AUTHOR=Gao Jianing , Uwiringiyimana Ernest , Zhang Dan TITLE=Microbial composition and diversity of the tobacco leaf phyllosphere during plant development JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1199241 DOI=10.3389/fmicb.2023.1199241 ISSN=1664-302X ABSTRACT=

Phyllosphere-associated microorganisms affect host plant’s nutrients availability, its growth and ecological functions. Tobacco leaves provide a wide-area habitat for microbial life. Previous studies have mainly focused on phyllosphere microbiota at one time point of tobacco growth process, but more is unknown about dynamic changes in phyllospheric microbial composition from earlier to the late stage of plant development. In the current study, we had determined the bacterial and fungal communities succession of tobacco growth stages (i.e., seedling, squaring, and maturing) by using both 16S rRNA sequencing for bacterial and ITS sequencing for fungi. Our results demonstrated that among tobacco growth stages, the phyllospheric bacterial communities went through more distinct succession than the fungal communities did. Proteobacteria and Actinobacteria exerted the most influence in tobacco development from seedling to squaring stages. At maturing stage, Proteobacteria and Actinobacteria dominance was gradually replaced by Firmicutes and Bacteroidetes. Network analysis revealed that Proteobacteria, as the core phyllospheric microbia, played essential role in stabilizing the whole bacterial network during tobacco development, and consequently rendered it to more profound ecological functions. During tobacco development, the contents of leaf sugar, nicotine, nitrogen and potassium were significantly correlated with either bacterial or fungal communities, and these abiotic factors accounted for 39.3 and 51.5% of the total variation, respectively. We overall evinced that the development of tobacco phyllosphere is accompanied by variant dynamics of phyllospheric microbial community.