AUTHOR=Jaussi Marion , Jørgensen Bo Barker , Kjeldsen Kasper U. , Lomstein Bente A. , Pearce Christof , Seidenkantz Marit-Solveig , Røy Hans TITLE=Cell-specific rates of sulfate reduction and fermentation in the sub-seafloor biosphere JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1198664 DOI=10.3389/fmicb.2023.1198664 ISSN=1664-302X ABSTRACT=
Microorganisms in subsurface sediments live from recalcitrant organic matter deposited thousands or millions of years ago. Their catabolic activities are low, but the deep biosphere is of global importance due to its volume. The stability of deeply buried sediments provides a natural laboratory where prokaryotic communities that live in steady state with their environments can be studied over long time scales. We tested if a balance is established between the flow of energy, the microbial community size, and the basal power requirement needed to maintain cells in sediments buried meters below the sea floor. We measured rates of carbon oxidation by sulfate reduction and counted the microbial cells throughout ten carefully selected sediment cores with ages from years to millions of years. The rates of carbon oxidation were converted to power (J s−1 i.e., Watt) using the Gibbs free energy of the anaerobic oxidation of complex organic carbon. We separated energy dissipation by fermentation from sulfate reduction. Similarly, we separated the community into sulfate reducers and non-sulfate reducers based on the