminara Gaminara No call

Leaves Alachua, Gaminara Gaminara Gaminara Gaminara

Un-spiked Peaches Alachua Alachua Alachua No call

Leaves Alachua Alachua No Call No call

TABLE 6 Run time comparison of the bettercallsal workflow with

SeqSero2 in minutes, using 10 CPU cores for each run.

mix1 to mix4 (simulated)

Sample bettercallsal SeqSero2
(sum)

SeqSero2
(avg)

sal-mix1 (3) 40 22.34 7.44

sal-mix2 (3) 40 22.31 7.43

sal-mix3 (3) 42 23.1 7.36

sal-mix4 (3) 42 20.02 6.67

Peach outbreak

All samples (12) 101 291.91 19.46

Papaya outbreak

All samples (38) 55 221.43 5.82

Each of the mix samples had three FASTQ input files for bettercallsal (R1+R2), whereas, for

SeqSero2, the input was three read pairs. The SeqSero2 jobs were all run in parallel for each

sample on the CFSAN HPC Raven2 cluster, and the “avg” column represents the actual time

for all computations to finish for SeqSero2 in a grid computing environment, while the “sum”

column represents a theoretical time if each of the SeqSero2 jobs were run sequentially one

after the other.

count plot showing the proportions of identified serotype(s) within

each sample. Most of the visualizations are interactive, and the

results tables can be downloaded. Additionally, the software version

of each tool used in each of the workflow steps is reported for

version control and the reproducibility of the results.

Custom k-mer analyses

The k-mer analysis of the sequencing datasets was conducted

using an in-house developed k-mer database. The general approach

to the development of the database has been described previously

(Leonard et al., 2015; Patro et al., 2016). Briefly, the bacterial

composition was determined from shotgun sequencing using

custom C++ programs developed to compile a k-mer signature

database containing multiple unique 30 bp k-mer sequences per

species and then identify each read in the input file using the

30 bp probes. For each bacterial species or subspecies, each non-

duplicated 30-mer from a reference whole genome sequence was

entered into a database. We removed all k-mers not found in

at least two-thirds of a set of additional genome sequences from

the same species, and we removed all k-mers found in genomes

from other species. The resulting k-mer database used in this study

contains 5,900 target entries, each consisting of ∼40,000 (range

44–80,000) unique k-mers. The database includes 1,100 different

bacterial genera and 3,500 species. Normalization was performed

to correct for bias due to the differing number of k-mers used

per database entry, and the results were tabulated as a percent

of identified reads (contribution to the microbial population of

identified species) for each database entry. Confirmation of low-

level species calls was performed by BLAST analysis of the reads.

Based on the hits and the number of unique k-mers identified per

taxon per sample, a threshold was set at 1% relative abundance. Any

hits to taxa with <1% relative abundance were grouped with other

genera with <1% relative abundance.

Comparative analyses

All analyses were performed on the CFSAN Raven2 High-

Performance Computing (HPC) Cluster, where each compute node

had 20 CPU cores with an Intel(R) Xeon(R) E5-2650 chipset

running at 2.30 GHz and a minimum of 120 GB memory. The

FASTQs generated at the time of the outbreak were currently

analyzed using bettercallsal, an in-house bacterial k-mer approach

(Patro et al., 2016), SeqSero2 (Zhang et al., 2019), and Kallisto (Bray

et al., 2016).

Prior to developing bettercallsal, we attempted to repurpose

the non-alignment-based RNA-seq tool, Kallisto (Bray et al.,

2016), as it has been previously reported as a potential candidate

for variant typing of mixed samples (Baaijens et al., 2022)

and had a high accuracy in identifying SARS-Cov2 variants

present in sewage-derived sample pools (Kayikcioglu et al., 2023).

Kallisto indexing was performed on the H and O antigen

sequences distributed by the SeqSero2 package version 1.2.1

(H_and_O_and_specific_genes.fasta) via Kallisto (version 0.48)

using default parameters. To obtain abundance estimates, we

classified the FASTQ files in a paired-end fashion against this index

using the default parameters and parsed the plain text output for

result aggregation and visualization.

Downstream data analysis and visualization of the bacterial

taxonomic profiles were carried out in RStudio (v.1.3.1093) using

the following R packages: ggplot2 (v3.4.1), dplyr (v1.1.0), reshape2

(1.4.4), ggh4x, and stringr (v1.5.0).

Metrics used to evaluate the performance
of bettercallsal

The accuracy and performance of bettercallsal were evaluated

using the precision and recall metrics (Wood and Salzberg, 2014;

McIntyre et al., 2017) on the simulated datasets. For this study,

we were primarily focused on accurately assigning the Salmonella

spp. serotype to each of the metagenomic or quasi-metagenomic

samples, and thus, for the simulated datasets, the “true positives”

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1200983
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Konganti et al. 10.3389/fmicb.2023.1200983

FIGURE 4

SNP cluster information and computed serotype information for the peach outbreak via external link from the bettercallsal result table of the HTML

report file to the NCBI pathogen detection website. The closest genome hit (red) reported by bettercallsal clustered with the same chicken isolate

genome reported in the FDA investigation of the peach outbreak (FDA, 2021).

FIGURE 5

External link from the bettercallsal results table of the HTML report file to the NCBI pathogen detection website, showing SNP cluster information

and computed serotype information for the papaya outbreak. The closest genome hits (red) reported by bettercallsal are the isolate genomes from

the outbreak investigation for both S. Newport and S. Senftenberg according to NCBI’s isolate SNP Tree Viewer.
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(TP) represented the proportion of the “ground truth” Salmonella

spp. serotypes that were expected to be identified, whereas the

“false positives” (FP) represented the proportion of Salmonella

serotypes that were incorrectly assigned to a different Salmonella

serotype. The number of “true negatives” (TN) in this case was

constant at 56, as these 46 non-Salmonella bacterial and 10 viral

and phage genomes were not present in the “bettercallsal_db,”

and thus, bettercallsal did not correctly identify any of these

microbial species. Finally, “false negatives” (FN) represented the

proportion of serotypes that were identified as absent (no call)

when they were supposed to be present (Supplementary Table 1).

The precision metric is synonymous with the positive predictive

value, i.e., the ability of the workflow to identify the “ground truth”

Salmonella spp. serotypes from a sample, whereas accuracy is a

measure of the total number of correct predictions (positive or

negative) over a total number of predictions. Recall, or sensitivity,

evaluates the ability of bettercallsal to minimize the cases of

“false negatives.”

For the custom k-mermethod, only precision and recall metrics

were calculated since the number of “true negatives” (TNs) was

not constant at 56, as the database sequences included many non-

Salmonella genera. It was also not feasible to calculate any metrics

for SeqSero2 and Kallisto runs on any of the simulated datasets

because SeqSero2, by design, did not call multiple serotypes in

any of the simulated scenarios. For Kallisto, owing to the nature

of the database composition using O-group and H1 and H2 gene

sequences, the results were hits or abundances to independent O

and H sequences rather than actual serotype calls, but the number

of positive hits was counted based on the hits to the FASTA

identifier of the O and H genes.

Papaya outbreak samples

In 2017, the FDA investigated a multistate outbreak involving

Maradol papayas (Whitney et al., 2021). A total of 15 papaya

fruits from Farm A and Farm C were analyzed for Salmonella

using the following metagenomic methods. Farm A papaya

fruits were all aerobically enriched in modified buffer peptone

water [mBPW FDA Bacteriological Analytical Manual (BAM)

broth M192b] for 24 h at 35◦C and then transferred to

Rappaport-Vassiliadis (RV; BAM broth M132), tetrathionate (TT;

BAM broth M145) broths for selective enrichment. Selective

enrichment of Farm A papayas was analyzed using shotgun

metagenomic profiling. Farm C papayas were aerobically pre-

enriched in mBPW at 35◦C or anaerobically at 42◦C in

tryptone broth (BAM medium M136), supplemented with 5mM

glutathione and 0.35mM tetrathionate, followed by aerobic

selective enrichment in RV at 42◦C and modified tetrathionate

(mTT; TT lacking brilliant green with 1% I2 KI) broth at 43◦C

for 24 h. DNA was extracted using the Qiagen DNeasy Blood

and Tissue Kit according to the manufacturer’s instructions for

pre-enrichment broth and selective enrichment broth. Shotgun

metagenomic profiling was performed on culture enrichments as

described below.

All selective enrichments were also plated on xylose-lysine

deoxycholate (XLD), Hektoen enteric agar (HE), and bismuth

sulfite (BS) agars for Salmonella isolation. Presumptive-positive

Salmonella was re-streaked on trypticase soy agar (TSA) and

further confirmed on a Vitek MS microbial identification system

(bioMérieux, Durham, NC, USA). Confirmed Salmonella isolates

from selected Farm C samples were serotyped using the Luminex

xMAP Salmonella Serotyping Assay (Luminex, Madison, WI,

USA). Briefly, DNA was extracted from 20 confirmed isolates per

sample using the Bio-Rad InstaGene matrix (Bio-Rad, Hercules,

CA, USA), and serotype identification were determined following

previously published protocols (Fitzgerald et al., 2007; McQuiston

et al., 2011).

Peach outbreak samples

In 2020, the FDA investigated an outbreak of Salmonella

Enteritidis infections linked to the consumption of peaches (FDA,

2021). Peach fruits and leaves from an implicated field were

weighed and combined with a universal pre-enrichment broth

(UPB; BAM broth M188) at a ratio of 1:9 (w:v), or more to

fully submerge the leaves. Fruit and leaves were sonicated with

an output setting of 112W for 60 s at room temperature. There

is not a validated BAM method for tree leaves or peaches with a

sonication step, so a green fluorescent protein (GFP)-tagged strain

of S. Gaminara (GPF SAL 5695) was inoculated into one peach and

one leaf matrix sample at an inoculum level of 30 cells or less per

sample as a process and matrix control. After sonication, the broth

was aseptically transferred to a newWhirl-Pak
R©
bag and incubated

overnight at 35◦C. RV and TT media were inoculated and

incubated at 42◦C for 24 h. All selective enrichments were plated on

xylose-lysine-tergitol 4 (XLT-4), Hektoen enteric agar with 5 ug/ml

novobiocin (HE+N), and BS agars for Salmonella isolation. DNA

extraction from primary enrichments and selective enrichments

was conducted using the Promega Maxwell
R©

RSC Cultured

Cells DNA Kit (Promega, WI, USA, AS1620) according to the

manufacturer’s specifications on the Promega Maxwell
R©

RSC 48

instrument. Shotgun metagenomic profiling was performed on the

DNA extracted from the selective enrichments as described below.

Sequencing library preparation

Quasi-metagenomic DNA libraries were prepared for papaya

sample enrichment during the 2017 outbreak investigation using

the Nextera XT Library Prep according to the manufacturer’s

specifications (Illumina, CA, USA). Sequencing was performed

on the NextSeq 550 system with 2 × 150 cycles using the

NextSeq 500/550 v2.5 High Output Kit (150 cycles). Libraries were

diluted to 1.8 pM according to the manufacturer’s specifications

(NextSeq Denature and Dilute Libraries Guide). Papaya samples

were sequenced at a minimum and maximum read depths of 1.9

million and 46 million paired-end reads, respectively.

Quasi-metagenomic DNA libraries were prepared during the

2020 outbreak investigation for peach sample enrichment using

the Illumina DNA prep method according to the manufacturer’s

specifications (Illumina, CA, USA). Sequencing was performed on

the NextSeq 550 system at 2× 150 cycles using the NextSeq 500/550
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v2.5 High Output Kit (150 Cycles). Libraries were diluted to 1.8 pM

according to the manufacturer’s specifications (NextSeq Denature

and Dilute Libraries Guide). The minimum read depth achieved

for the peach datasets was 12 million paired-end reads, and the

maximum read depth was 40 million paired-end reads.

Data availability

All data are publicly available at NCBI associated with

BioProject PRJNA952520. The download URLs for the simulated

Illumina reads are provided in Supplementary Table 1. The final

MultiQC HTML reports generated for the papaya and peach

outbreaks discussed in this study are available at: https://research.f

oodsafetyrisk.org/bettercallsal/manuscript/papaya_outbreak_resul

ts.html and https://research.foodsafetyrisk.org/bettercallsal/manus

cript/peach_outbreak_results.html, respectively.

Results

bettercallsal consistently assigns the
correct serotype in simulated datasets

MiSeq simulated reads
In silico dataset analyses revealed that precision, recall, and

accuracy increase with increased read depth, and beyond the

depth of 5 million read pairs for MiSeq (2x300 bp) and 10

million read pairs for NextSeq (2x150 bp), diminishing returns

were observed (Figures 2, 3, Supplementary Table 1) in all of the

simulated read set scenarios (sal-abn, sal-cov5x, sal-cov1-5x, and

mix1 to mix4). When we attempted bettercallsal on paired-end

datasets by merging the read pairs on overlap, we observed that

these merged datasets performed poorly when compared to single-

end or concatenated (R1+R2) datasets because only ∼25–50% of

read pairs were merged successfully on overlap. We suspect that

this is due to the stochastic nature of the insert size in paired-

end data causing read information loss during merging (Sahlin

et al., 2015), whereas we observed that concatenating the R1 and R2

paired-end sequencing files and running bettercallsal data yielded

superior results.

For the sal-abn dataset, which was generated using InSilicoSeq

(Gourle et al., 2019) with a log-normal abundance distribution,

bettercallsal achieved precision, recall, and accuracy of 83, 80, and

89% for single-end reads at 5 million read depth (R1), whereas

precision, recall, and accuracy of 100, 93, and 98% were observed

for the concatenated (R1+R2) reads at 10 million read depth

(Figure 2, Supplementary Table 1). For the sal-cov5x dataset, we

observed the maximum precision, recall, and accuracy of 100, 93,

and 98% for R1+R2 reads compared to that of 100, 83, and 94% for

the sal-cov1-5x dataset (Figure 3, Supplementary Table 1).

The mix1 to mix4 simulated datasets contained 3–5 unique

Salmonella spp. serotypes and the rest of the non-Salmonella

microbial genome assemblies (n= 46+ 10; Materials andmethods,

Table 1, and Supplementary Table 1). Here, bettercallsal achieved a

maximum precision and recall of 100% at 10 million read depths

(R1+R2) in all mixes except for mix2, where the maximum recall

was 80%. In the mix2 dataset, bettercallsal failed to consistently

identify Salmonella serotype Sandiego at 0.0045 relative abundance

at any read depth (Supplementary Table 1).

NextSeq simulated reads
bettercallsal performed similarly or better on NextSeq

simulated datasets, albeit at a higher read depth. This can be

attributed to the shorter read lengths due to the sequencing

chemistry used on the NextSeq instruments. For the sal-abn

dataset, the maximum observed precision, recall, and accuracy

were 100, 83, and 94%, respectively, at a read depth of 16 million

(R1+R2), compared to 96, 80, and 95% at a read depth of 10million

(R1+R2) for MiSeq (Figure 2, Supplementary Table 1). For the

sal-cov5x and sal-cov1-5x datasets, precision, recall, and accuracy

were 100, 80, 93%, and 100, 90, and 96%, respectively (Figure 3,

Supplementary Table 1). In the case of the simulated mix1 to mix4

datasets, similar to MiSeq, we observed that bettercallsal failed

to identify the serotype Salmonella Sandiego in the mix2 dataset,

resulting in a maximum precision, recall, and accuracy of 100, 88,

and 98%, respectively, for this dataset (Supplementary Table 1).

Evaluating bettercallsal against
custom-built k-mer tool, SeqSero2, and
Kallisto

The simulated run analyses revealed that bettercallsal performs

consistently in calling Salmonella serotypes across multiple

Illumina sequencing platforms. For the custom k-mer analyses, we

used the relative abundance cutoff of >1% to gather hits for each

input dataset in a paired-end mode based on our previous study

(Leonard et al., 2015; Patro et al., 2016) and aggregated the results

across all simulated Illumina read sets (Supplementary Table 2).

bettercallsal outperformed the custom k-mer analysis method in

all of the simulated scenarios (sal-abn, sal-cov5x, sal-cov1-5x, and

mix1 to mix4), where the later achieved the highest precision and

recall of 88 and 72%, respectively (Table 2, Supplementary Table 2).

When SeqSero2 was run in the paired-end mode on all simulated

datasets, it was reported as detecting the co-existence of multiple

serotypes and generating an antigen allele FASTA, but it only

called the antigen formula based on the abundance of O, H1, and

H2 hits. Similarly, when considering Kallisto’s reported estimated

abundances>0 for the sal-abn, sal-cov5x, and sal-cov1-5x datasets,

it correctly identified 22 out of 29 simulated Salmonella spp.

serotypes in both MiSeq and NextSeq datasets compared to 28 out

of 29 for bettercallsal, whereas in the mix1 to mix4 datasets, it failed

to correctly identify all of the simulated serotypes inmix 2 (n= 3/5)

andmix4 (n= 2/2) except mix1 andmix4 (Supplementary Table 2).

bettercallsal identifies multi-serovar
mixtures in outbreak samples

Papaya outbreak
During the 2017 papaya outbreak, the FDA Office of

Coordinated Outbreak Response and Evaluation team initially

reported Salmonella enterica serotypes Agona, Gaminara, Infantis,
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Kiambu, Newport, Thompson, and Senftenberg associated with

papayas as determined by regulatory microbiological testing, from

the same two farm sources (Farms A and C), which we evaluated

using metagenomic sequencing (Hassan et al., 2019; Whitney

et al., 2021). Five Salmonella serotypes (Agona, Kiambu, Gaminara,

Senftenberg, and Thompson) were identified in these regulatory

samples of papayas originating from Farm A (Whitney et al., 2021).

For Farm C papaya samples, FDA regulatory sampling identified

Salmonella enterica serotypes Newport and Infantis. The particular

strain of S. Newport is very rare and was last observed in PulseNet

in 2006, and the isolated strain of S. Infantis was new to the database

and had not been reported prior to the summer of 2017 (Hassan

et al., 2019). These regulatory results serve as our “ground truth”

for the evaluation of bettercallsal and comparative methods.

In the quasi-metagenomic profiles of the Farm A RV and

TT selective enrichments, bettercallsal was able to identify all

five serotypes identified in the initial investigation. At least one

and up to four serotypes in a single sample were identified with

bettercallsal in six of seven papayas (samples 2, 3, 7, 15), and no

serotype was called in sample 1 (Table 3). In sample 7, bettercallsal

identified an additional serotype, S. enterica ser. Barranquilla,

which was not identified by Hassan et al. (2019) or Whitney et al.

(2021), but in the NCBI Pathogen Detection SNP Tree Viewer, the

sequence with serotype Barranquilla in our sample was closest to,

clusters with sequences either deposited as or having the SeqSero2

“computed_serotype” S. Gaminara.

In comparison, the Luminex xMAP assay identified four

of the five serotypes identified in the regulatory investigation

and multiple serotypes (S. Thompson and S. Senftenberg) in

samples 2 and 3 (Table 3). The custom k-mer analysis identified

serotypes Agona and Senftenberg in samples 2, 3, and 15 and only

Senftenberg in samples 1, 7, and 9 (Table 3). SeqSero2 identified

two serotypes, S. Senftenberg in sample 9 and S. Kiambu in sample

15. Kallisto identified the serotypes Agona in samples 2, 3, and

15 and Senftenberg in sample 9. S. Gaminara was identified in

samples 7 and 14, and S. Thompson was identified in sample

2 (Table 3, Supplementary Table 2). Kallisto also identified several

other serotypes that are false positives (Supplementary Table 2).

In the Farm C pre-enrichment and selective enrichment,

bettercallsal identified a single serotype per sample in five out

of eight samples. The serotypes identified, S. Newport (samples

5, 7, 11, and 13) and S. Infantis (sample 6; Table 4), agree with

the findings of the regulatory investigation, and even the genome

assembly hit reported most closely matched the WGS assembly of

the isolate from the regulatory outbreak investigation, as evidenced

by SNP clustering to the NCBI PD.

The Luminex xMAP assay identified the serotype S. Newport

in samples 5 and 13 and serotype S. Infantis in samples 5 and

6. Samples 7 and 11 were identified as Salmonella only (Table 4).

The custom k-mer analysis identified S. Newport in samples 5,

7, 11, and 13 and S. Infantis in sample 6 (Table 4). The k-mer

analysis also identified Salmonella or Salmonella enterica in samples

5, 6, 7, 11, and 13 (Table 4). SeqSero2 identified S. Infantis in

samples 5 and 6 and S. Newport in sample 7 (Table 4). Kallisto

identified serotype Newport in samples 5, 7, 11, and 13 (Table 4,

Supplementary Table 2). Kallisto also identified serotype Infantis in

sample 6. None of the methods detected Salmonella in samples 2,

10, and 12 from Farm C.

Peach outbreak
Based on the historical outbreak data, this multistate

outbreak involving peaches appears to represent a novel

commodity/pathogen pair. As noted in the Methods section,

some samples were spiked with GFP-labeled S. Gaminara, and

regulatory investigation samples identified S. Alachua linked to

isolates from poultry collected in 2019 and 2020 (FDA, 2021).

bettercallsal identified S. Gaminara in all GFP-labeled

Gaminara-spiked enrichments of peach samples (Table 5). The

serotypes Alachua and Gaminara were identified in the GFP-

labeled Gaminara-spiked leaf samples. bettercallsal identified the

serotype Alachua in all enrichments of the un-spiked peach and

leaf samples. The genome hit reported by bettercallsal clustered

with the genome of the chicken isolates reported by the FDA

investigation (FDA, 2021) of the peach outbreak (Figure 4).

Pre- and selective enrichment k-mer analysis of peaches

and leaves identified the spiked GFP-labeled S. Gaminara and

S. enterica serotype Alachua (Table 5, Supplementary Table 2).

SeqSero2 identified S. Gaminara in both spiked peaches and leaves

and S. Alachua in un-spiked peaches (Table 5). Kallisto abundance

analysis on this sample set correctly identified the O and H

(fliC and fljB) antigen profiles and identified S. Gaminara in the

leaves (Table 5, Supplementary Table 2). However, these antigen

identifications were not able to reconstruct the antigenic formula

of the expected serovar(s).

Workflow output

The bettercallsal pipeline runs primarily on the command

line on UNIX-based machines. The pipeline takes as input a

POSIX (or full) path to a folder containing FASTQ files. Successful

execution of the workflow produces various output files, but,

in general, each process within the workflow produces its own

output, which is stored inside a folder named after the process

name. The workflow generates a brief MultiQC (Ewels et al., 2016)

HTML report at the end, which shows a table of results, with

each row representing a sample and each column representing

an identified serotype (Data availability). For each sample where

no serotype is identified, a “−” value is used. The HTML report

also displays a horizontal bar plot of read counts per “serotype”

(Data availability). All the result tables and plots from the HTML

report can be easily exported and saved (see the Data availability

section for hyperlinks to MultiQC papaya and peach outbreak

HTML reports).

Computational resource requirements

Written in Nextflow, the bettercallsal and “bettercallsal_db”

workflows readily provide inherent advantages such as process

parallelization and process retry on failure. The database workflow

(“bettercallsal_db”) finishes in approximately an hour with a

minimum required memory of 16 GB and 8 CPU cores. Since

the penultimate step of the workflow generates more than 200

individual genome scaffolding jobs, it is recommended to run

the database workflow in a grid computing infrastructure or a
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similar setting where many processes can be queued up in parallel

for execution.

The main bettercallsal workflow requires a minimum of 10

CPU cores and 16 GB to run all the workflow steps successfully.

The minimum CPU core requirements can be easily modified by

users by adjusting the −−max_cpus parameter. It would not be a

fair comparison to evaluate Nextflow-based workflows with other

established serotyping tools, such as SeqSero2, in terms of run times

and memory, as the approach of setting up individual analysis steps

in Nextflow workflows follows a completely different data flow

philosophy. Nevertheless, Table 6 shows a bird’s-eye view of the

run time comparison with SeqSero2. All SeqSero2 analyses were

run using 10 CPU cores. Both bettercallsal and SeqSero2 consume

similar amounts of memory on all tested datasets. The increase in

memory consumption with bettercallsal on the papaya outbreak

datasets can be attributed to the FASTQC process, with the other

main processes, such as kma, sourmash, and salmon, consuming

between 1 and 2 GB (Supplementary Table 1). Gathering the run

time for each of the input FASTQ datasets with bettercallsal will

not be accurate as some variables are involved while running the

Nextflowworkflows, including the availability of the computational

resources in a grid computing environment. However, bettercallsal

completed the run in ∼40min when tested on all the simulated

datasets as input, while SeqSero2, on average, took 6–7min per

sample (Table 6). On real outbreak datasets, such as the papaya and

peach outbreak data, bettercallsal took 55 and 101min, respectively,

for all sample datasets (38 for papaya and 12 for peach), and

SeqSero2 took an average of 5min and 19min per sample dataset,

respectively (Supplementary Table 1).

Discussion

We developed a new workflow called bettercallsal that can

consistently and accurately identify Salmonella spp. serotypes

from metagenomic or quasi-metagenomic samples. The workflow

complements the abilities of the existing in silico protocols for

Salmonella serotyping, such as SeqSero2, whose contributions

are indirectly built into our workflows via the NCBI Pathogen

Detection Project.

bettercallsal outperformed other data analysis approaches, i.e.,

custom k-mer analysis, SeqSero2, and Kallisto, for multiple serovar

detection in both in silico and outbreak metagenomic datasets.

The workflow can accommodate a wide variety of sequencing

variations such as, data from a different sequencing center, different

sequencing depths, etc. Furthermore, the traceback utility of

bettercallsal was demonstrated in the papaya outbreak samples,

where all the SNP cluster IDs for samples identified with serotypes

Newport and Senftenberg clustered with the 2017 papaya outbreak

isolates (Figure 5).

bettercallsal was developed for metagenomic datasets but works

equally well on WGS isolate data. The advantage of bettercallsal

on metagenomic data is that it works by teasing apart shared

genome fractions in each sample using DNA sketching tools

such as MASH and sourmash. Most of the main workflow

parameters of bettercallsal are user-configurable, which can be used

to accommodate the many variations of sequencing datasets and

their corresponding read depths. For example, by default, up to

10 unique serotypes are retained after the MASH “screen” step

(−−tuspy_n 10), which can be increased or decreased. The default

parameter to filter out sequences that do not share up to a 10%

coverage match with the genome hits (−−sfhpy_fcv 0.1) can also

be tuned to remove these genomes from subsequent processing.

In the in silico datasets, Salmonella Sandiego (antigen formula

= 4:e,h:e,n,z15) was consistentlymisidentified as Duisburg (antigen

formula = 4:d:e,n,z15) or Nottingham (antigen formula =

16:d:e,n,z15) because of its high genomic similarity. Similarly, when

the bettercallsal workflow was run on the datasets from outbreak

samples, some serotypes sharing >99.99% average nucleotide

identity were misidentified. For example, in the papaya outbreak

enrichments from Farm A, papaya 7, the serovar Barranquilla

(antigen formula = 16:d:e,n,x) was identified (Table 3; Data

availability), when the call should have been Gaminara (antigen

formula = 16:d:1,7). We consider Gaminara to be the correct

call for several reasons. For one, the genome hit for this

sample clustered with other sequences deposited as or having

the “computed_serotype” of Gaminara. More technically, the top

unique serovar hits for each sample from the MASH “screen” run

from the bettercallsal workflow are ordered in descending order by

the similarity of the reference genome “contained” in the sample

FASTQ (Ondov et al., 2016). Even though the top “hit” from the

screening step identifies the expected call, when we attempted

to further filter down the genome hits using the genome match

fraction with sourmash, we observed some misclassifications. This

may be due to the highly redundant nature of the genome sequence

content of Salmonella spp. assemblies. To date, we have only

observed the serovars Gaminara and Sandiego being misclassified

by bettercallsal. We are constantly working toward increasing

the precision of bettercallsal by testing it on various benchmark

cocktails of multiple Salmonella serotypes, including different

variations of bioinformatics approaches.

The analysis workflows of bettercallsal and SeqSero2 each

have their unique strengths. SeqSero2 is more accurate on WGS

isolate datasets as it tends to identify each of the abundant O, H1,

and H2 genes and computes the Salmonella spp. serotype based

on the White-Kauffmann-Le Minor scheme (Grimont and Weill,

2007). Similarly, the Luminex xMAP assay is also only accurate for

individual Salmonella isolates. Althoughmultiple O andH antigens

can be detected in a mixed sample, the assay does not identify

which H antigens correspond to each O group present, increasing

the likelihood of misidentification when multiple serotypes are

present. Kallisto analysis resulted in false positives in all of these

sample sets. Historically, k-mer analysis has been the go-to method

for taxa profiling in metagenomic analyses in our laboratories. As

observed in our results, the k-mer analysis tool was not able to

detect most or all of the serovars that were part of the outbreak,

and the same happened in the simulated datasets. Ultimately,

in the in silico and real-world outbreak datasets we analyzed,

bettercallsal outperformed other common methods for Salmonella

spp. serotyping.

Conclusion

The application of high-throughput genomic sequencing for

the rapid identification and surveillance of foodborne pathogens
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has currently become commonplace in public health systems. We

have demonstrated that shotgun metagenomic sequencing of pre-

enrichment and selective enrichments (quasi-metagenomic), along

with a precision analysis tool such as bettercallsal, facilitates the

identification of multiple Salmonella serotypes and can provide

traceback utility equivalent to isolate WGS.

To our knowledge, bettercallsal is one of the first analysis

tools with the potential to identify multiple Salmonella spp.

serotypes from a metagenomic or quasi-metagenomic dataset

with high accuracy and can provide rapid insights into the

distribution, transmission, and source tracking of a foodborne

pathogen. The use of Nextflow as a workflow language enables

the reproducibility of the results along with platform-agnostic

process execution and an easy-to-share brief run report. Further

studies are needed to ascertain confidence in the detection of the

totality of Salmonella spp. serotypes, including the ability to work

with long-read metagenomic datasets along with de novo genome

clustering analysis.
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