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Sub-MIC antibiotics influence the 
microbiome, resistome and 
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The effects of sub-minimum inhibitory concentrations (sub-MICs) of antibiotics on 
aquatic environments is not yet fully understood. Here, we  explore these effects 
by employing a replicated microcosm system fed with river water where biofilm 
communities were continuously exposed over an eight-week period to sub-MIC 
exposure (1/10, 1/50, and 1/100 MIC) to a mix of common antibiotics (ciprofloxacin, 
streptomycin, and oxytetracycline). Biofilms were examined using a structure–function 
approach entailing microscopy and metagenomic techniques, revealing details on the 
microbiome, resistome, virulome, and functional prediction. A comparison of three 
commonly used microbiome and resistome databases was also performed. Differences 
in biofilm architecture were observed between sub-MIC antibiotic treatments, with 
an overall reduction of extracellular polymeric substances and autotroph (algal and 
cyanobacteria) and protozoan biomass, particularly at the 1/10 sub-MIC condition. 
While metagenomic analyses demonstrated that microbial diversity was lowest at 
the sub-MIC 1/10 antibiotic treatment, resistome diversity was highest at sub-MIC 
1/50. This study also notes the importance of benchmarking analysis tools and 
careful selection of reference databases, given the disparity in detected antimicrobial 
resistance genes (ARGs) identity and abundance across methods. Ultimately, the most 
detected ARGs in sub-MICs exposed biofilms were those that conferred resistance 
to aminoglycosides, tetracyclines, β-lactams, sulfonamides, and trimethoprim. Co-
occurrence of microbiome and resistome features consistently showed a relationship 
between Proteobacteria genera and aminoglycoside ARGs. Our results support the 
hypothesis that constant exposure to sub-MICs antibiotics facilitate the transmission 
and promote prevalence of antibiotic resistance in riverine biofilms communities, and 
additionally shift overall microbial community metabolic function.
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1. Introduction

Over the last decade, many studies have examined anthropogenic systems with high rates 
of antibiotic resistance events, colloquially-known as “Antimicrobial resistance (AMR) hotspots” 
(Karkman et al., 2018; Kraemer et al., 2019; Kunhikannan et al., 2021; Yadav and Kapley, 2021). 
Monitoring these hotspots (i.e., clinical settings, wastewater treatment plants, and pharmaceutical 
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manufacturing plants) is critical to understand mechanisms of 
acquired resistance and the prevalence, maintenance, and transmission 
risk of pathogenic bacteria. The linkage between AMR hotspots and 
increased dissemination of antimicrobial resistance genes (ARGs) and 
bacteria (ARB) is clear (Munk et al., 2022); however, relatively little is 
known of AMR abundance and dynamics downstream of hotspots 
where sub-minimum inhibitory concentration (sub-MIC) of 
antibiotics may still exert selective pressure on environmental 
microbiomes (Ebmeyer et al., 2021).

Exposure to sub-MICs of antibiotics have been shown to promote 
the upregulation of mutagenesis and DNA transfer events which can 
lead organisms within a mixed community to acquire ARGs (Chow 
et al., 2021). There is evidence that sub-MICs of antibiotics induce the 
expression of genes coding for virulence factors (Laureti et al., 2013) 
which can proliferate via horizontal gene transfer (HGT) mechanisms. 
HGT events themselves, along with associated integron and 
transposon recombination, have been shown to be  induced or 
mediated by the bacterial SOS response (Baharoglu et  al., 2010). 
Indeed, sub-MICs levels of aminoglycosides, fluoroquinolones and 
β-lactams have reported to directly increase mutation and conjugation 
rates via the SOS response in Escherichia coli, Staphylococcus aureus, 
and Vibrio cholerae (Baharoglu et  al., 2013; Andersson and 
Hughes, 2014).

To date, most studies examining sub-MICs effects on 
microorganism behavior have focused on single-species of 
pathogenic bacteria, or at best, the same family of bacteria (Davies 
et  al., 2006; Laureti et  al., 2013; Abe et  al., 2020). Multispecies 
experimental data is scarce, but recently, studies have surveyed 
antibiotic concentrations in environmental microbiomes and their 
relation to AMR (Danner et al., 2019; Chow et al., 2021; Sanchez-Cid 
et al., 2022). In freshwater aquatic systems, which are the primary 
receiving environments of wastewater treatment plants (WWTP) 
discharge and agricultural run-off, biofilm communities are 
abundant. Biofilms are known to support the maintenance and 
dissemination of antibiotic resistance mechanisms, genes and a 
diversity of organisms (Abe et  al., 2020). The physical nature of 
biofilm architecture and lifecycle confer considerable protection from 
surrounding chemical stressors because of the production of 
extracellular polymeric substances (EPS). This EPS matrix, and the 
close proximity of constituent microorganisms, allows for adaptive 
tolerance mechanisms to be supported as well as the inter-organism 
exchange of genetic material by various means (Flemming et  al., 
2022). Thus, naturally occurring aquatic biofilms could act as 
potential reservoirs and maintenance environments of AMR in a 
myriad of conditions (Balcázar et al., 2015; Guo et al., 2018; Flores-
Vargas et  al., 2021; Matviichuk et  al., 2022). Studies examining 
biofilms response to high concentrations of antibiotics have often 
focused on microbial communities in close proximity to WWTP 
effluents (Aubertheau et al., 2017; Lépesová et al., 2018; Chonova 
et  al., 2019; Maestre-Carballa et  al., 2019; Petrovich et  al., 2019; 
Matviichuk et al., 2022). However, a clear understanding of biofilm 
community response to constant, sub-MICs of antibiotics and their 
role in promoting or maintaining AMR in supposed “non-impacted” 
environments is still lacking (Cairns et al., 2018). Whole community 
metagenomic analysis provides for necessary data to understand the 
transfer and prevalence of AMR in the environment, which are 
fundamental dynamics aimed to perform future environmental risk 
assessments. To determine the potential risk that low antibiotic 

concentrations present in aquatic biofilm systems, the range of 
antibiotic concentrations that have an effect in shaping naturally 
occurring microbial communities must be  defined, as must the 
response of the communities’ tendency to the disseminate ARGs and 
ARB. Herein we characterize the response of natural riverine biofilm 
communities under selective presence of various sub-MIC antibiotics 
using metagenomic sequencing and biofilm architecture analysis, to 
determine whether exposure influences both community structure 
and function, and the abundance of ARGs and AMR-related functions.

2. Materials and methods

2.1. Experimental design

Microcosm experiments for biofilm development were performed 
in rotating annular bioreactor (RAB) systems which have been 
previously described in detail (Lawrence et al., 2000, 2004). Natural 
river water from the South Saskatchewan River (Saskatoon, Canada) 
was collected weekly and used as inoculum to establish the microbial 
biofilms, and as a source of carbon and nutrients for biofilm growth 
and development. Physicochemical parameters of the South 
Saskatchewan River were previously described (Lawrence et  al., 
2007a); where water was collected within city limits, yet upstream of 
both the municipal WWTP facility and sources of agricultural 
discharges. River biofilms were provided a one-week establishment 
phase without antibiotics to initiate growth on the surface of the 12 
removable polycarbonate strips (1 × 11 cm) within each RAB. The 12 
RABs were run in parallel, and each treatment was replicated (n = 3). 
RAB dose treatments were provided by the direct and constant 
addition of an antibiotic cocktail of three commonly used antibiotics 
from different drug classes at sub-MIC dosages of 1/10, 1/50, and 
1/100 their respective MIC level, resulting in μg/L levels within the 
RAB system. Antibiotics concentration and degradation within the 
RAB system were not assessed after their addition.

MIC values for the biofilm communities were determined based 
on breakpoint reports of EUCAST (European Committee on 
Antimicrobial Testing EUCAST) and CLSI (Clinical Laboratory 
Standards Institute; CLSI, 2018; EUCAST, 2019): ciprofloxacin (MIC 
0.5 mg/L; 1/10: 50 μg/L, 1/50: 10 μg/L, 1/100: 5 μg/L), streptomycin 
(MIC 512 mg/L 1/10: 51,200 μg/L, 1/50: 10,240 μg/L, 1/100: 5120 μg/L), 
and oxytetracycline (MIC 125 mg/L 1/10: 12,500 μg/L, 1/50: 
2,500 μg/L, 1/100: 1,250 μg/L) were used in this study 
(Supplementary Table S1). The selection of these three antibiotic drug 
classes was based on the list of antimicrobial susceptibility surveillance 
criteria by the WHO, where streptomycin and ciprofloxacin are listed 
as critically important and oxytetracycline is considered as highly 
important (WHO, 2017). Additionally, ciprofloxacin is an antibiotic 
routinely found in WWTP discharge; and oxytetracycline and 
streptomycin are broad-spectrum antibiotics widely used in Canadian 
and global livestock operations (Kraemer et al., 2019).

Control RABs were operated with river water alone. Biofilms were 
grown under treatment and control conditions for 8 weeks following 
a one-week establishment period, after which strips were removed 
from each RAB, immediately frozen and stored at −80°C for 
subsequent molecular analyses. All analyses (see below) were 
conducted on subsamples from randomly selected biofilm strips from 
each RAB replicate.
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2.2. Microscopic analysis

2.2.1. Confocal laser scanning microscopy
Coupon pieces of 1 cm2 were excised from a randomly selected 

strip of each RAB and stained (below) prior to observation using a 
Confocal Laser Scanning Microscope Nikon Eclipse LV 110 DU and 
C2 camera with water-immersible lenses (10×, 40×, 60×; Nikon, 
Chiyoda, Tokyo, Japan). Biofilm architecture was quantified using a 
three-channel procedure (Neu et al., 2001; Dynes et al., 2006), where 
signals at green (excitation 488 nm, emission 522/32 nm), red 
(excitation 568 nm, emission 605/32 nm) and far-red channels 
(excitation 647 nm, emission 680/32 nm) were obtained. Coupons of 
1 cm2 colonized by biofilm communities were directly stained with 
SYTO 9 (Molecular Probes, Eugene, OR, United States; excitation 
wavelength 488 nm, emission wavelength 522–532 nm) to detect 
nucleic acids of bacteria. EPS components of the biofilm matrix were 
visualized using three fluorescent fluor-conjugated lectin-binding dyes 
at 1 mg/mL: Triticum vulgaris-TRITC (TRITC: tetramethyl rhodamine 
isothiocyanate; excitation 568 nm, emission 605/32 nm; Sigma 
Chemicals, St. Louis, MI, United  States) with polymer binding 
specificity for N-acetylglucosamine residues and oligomers; Arachis 
hypogaea-FITC (FITC: fluorescein isothiocyanate; excitation 
485/495 nm, emission 510/600 nm; Sigma Chemicals, St. Louis, MI, 
United  States) with polymer binding specificity for galactose and 
N-acetylglucosamine; and Canavalia ensiformis-FITC, also known as 
“Concanavalin A” (excitation 495/500 nm; emission 495/519 nm; 
Sigma Chemicals, St. Louis, MI, United States) with polymer binding 
specificity for mannose and glucose residues. Additionally, chlorophyl 
autofluorescence from algal and cyanobacteria cells (excitation 
647 nm, emission 680/32 nm) was detected in the far-red channel 
(Lawrence et al., 2004; Dynes et al., 2006). Five areas per coupon were 
randomly selected for Z-stack image scanning with a slice interval of 
5 μm (40×) and 1 μm (60×). CLSM image sequences were collected as 
previously described by Lawrence et al. (2005) and used for image 
analysis via ImageJ (Schneider et al., 2012) to define biofilm depth (or 
thickness) and architecture, and biomass of bacteria, EPS 
and autotrophs.

2.2.2. Protozoa enumeration
Enumeration of protozoan organisms were also considered for 

overall biofilm community structure. Weekly counts were performed 
in water-immersed 1 cm2 coupons from each RAB using a light 
microscope and protozoa or micrometazoa were identified based on 
morphology and manually counted (Packroff et al., 2002).

2.3. Metagenomic analysis

2.3.1. DNA extraction and whole genome 
sequencing

For each RAB, biofilm material from five randomly selected strips 
were recovered. Cellular biomass was aseptically obtained using a cell 
scraper (08-100-241; Fisher Scientific, Pittsburgh, PA) and the 
collected material centrifuged for 5 min at 9,000 × g to separate the 
water phase (Lawrence et al., 2009; Bergsveinson et al., 2020) and 
concentrate biofilm material to 300 mg wet weight. Total DNA was 
extracted using the Mag-Bind® Universal Pathogen Kit (Omega 
Bioservices, Norcross, GA, United States) and concentration and yield 

of DNA (5–10 ng/μL) was measured with the QuantiFluor dsDNA 
System on a Quantus Fluorometer (Promega, Madison, WI, 
United  States). Whole genome libraries targeted for prokaryotic 
organisms were constructed using the KAPA Biosystems HyperPlus 
Kit following manufacturer’s instructions (Kapa Biosystems, 
Wilmington, MA, United States). Briefly, DNA was fragmented, ends 
were repaired, 3′ adenylated, and ligated to adapters. The resulting 
adapter-ligated libraries were PCR-amplified, Illumina indexes added, 
and pooled for multiplexed sequencing on an Illumina HiSeq4000/
X10 platform (Illumina, San Diego, CA, United  States) using the 
paired-end 150 bp run format, yielding 29 to 49 million reads per 
sample (average of 36 million reads; Supplementary Table S2).

2.3.2. Data normalization
Paired-end raw reads were quality filtered with Trimmomatic 

v0.36 (Bolger et  al., 2014) using the following parameters: 
HEADCROP:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15. 
Adapters were removed using the TruSeq3 adapter sequence file as 
reference. All samples were subsampled to 25 million reads (Mreads) 
using the seqkt tool package.1 Briefly, FASTQ reads depth from each 
sample was rarefied to the lowest number of Mreads/Sample, 
remaining reads were randomly discarded. This method ensured a 
uniform population diversity to perform comparative analyses 
(Connelly et  al., 2017; Chekabab et  al., 2020). Trimmed and 
subsampled FASTQ reads were then analyzed by alignment to 
different reference databases, as described below.

2.3.3. Taxonomic profiling
Identification of bacteria and calculation of relative abundance at 

the genera level was assessed using three metagenome taxonomic 
profiling pipelines: CosmosID v2.0 (CosmosID Inc., Rockville, MD), 
Kraken v2 (Wood et al., 2019) and MetaPhlAn v3.0 (Segata et al., 
2012). CosmosID is a web-based platform that utilizes data mining 
k-mer-based algorithms (Genius software) and Genbook, a high-
performance curated comparator database, and includes references 
from NCBI-RefSeq, CARD, ARDB, VFDB, IMG and DDBJ and 
contains over 15,000 bacterial, 5,000 viral, 250 protists and 1,500 
fungal species (Connelly et al., 2017; Junqueira et al., 2017; Yan et al., 
2019; Chekabab et  al., 2020). Taxonomic classification with the 
Kraken pipeline was performed with subsampled, trimmed FASTQ 
files using default parameters with the “—paired” option to indicate 
paired read files. Reads were mapped against the standard Kraken2 
database comprised of complete genomes based on the NCBI RefSeq 
database (downloaded February 2022; O’Leary et  al., 2016) for 
bacteria, viruses, fungi, protozoa and archaea. MetaPhlAn analysis 
was performed using the default parameters in addition to the “—
ignore_eukaryotes” and “-t rel_ab_w_read_stats” options, the latter 
employed to estimate the number of reads per clade and obtain 
absolute abundance outputs for subsequent diversity indexes analysis. 
Microbial composition was compared against the 
CHOCOPhlAn_201901 database. Taxonomic abundance matrices 
from CosmosID, Kraken and MetaPhlAn analysis of each sample 
were prepared for analysis and visualization with all microbial taxa 
above 0.01% relative abundance included.

1 https://github.com/lh3/seqtk
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2.3.4. Resistome analysis
The resistome profiles of ARGs from all samples were identified and 

compared through three different databases: CosmosID, the 
Comprehensive Antibiotic Resistance Database (CARD, v.3.0.0; Jia et al., 
2016), and ResFinder v. 4.1.11 (Bortolaia et al., 2020). Metagenomes were 
first assembled using MEGAHIT v. 1.2.9 (Li et al., 2015) and contigs 
annotated with prokka v.1.14.5 (Seemann, 2014; Supplementary Table S2). 
Quality-assembled contigs were mapped against CARD and ResFinder 
databases. The RGI (Resistance Gene Identifier) application v 6.0.2 in 
bwt mode for metagenomic reads was used for CARD analysis. Analysis 
using CosmosID was performed by mapping the trimmed and 
concatenated paired reads (.fastq) against the platform’s database using 
default settings and using the filtering threshold to ensure high 
confidence. Output of CosmosID included abundance counts table 
estimates of ARGs downloaded for further data analysis. The virulome 
of each sample was additionally profiled by comparing contig sequences 
against the Virulence Factor Database (VFDB; Liu et al., 2019) using 
default parameters and cut-off threshold of 90% identity and coverage. 
The ABRicate tool v.1.0.0 (Seemann, 2019) was used against the built-in 
ResFinder, CARD, and VFDB databases to corroborate the identity of all 
ARG/virulence factors identified.

2.3.5. Functional prediction
For functional prediction of the metabolic pathways influenced by 

sub-MIC antibiotics, the HUMAnN v.3.1.1 pipeline (Beghini et al., 
2021)2 was used. Subsampled, trimmed paired reads were 
concatenated into a single file per sample and mapped against the 
ChocoPhlAn (microbial database) and the full UniRef (version: 
uniref90_201901b) reference databases for gene family identification. 
Default parameters were used with the “—taxonomic-profile” option, 
since the previously generated taxonomic profile output from 
MetaPhlAn was used as a custom taxonomic profile for the analysis. 
HUMAnN’s default curated metabolic pathway database, MetaCyc 
(Caspi et al., 2018) was used for pathway annotation. The abundance 
of each pathway (path_abundance.tsv file) of all samples was merged 
into a single table using the “humann_join_tables” option. The list of 
each identified pathway is represented in reads per kilobase (RPK) 
units with the abundance of each pathway categorized into bacterial 
organisms (in HUMAnN referred to as “stratifications”). After filtering 
out unidentified functional pathways, a pathway abundance table was 
used for subsequent multivariate and statistical analyses. To generate 
coverage information of calculated functional genes and ARG 
sequences, trimmed paired reads (.fastq) were mapped against the 
contigs of each metagenome assembly using Bowtie2 v. 2.4.4 
(Langmead and Salzberg, 2012) with -bowtie2-build and default 
settings. Then, Samtools v.1.15.1 (Li et al., 2009) was used to visualize 
a file report of sequence coverage across samples.

2.4. Statistical analysis

All statistical analyses were performed in R version 4.2.0 (R Core 
Team, 2020). One-way ANOVA was used when normality 
assumptions were met (tested using Tukey HSD, for instance, for 

2 http://huttenhower.sph.harvard.edu/humann

microscopic analyses). For non-parametric data, Kruskal-Wallis was 
applied to untransformed data to test for significant differences 
(p < 0.05) in biofilm composition, biomass abundance percentage, 
and diversity indices. p-values were adjusted using the Benjamini-
Hochberg method to reduce false positive results (padj < 0.05; 
Benjamini and Hochberg, 1995). Diversity indices were calculated 
based on the untransformed abundance data of bacterial biofilm 
communities at genus and species levels. Species richness (Chao1), 
Shannon and Simpson indices were estimated within samples to 
describe α-diversity (Supplemental Figures S3, S4).

Comparisons between control and sub-MIC treatment-exposed 
communities were assessed through permutational analyses of variance 
based on Bray–Curtis dissimilarity indices (PERMANOVA, 999 
permutations) calculated from Hellinger-transformed abundance 
count tables of the microbiome or resistome using vegdist function with 
vegan package v. 2.6.2 (Oksanen et al., 2020). Pairwise comparisons 
between control and treatments were performed to determine 
significance (p < 0.05). Bray-Curtis distance matrices were used to 
calculate β-diversity between samples. β-diversity was visualized with 
non-metric multidimensional scaling plots (nMDS) to ordinate 
microbiome and resistome data. Significant dissimilarity of ordination 
between groups was assessed using the Analysis of Similarities statistic 
(ANOSIM). To screen for significant differences (log2-fold changes) in 
gene and functional pathway abundance, the DESeq2 v.1.35 (Love 
et  al., 2014) package was used, where the contrast function was 
employed to extract values per sub-MIC antibiotic condition.

The Bray-Curtis distance matrices resulting from the nMDS 
ordination were visualized for correlation patterns between the 
microbiome and resistome through the procrustes function in the 
vegan package. The Spearman’s rank correlation via Mantel test was 
used to compare the similarity of the microbiome and resistome 
databases, and to assess the relationship between the microbiome and 
the resistome in the presence of sub-MICs antibiotics, where 
correlations considered to be  significant (p < 0.05) and with a 
dissimilarity coefficient > 0.75 were visualized in network analysis 
using Hmisc v.4.7-2 and igraph package v.1.3.5.

3. Results

3.1. Structural biofilm composition

Riverine biofilm structure was altered following sub-MICs 
antibiotic exposure. CLSM stacked images from microscopic analysis 
showed differences in biofilm architecture across treatments 
(Figure  1). Overall, sub-MICs antibiotic exposure decreased the 
complexity of biofilm communities, with the sub-MIC 1/10 treatment 
having the most pronounced effects on overall biofilm architecture, 
including biofilm thickness, and biomass percentage of bacteria, 
autotroph, and EPS composition. While pennate diatoms were 
observed in all samples, cyanobacteria (magenta fluorescence) were 
only recorded in control biofilms (Figure 1).

Biofilm thickness was calculated based on the fluorescence 
emitted by the lectin probes: C. ensiformis-FITC, A. hypogaea-FITC 
and T. vulgaris-TRITC (Figure  2) which target the EPS matrix 
associated with diverse microbial community members and are 
commonly used as indicators of changes within biofilm communities 
(Lawrence et  al., 2007b, 2009). Decreased biofilm thickness was 
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consistently observed with increasing strength of antibiotic treatment. 
The sub-MIC 1/10 treatment resulted in significantly decreased 
biofilm thickness relative to controls and the lowest (sub-MIC 1/100) 
treatment (F = 12.3, p < 0.05; Figure 2). sub-MIC 1/50 and sub-MIC 
1/100 treatments resulted in thinner biofilms compared to control 
samples, though not significantly so.

The EPS characterized by the glycoconjugate distribution showed 
residues of mannose, glucose and N-acetylglucosamine through all 
biofilm samples, which are carbohydrate residues typically found in 
freshwater biofilms (Dynes et al., 2009; Flemming et al., 2022). The 
EPS biomass percentage, as measured by the fluorescent signal from 

the three lectin probes, significantly shifted (F = 8.8, p < 0.05) between 
samples (Figure 3B). Canavalia ensiformis-FITC and A. hypogaea-
FITC signal percentage increased in the presence of sub-MICs 
antibiotics, whereas T. vulgaris-TRITC lectin binding to 
N-acetylglucosamine residues and oligomers decreased. Exopolymer 
composition throughout all samples was dominated by C. ensiformis-
FITC binding to mannose and glucose residues, with an increase in 
fluorescence (binding specificity) after sub-MICs antibiotic exposure, 
and most notably observed in the sub-MIC 1/10 treatment.

Proportional biomass abundance changes in the bacterial, 
autotroph and glycoconjugate composition (EPS matrix) were 

FIGURE 1

CLSM stacked image results of biofilms grown without or in the presence of sub-MICs antibiotic exposure after 8  weeks of development. Samples 
were stained by (A) Triticum vulgaris—TRITC lectin and SYTO9 showing EPS (red), bacteria (yellow), algae (blue) and cyanobacteria (magenta), 
(B) Arachis hypogaea—FITC and (C) Canavalia ensiformis—FITC lectins showing EPS (green), algae (blue), and cyanobacteria (magenta). Scale bar 
indicates 50  μm.
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calculated based on analysis of the fluorescence of the three-channel 
images (Figure 3A). The autotroph proportional biomass amount 
(from signals of both prokaryotic and eukaryotic autotroph species) 
was significantly different between treatments (F = 4.9, p < 0.05) and 
was highest in the sub-MIC 1/100 treatment (36%), followed by the 
sub-MIC 1/50 treatment (33%), control samples (27%) and the 
sub-MIC 1/10 treatment (17%). Overall, EPS biomass significantly 
decreased (F = 12.2, p < 0.05) after sub-MICs antibiotic exposure 
relative to control values (63%), with the lowest biomass EPS 
composition detected in the sub-MIC 1/50 treatment (Figure 3A). 
Interestingly, CLSM image analysis did not show significant 
differences in the amount of bacterial biomass, although highest 
proportion was observed in the sub-MIC 1/10 treatment (25%), 
followed by the sub-MIC 1/50 treatment (17%), the sub-MIC 1/100 
treatment (13%), and lastly the control samples (10%).

The cumulative number of protozoa was also tracked 
(Supplementary Figure S1), revealing that ciliates dominated control 
biofilms and overall protozoa counts significantly decreased (x2 = 7.8, 
p < 0.05) in the presence of sub-MICs antibiotics. However, no 
correlations, or more specific protozoan predation or grazing pattern 
interactions between biofilms developed under antibiotic concentrations 
(sub-MIC 1/10, 1/50 and 1/100), were detected. Despite the 
heterogeneous biofilm communities and thickness range, overall 
visualization of the EPS matrix confirmed that control biofilms contained 
thicker EPS than sub-MICs treated communities, yet conversely, 
bacterial biomass increased with sub-MICs antibiotic treatments. These 
results, in combination with decreased protozoan and cyanobacteria, 
indicate a selective effect of sub-MICs antibiotics on biofilm communities.

3.2. Microbiome of riverine biofilm 
communities

The bacterial community composition was analyzed by using 
three commonly utilized bioinformatic tools for metagenome 

taxonomic profiling: CosmosID, Kraken and MetaPhlAn. Across 
the three approaches, the taxonomic profile of the biofilm shifted 
in response to sub-MICs antibiotic treatment, with Actinobacteria 
and Proteobacteria being the predominant phyla groups, 
constituting more than 70% of overall community across all 
samples (Figure 4). Interestingly, the proportion of Proteobacteria 
was lowest in the control samples and increased along with 
sub-MIC antibiotics concentration. In contrast, Actinobacteria 
species were consistently reduced in the presence of sub-MIC 
antibiotics, as were abundances of Bacteroidetes, Cyanobacteria 
and Planctomycetes. The phylum Firmicutes was only detected 
via Kraken, with an average relative abundance of 30% and little 
variation across samples.

While there were notable differences in the taxonomic profiles 
produced by the three different identification databases, most 
identified taxa were common across tools. A total of 11 different 
classes (Supplementary Figure S2) and 20 order groups (Figure 5) 
were identified with >1% relative abundance across samples. At the 
class level, bacterial abundance changes were mostly associated with 
Actinobacteria and Alphaproteobacteria, the former decreasing at the 
highest treatment concentration (sub-MIC 1/10). All tools showed 
similar abundance trends at the order level for Burkholderiales, 
Corynebacteriales, Sphingomondales, and Rhizobiales. The Bacilli 
class and Bacillales order were only observed in Kraken, constituting 
25%–30% of relative abundance.

At the level of genus and species, profile differences were observed 
across the identification tools. CosmosID analysis detected 84 
different genera, and 100 bacterial species; MetaPhlAn identified 31 
genera and 39 species; and Kraken detected 251 genera and 2,572 
species (Figure  6B). Comparison of these tools showed that 
MetaPhlAn was less sensitive for identifying bacteria at species level 
(most groups were categorized as unclassified), whereas Kraken 
showed high sensitivity to species strains. α-diversity showed 
markedly different trends according to the taxonomic pipeline used. 
Genus-level richness was determined to be higher in control biofilms 

FIGURE 2

Biofilm thickness of microbial communities under sub-MICs antibiotic exposure was based on fluorescence of lectin-binding specificity to EPS 
glycoconjugate residues. Mean values are displayed with biological (n  =  3) and technical (n  =  5) replicates (**p  <  0.05). Edges represent quartile values.
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relative to sub-MIC samples, except for MetaPhlAn results; however, 
significant differences were only observed between the 1/100 antibiotic 
treatment and control samples (Kruskal-Wallis x2 = 8.4, p < 0.05, 
Kraken, Supplementary Figure S4). Species level-richness was 
consistently lowest in the sub-MIC 1/100 treatment, although the 
analysis did not demonstrate significant differences across samples 
(Supplementary Figure S5).

Despite the observed differences, Shannon and Simpson indices 
calculated from all databases demonstrated higher genera diversity of 
biofilms at the sub-MIC 1/50 treatment compared to the sub-MIC 
1/10 condition. Species-level diversity yielded consistently similar 

diversity distributions, but just for the Shannon index. Overall, 
calculated genus and species-level α-diversities from CosmosID and 
MetaPhlAn were more similar to each other than to the Kraken 
results. For example, diversity of control biofilms relative to sub-MIC 
treatments were less diverse in MetaPhlAn and CosmosID analyses, 
yet control samples in the Kraken analysis, the most species-sensitive 
package, were the most taxonomically diverse, with significant 
differences when compared to sub-MIC 1/10 treated communities 
(x2 = 7.8, p < 0.05; Supplementary Figure S4).

The Bray-Curtis distance matrices of identified bacteria at genus 
level were used to generate nMDS plots to assess the dissimilarities 
between biofilm microbial communities developed under different 
sub-MIC antibiotic exposures (Figure 6A). The three taxonomic tools 
displayed significant differences across sub-MIC antibiotic treated 
samples (CosmosID: R2 = 0.577, p = 0.017; Kraken: R2 = 0.609, 
p = 0.040; MetaPhlAn: R2 = 0.537, p = 0.018). Of the total 296 unique 
genus groups identified across taxonomic analyses, only 20 were 
shared across the three databases (Figure 6B). Interestingly, seven 
genera were shown to be significant across all three taxonomic tools 
(PERMANOVA, F = 3.6, p < 0.001, Bray-Curtis distance), suggesting 
their abundances drove the ordination pattern observed among 
biofilm communities (Figure  6C) Mycobacterium and Nitrospira 
genera were associated with control samples, whereas Flavobacterium, 
Methylorubrum and Aminobacter genera were associated with biofilm 
communities cultivated under sub-MIC 1/10 and sub-MIC 
1/50 conditions.

Correlation analysis between the taxonomic databases indicates 
that identified genera from the CosmosID and MetaPhlAn databases 
shared the most similarities in taxonomic composition when 
examining genus-level abundance (Spearman’s rho = 0.895; 
Supplementary Figure S7A). Comparison of the genera abundance 
from the three databases was significant (p < 0.05), but Mantel results 
from CosmosID vs. Kraken (Spearman’s rho = 0.711) and MetaPhlAn 
vs. Kraken (Spearman’s rho = 0.644) were only moderately correlated.

3.3. Biofilm community resistome and 
virulome trends

Three different antibiotic resistance databases were compared to 
determine the resistome of riverine biofilm communities under 
sub-MIC antibiotic exposure. Across all biofilm community samples, 
a total of 92 ARGs were detected via CosmosID, 93 ARGs in CARD, 
and 67 ARGs in the ResFinder database (Figure 7B). Normalized 
abundance of ARGs determined from the three database analyses 
demonstrated a marked increase in the copy numbers of ARG in 
samples under sub-MIC exposure relative to control samples 
(Supplementary Figure S3).

Resistome composition from the CosmosID pipeline consisted 
of 33 different types of ARGs corresponding to seven drug resistance 
classes: aminoglycosides, β-lactams, macrolides, phenicols, 
sulfonamides, tetracyclines and trimethoprim. ARGs from the 
aminoglycoside drug class represented the majority of the resistome, 
followed by tetracycline and β-lactam genes (Figure  7C). Results 
from the CARD database detected 24 different types of ARGs which 
were grouped into nine drug resistance classes: aminoglycosides, 
β-lactams, cyclic peptides, macrolides, penams, phenicols, 
sulfonamides, tetracyclines and trimethoprim. CosmosID, relative 

FIGURE 3

Proportional abundance of biofilm architecture elements exposed to 
sub-MICs antibiotics. (A) Relative biomass abundance of bacteria, 
EPS and autotroph composition, and (B) Relative lectin-binding 
specificity of three probes used to characterize the glycoconjugate 
composition of the EPS matrix. Proportional abundance is the 
coverage percentage recorded of the fluorescent signal of each 
biofilm structure element from Z-stack images. Mean values are 
displayed with biological (n  =  3) and technical (n  =  5) replicates.
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abundances showed ARGs from aminoglycoside drug class to be the 
predominant group across control and sub-MICs exposed samples; 
however, macrolide and sulphonamide ARGs were the next most-
abundant genes (Figure 7A). The ResFinder database identified 25 
different types of ARGs across samples (Figure  7A) within eight 
different drug classes: aminoglycosides, β-lactams, macrolides, 
phenicols, rifamycins, sulfonamides, tetracyclines, and trimethoprim. 
However, no ARGs in the ResFinder database with an identity above 
the 90% identity cut-off threshold were detected in any of the control 
biological replicates.

Several ARGs were detected in at least two of the resistome 
databases (Figure 7B), with all three pipelines predicting the same 
seven ARGs under sub-MIC conditions (Supplementary Table S3). 
Aminoglycoside resistance was present at greater than 70% relative 
abundance through all samples according to CosmosID and CARD 
databases and were the predominant ARGs group in the ResFinder 
analysis. The aph6-Id aminoglycoside gene was prevalent throughout 
all samples and across all three pipelines. When examining ARGs that 
were more abundant in sub-MIC exposures relative to control samples 
(log2FoldChange, padj  <  0.05), all three gene resistance databases 
predicted 18 common ARGs consisting of the classes aminoglycosides, 
β-lactams, macrolides, sulphonamides, tetracyclines and trimethoprim 
(Figure 7C). Most notably, gene copies of aadA5, drfA1, ereA, and 
ermF were highest at the sub-MIC 1/50 treatment, whereas sul2 was 
highest at the sub-MIC 1/100 treatment.

We further measured the richness of the resistome in all 
samples classified by gene, drug class, and mechanism of resistance 
(Supplementary Figure S6). Across the three profiled pipelines, 
microbial communities developed under sub-MICs antibiotic 
exposure displayed higher absolute numbers of ARGs with gene 
richness significantly greater than control samples (H=, p < 0.05). 
Annotations performed by the CosmosID pipeline showed that the 
seven drug classes and four mechanisms of antibiotic resistance 
were significantly increased in sub-MIC treatments relative to 
controls. The CARD pipeline revealed significant differences 
between sub-MIC 1/10 and 1/100 treatments relative to control 
samples only at the mechanism level, but not at the gene or drug 
class level. Results from the ResFinder pipeline showed significant 
differences between resistome richness of the sub-MIC 1/50 
treatment relative to control samples at the level of individual ARG, 
drug class, and mechanisms of resistance (Supplementary Figure S6). 
ARGs from the CARD database displayed a significant correlation 
with the ResFinder database (Spearman’s rho = 0.556, p = 0.004). 
However, the relationships between the other databases showed 
non-significant and weak associations with identified ARGs 
(Supplementary Figure S7B).

The virulome of riverine biofilm communities was also analyzed, 
since it is known that pathogenic or non-pathogenic bacteria can 
acquire “accidental virulence” as result of the advantageous conditions 
within biofilm niches (Andersson et  al., 2018). Virulence genes 

FIGURE 4

Comparison of taxonomic classification tools. Relative bacterial sequence abundances for (A) CosmosID, (B) Kraken, and (C) MetaPhlAn tools at the 
phylum level (n  =  3).

FIGURE 5

Comparison of taxonomic classification tools. Relative bacterial sequence abundances for (A) CosmosID, (B) Kraken, and (C) MetaPhlAn tools at the 
order level (>1%; n  =  3).
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associated with conjugative transfer, efflux pumps, DNA-transfer 
primases, integrons, mating-pair-formation, resolvases, transposons, 
and multidrug factors, were detected across the three sub-MIC 
antibiotic conditions (Figure 8; Supplementary Figure S8). Virulome 
composition was shown to be significantly different across sub-MIC 
conditions (x2 = 8.9, p < 0.05). A total of 89 genes associated with 
virulence were identified across all samples, among which transposon 
genes (i.e., TpnA) and multidrug resistance genes (i.e., sul1 and 
qacEdelta1) were not only observed in control samples but were also 
the most abundant type of virulence factors according to the VFDB 
database (Figure 8). Samples from sub-MIC 1/10 and 1/50 treatments 
showed very similar virulome compositions. However, extended-
spectrum β-lactamase (ESBL) genes, such as blaOXA-1 and blaOXA-2, 
were associated with sub-MIC 1/50 and 1/100 antibiotic samples. 
Moreover, ssb, a gene coding for single-stranded DNA-binding 
protein, was only detected in one control replicate.

3.4. Biofilm community functional capacity

The prediction of metabolic pathways in riverine biofilms revealed 
a total of 106 functional pathways present throughout samples. 
“Unidentified” pathways and those that confer functionality to 
non-bacterial organisms (such as plants or mammals) were manually 
removed prior to statistical analysis and visualization. Differential 
gene abundance changes of 99 pathways were analyzed via DESeq2, 
yielding 28 significant functional pathways related to sub-MIC 
antibiotic treatments relative to control samples (Figure 9). In general, 
detected bacterial metabolic pathways were related to biosynthesis and 
nucleotide salvage. Following the nomenclature by the MetaCyc 

database, these biosynthesis pathways included the super-classes for 
nucleoside and nucleotide biosynthesis (PWY-5686, PWY-6126, 
PWY-6125, PWY-6277, PWY-6609), phosphate-related pathways 
(NONOXIPENT-PWY, PENTOSE-P-PWY), cell wall biosynthesis 
(PWY-6385, PEPTIDOGLYCANSYN-PWY), fatty acid and lipid 
biosynthesis (PHOSLIPSYN-PWY, FASYN-ELONG-PWY, 
PWY-6282), secondary metabolite biosynthesis (NONMEVIPP-PWY, 
PWY-6703), Cofactor, carrier and vitamin biosynthesis 
(PANTO-PWY, COBALSYN-PWY, 1CMET2-PWY, COA-PWY, 
HEME-II), and aromatic compound biosynthesis (ARO-PWY).

Among genes associated to superclasses for amino-acid 
biosynthesis, L-isoleucine (PWY-3001) and L-arginine (PWY-5154) 
were more abundant under sub-MIC antibiotic exposure compared 
to control samples; yet L-histidine (HISTSYN-PWY), L-arginine 
(ARGSYN-PWY, ARGSYNBSUB-PWY) and L-lysine 
(DAPLYSINESYN-PWY) displayed modest decreases in differential 
gene abundance (log2 Fold-change < −1., p < 0.05) in sub-MIC 
antibiotic conditions, except for sub-MIC 1/100 (Figure  9). 
Interestingly, genes related to arginine biosynthesis via acetyl-L-
citrulline showed two log2 Fold-change higher abundance in the three 
sub-MIC antibiotic treatments; however, genes related to arginine 
biosynthesis via the acetyl cycle and the L-ornithine pathway were 
less abundant (−0.5 log2 Fold-change) in the sub-MIC 1/10 and 
sub-MIC 1/50 treatments, respectively. Overall, genes of functional 
pathways involved in biosynthesis showed negative differential 
abundances under exposure to sub-MIC treatments, with abundance 
fold-change varying across treatment. Several genes involved in 
functional pathways showed significant relative abundance 
differences (p < 0.05) between sub-MIC 1/10 (23 pathways) and 
sub-MIC 1/50 (22 pathways) treatments relative to controls, although 

FIGURE 6

Bacterial composition at the genus level according to three taxonomic databases of riverine biofilm communities cultivated under sub-MICs antibiotic 
exposure. (A) nMDS two-dimensional plot of Bray-Curtis similarities showing β-diversity identified in the three taxonomic databases: CosmosID 
(84  =  genera), Kraken (251  =  genera) and MetaPhlAn (31  =  genera). (B) Venn diagram displaying identified total genera groups across taxonomic 
databases. Overlap indicates the number of shared taxa among databases. (C) nMDS plot of Bray-Curtis similarities of significant genera (p  <  0.001) 
detected at each taxonomic database. Ellipses shape is defined by covariance of each group, and ellipses centroid represents the group mean.
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the sub-MIC 1/100 treated samples showed fewer significantly 
differentiated metabolic pathways (13 pathways).

Nucleoside and nucleotide biosynthesis pathways demonstrated 
lower relative gene abundances (log2 Fold-change −2.40 to −0.23., 
p < 0.05) at all sub-MIC treatments in comparison to control samples. 
In contrast, two cell wall biosynthesis pathways showed higher 
abundances across the three sub-MIC antibiotic treatments (log2 Fold 
change1.9–2.2, p < 0.05) relative to controls. Notable degradation 
pathways were assigned to the general fatty-acid pathway (FAO-
PWY), which was present in sub-MIC 1/10 and 1/50 treatments, and 
the urea cycle (PWY-4984). The urea cycle and fatty acid (PWY-6282, 
FASYN-ELONG-PWY) pathways had positive abundance shifts for 
sub-MIC 1/10 and sub-MIC 1/50 treatments but negative shifts for 
the sub-MIC 1/100 treatment relative to control biofilms. Notably, 
urea degradation is commonly associated to Nitrospira spp.; however, 
this genus was most strongly associated with the control biofilm 
condition, suggesting nitrogen and urea cycling are not clearly 
impacted or linked to sub-MIC treatments. Functional pathways with 
the most pronounced abundance shift between treatments were 
illustrated according to the contributing bacterial genera 
(Supplementary Figure S9). The bacterial species associated with 

detected functional pathways included the genera Afipia, 
Aminobacter, Blastomonas, Bosea, Bradyrhizobium, Caulobacter, 
Flavobacterium, Sphingomonas, Methylibium, Methylorubrum, 
Mycobacterium, Mycobacteroides, and Variovorax.

3.5. Microbiome and resistome relationship

The co-occurrence relationship between the microbiome and the 
resistome composition was assayed through the Procrustes analysis 
by using the Mantel test and Procrustes test for statistical validation 
(Supplementary Figure S10). Both tests showed significant correlation 
between the microbiome and resistome dissimilarity matrices 
(Mantel r = 0.652, p = 0.001; Procrustes M2 = 0.257, r = 0.861, 
p =  0.001), thus demonstrating that the bacterial and resistome 
composition were closely associated. Since the Procrustes analysis 
only illustrates overall correlations, a network analysis was performed 
to further examine individual co-occurrence patterns between the 
microbiome and resistome in biofilm communities after sub-MIC 
antibiotic exposure (Figure 10). The network analysis was based on 
strong and significant correlations (Spearman’s rho > 0.75, p < 0.05) 

FIGURE 7

ARGs composition according to the resistome database in riverine biofilm communities under sub-MICs antibiotic exposure. (A) Relative abundance 
classified by drug class resistance identified in each database. (B) Venn diagram displaying total identified number of ARGs. Overlap indicates the 
number of shared ARGs across databases. (C) ARGs with significant fold-changes (p  <  0.05) between treatments. The normalized abundance heatmap 
is scaled to each gene (Z-score) after rlog-transforming counts.
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between a correlation matrix constructed with 23 ARGs and 20 
bacterial taxa (genus level).

Additionally, co-occurrence analysis indicating resistome and 
microbiome patterns for each of the sub-MIC treatments (1/10, 1/50, 

and 1/100) was performed (Supplementary Figure S11). For details 
about the networks’ topological properties, such as the number of 
edges between nodes of each network, see Supplementary Tables S5, 
S6. Based on the connections between nodes, the most densely 

FIGURE 8

Differential abundance of normalized virulence factor comparisons with significant differences between sub-MICs antibiotic treatments (p  <  0.05) using 
Benjamini-Hochberg correction for multiple comparisons.

FIGURE 9

Functional profiling of riverine biofilm communities under sub-MICs antibiotic exposure. Y-axis represents metabolic pathways annotated by MetCyc 
from HUMAnN analysis; and X-axis represents significant differential abundance sub-MICs antibiotic condition relative to control samples using 
DESeq2 (p  <  0.05).
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connected nodes were regarded as indicators of co-occurrence of 
ARGs. Microbiome composition results showed that Aminobacter, 
Bosea, Flavobacterium, Sphingomonas and Variovorax displayed the 
highest co-occurrence (4 nodes) to microbial and resistome nodes. 
Aminoglycoside ARGs (aph3”-Ib, aadA2, rrsB) demonstrated 
co-occurrence to Proteobacteria genera, but also to Actinobacteria 
(aadA, rrsA, rrsB), Bacteroidetes (aph3”-Ib) and Nitrospirota (rrsB; 
Figure 10). Indeed, Proteobacteria genera, such as Bradyrhizobium, 
Methylorubrum, Novosphingobium, Sphingobium, and Variovorax, 
correlated with aph3”-Ib, aph6-Id, aadA-, which were prevalent 
genes. The resistome composition displayed the highest 
co-occurrence to microbiome nodes for the sub-MIC 1/50 treatment 
with 23 ARGs, followed by the sub-MIC 1/100 treatment with 11 
ARGs, and the sub-MIC 1/10 treatment with six ARGs. 
Aminoglycoside ARGs (aph6-Id, rrsA, rrsB) were present in all 
sub-MIC-exposed samples and correlated with Proteobacteria, as 
well as ARGs from other drug classes, except in control biofilms 
where these ARGs correlated only within the resistome composition 

(Supplementary Figure S11). The ARGs from the resistome nodes 
with the highest correlation to microbial nodes were aph3”-Ia and 
blaOXA-2. In the sub-MIC 1/10 treatment condition, Aminobacter, 
Bosea, Caulobacter and Sphingorhabdus genera showed a positive 
correlation to sul1.

This pattern indicates that Proteobacteria such as Caulobacter, 
Bosea, Novosphingobium, Hydrogenophaga, Methylibium, and more 
specifically Variovorax may act as potential reservoirs for 
aminoglycoside, β-lactam and sulfonamide resistance factors.

4. Discussion

4.1. Sub-MICs antibiotic affects the 
structure of riverine biofilm communities

Biofilm communities favor the maintenance and transmission 
of antibiotic resistance due to their diverse composition, close cell 

FIGURE 10

Network analysis showing correlation patterns between the microbiome and resistome after sub-MICs antibiotics exposure. Edges (lines) connecting 
nodes mean a strong correlation (Spearman’s rho > 0.75, p  <  0.05), negative indicated in red and positive in gray. The size of each node is proportional 
to the number of connections (degree; n  =  12).
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proximity, structural stability, and physical protection against 
chemical and physical stressors (Balcázar et al., 2015; Abe et al., 
2020; Flores-Vargas et al., 2021; Matviichuk et al., 2022). In this 
study, heterogeneity between and within communities was 
observed, with up to a 54-μm range in biofilm thickness observed 
in samples from the same treatment (Figure  2). However, the 
effects of sub-MIC antibiotic treatments were most notable on 
biofilm communities developed under the sub-MIC 1/10 
condition, where significantly thinner biofilms compared to other 
treatments (p < 0.05) were observed. Thinner biofilms have 
previously been noted to form in the presence of chemical 
stressors (Romero et al., 2018); therefore, thicker biofilms would 
seemingly proliferate under normal (non-stressed) growing-
conditions. Thicker biofilms imply more diffusional distance 
within the matrix biomass for chemicals (i.e., antibiotics) to react 
with, thus initially providing more time (and reduced effective 
compound concentration) for microbial cells within the biofilm 
to adapt to stressor conditions. Furthermore, thicker biofilms 
imply greater protection provided by the volume of the EPS 
matrix, which is associated to increased cell density and closer 
proximity of cells (physical juxtapositioning), and consequently 
higher likelihood of cell–cell communication (quorum sensing) 
and genetic exchange which would facilitate HGT events (Dynes 
et al., 2009; Abe et al., 2020).

Carbohydrates are the structural skeleton of EPS matrix and can 
range from oligosaccharides through to polymers of up to 100 kD 
in size (Hanlon et al., 2006). Although polysaccharide composition 
in EPS of biofilms is highly heterogenous, most consist of a 
N-acetylglucosamine core (Flemming et  al., 2022). The role of 
N-acetylglucosamine in EPS has mostly been studied in clinical 
monoculture biofilms such as Pseudomonas aeruginosa (Reichhardt 
et  al., 2020), and is also known for being one of the major 
components of cell wall in bacteria (Gonzalez-Martinez et  al., 
2014). Result from our CLSM approach targeting glycoconjugate 
residues show a clear reduction of EPS polysaccharides, which 
could translate into lower signaling and hindered genetic exchange 
(Zhang et al., 2015). Since among biofilm elements, cyanobacteria 
and green algae exude large quantities of polysaccharides and 
amino-acids among other organic compounds (Battin et al., 2016; 
Delattre et al., 2016), it is reasonable to assume that the decrease of 
autotrophic organisms in biofilms treated with sub-MIC antibiotics, 
particularly at sub-MIC 1/10, had repercussions involving EPS 
accumulation (Figures 1, 3).

Riverine biofilms play a key role in river biogeochemical organic 
and inorganic cycles (Romaní et al., 2014) and EPS can be used as 
carbon source and energy reserves for bacterial heterotroph 
community and macrofauna (Pierre et al., 2012; Delattre et al., 2016), 
thus EPS reduction could hinder the further development of aquatic 
microorganisms. Additionally, EPS accumulation is crucial for 
adhesion to substrates (Fulaz et al., 2019), meaning that a reduction 
of EPS could contribute to earlier and/or higher frequency of 
detachment of biofilms, and further promote the spread of ARB and 
elements containing ARGs to and throughout the 
surrounding environment.

Biofilm formation in response to sub-MIC antibiotics remains 
contradictory even in single, clinically relevant bacterial isolates. 
For example, a commonly cited study demonstrates sub-MICs of 
aminoglycosides increased biofilm formation in P. aeruginosa and 

E. coli (Hoffman et  al., 2005). However, a reduction in biofilm 
formation was reported for sub-MIC of β-lactams in Staphylococcus 
sp. (Cerca et al., 2005), macrolides in Mycobacterium avium (Carter 
et al., 2004), and mupirocin in P. aeruginosa (Horii et al., 2003). A 
more recent study documented how the presence of several 
antibiotics at sub-MIC levels affected S. aureus biofilm formation 
(Majidpour et  al., 2017), where azithromycin and vancomycin 
increased biofilm formation, but linezolid, cefazolin, and 
clarithromycin inhibited it. A similar response was observed in 
Staphylococcus epidermidis biofilms where 0.5 MIC ciprofloxacin 
reduced biofilm thickness, but 0.5 and 0.25 MIC tigecycline 
increased biofilm growth, as well as the expression of icaA, altE, and 
sigB genes involved in polysaccharide intercellular adhesion 
(Szczuka et  al., 2017). These studies are consistent with our 
microbiome-level results, given that sub-MIC antibiotic cocktail 
mix treatments containing ciprofloxacin in range between 5 to 
50 μg/L decreased biofilm structural complexity. These findings 
demonstrate that effect on biofilm formation and its constituent 
members is likely antibiotic-dependent; thus, antibiotics affect 
diverse bacteria within biofilms differently. Indeed, the 
bioavailability and chemical state of antibiotics would also 
be presumed to influence the severity of response and/or impact on 
the biofilm, though these parameters are not within the scope of the 
current study.

In addition to chemical and physical stressors, biofilms are also 
exposed to biological stressors that include nutrient availability, 
protozoan predation and viral lysis (Andersson et  al., 2018). 
Different protozoa have the potential to influence the proportion of 
bacterial species via selective or non-selective grazing, and have 
been shown to promote the occurrence of HGT events during short 
time frames (Sun et al., 2018). Protozoa were first detected in the 
fourth week of treatment exposure, with counts increasing slightly 
over the following weeks of the experiment, in alignment with the 
expected biofilm’s structural maturation throughout the eight-week 
period. As the biofilm matures, increased thickness and biomass 
would be  expected to result in increased grazing pressure by 
protozoan organisms (Lawrence et  al., 2009). Protozoa counts 
decreased in the presence of sub-MIC antibiotics, though we could 
not correlate the sub-MIC treatment to the protozoa composition 
or predation-interactions. It is possible that the observed reduction 
of protozoa organisms in biofilms under sub-MIC exposure was due 
to the limited availability of autotrophic bacteria recorded under 
sub-MIC antibiotic conditions, indicating an indirect effect through 
trophic interactions (Figure 1; Supplementary Figure S1). It has 
been previously reported that high protozoan predation on bacteria 
was associated with persistence of Mycobacterium and Rickettsia 
spp. (Andersson et al., 2018). Mycobacterium spp. were prevalent 
taxa throughout the biofilm communities of this study; thus, it is 
possible that predatory protozoa in these samples would 
be  associated with, and contribute to the maintenance of, 
Mycobacterium spp.

Ultimately, reduced EPS results in an increase in the proportion 
of unprotected bacterial biomass but a reduction in protozoan and 
cyanobacteria (autotrophic bacteria). Loss of diversity and decreased 
protection from the EPS matrix signify a broader ecological impact of 
sub-MIC antibiotic exposure that could further accelerate the 
acquisition or expression of resistance functions of bacteria species 
within biofilm communities.
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4.2. Microbiome composition shifts due to 
sub-MIC antibiotic exposure

Microbial composition analysis revealed that Proteobacteria 
species were favored by sub-MICs antibiotic presence, and overall, a 
considerable shift in bacterial community composition was observed 
at sub-MIC 1/10. Relative abundance profiles in this study (Figure 4) 
were in accordance with previous taxonomic results noted for South 
Saskatchewan River biofilms by Lawrence et al. (2020), where the 
dominant phyla (Proteobacteria, Actinobacteria and Cyanobacteria) 
comprised 63% of total bacterial community membership. 
Proteobacteria, particularly Betaproteobacteria, are implicated in more 
readily attaching to surfaces during initial biofilm development (Luo 
et al., 2020). Proteobacteria predominance throughout treated biofilm 
communities also signals their adaptability to low or sub-MICs 
antibiotics (Manaia, 2017) supporting the idea that species within this 
phylum possess antibiotic resistance mechanisms or potential for 
acquired resistance.

Additionally, river biofilms influenced by nearby run-off from 
WWTPs also showed Proteobacteria to be the dominant phyla (Guo 
et al., 2020; Matviichuk et al., 2022). Our results are in agreement with 
Zou et  al. (2018) where oxytetracycline residues selected for 
Proteobacteria abundance. In contrast, Subirats et al. (2018) did not 
detect significant variations in bacterial abundance of biofilms treated 
with ciprofloxacin, erythromycin, sulfamethoxazole, diclofenac, and 
methylparaben, even though these antibiotics are known to inhibit 
bacterial growth at sub-MIC levels. Notably, that experimental design 
comprised 28 days, instead of the 56-day period used for this study. 
Thus, it is possible in Subirats et al. that the EPS matrix provided 
protection during early sub-MICs antibiotic exposure. However, the 
prolonged period of antibiotic exposure in our study might indicate 
the scale at which ecological impacts may be observed due to resultant 
shifts in microbial community composition.

nMDS analysis demonstrated that sub-MIC 1/10 and sub-MIC 
1/50 treatments most profoundly shaped microbiome composition at 
the phyla and genus level. For example, Brevundimonas and 
Methylorubrum (Proteobacteria) as well as Flavobacterium 
(Bacteoridetes) relative abundance displayed significant correlation to 
biofilms grown in sub-MIC 1/50 antibiotic treatment; interestingly the 
two latter genera also demonstrated co-occurrence to Variovorax in 
the network analysis (Figure 10). Nitrospira (Nitrospirota phylum) 
revealed to be strongly associated with control biofilms (Figure 6) and 
showed co-occurred with several ARGs and genera in sub-MIC 1/50 
treated biofilms. The prevalence of Mycobacterium spp. despite 
reduced abundance (up to 50%) in the presence of sub-MIC antibiotics 
(relative to control biofilms) presumably indicates that Actinobacteria 
were sensitive to the effects of antibiotics at these concentrations, or 
that antibiotics hindered the development of these genera.

Calculation and interpretation of α-diversity and species richness 
proved to be very dependent on diversity indices, taxonomic level, and 
databases (Supplementary Figures S4, S5). Bacterial α-diversity data 
of biofilms in the South Saskatchewan River is limited, however results 
from CosmosID and Kraken databases demonstrated that biofilms in 
this study were similar in diversity and community distribution to 
previous microcosm characterizations (Romaní et  al., 2014). 
Furthermore, diversity distribution was similar between the sub-MIC 
1/10 and sub-MIC 1/50 samples, which were generally less diverse 
than controls. This is not unexpected as it has been previously 

recorded that bacterial richness, diversity and composition are 
disturbed by the presence of antibiotics such as ciprofloxacin 
(Gonzalez-Martinez et  al., 2014) and oxytetracycline (Zhang 
et al., 2013).

In line with this observation, it is frequently concluded that a 
decrease in diversity is an indicator of altered microbial taxonomy and 
by extension, functional environmental health functions and services. 
However, this data cautions against using α- or β-diversity as a sole 
metric or predictor of ecological impact or health in face of 
environmental stresses, given the dependence on database health, data 
normalizations and granularity of taxa level (Shade, 2017).

4.3. Comparisons of microbial reference 
databases

To our knowledge, this is the first study to evaluate different 
commonly used resistome and taxonomic databases for environmental 
aquatic microbiomes; and thus can serve to provide guidance for 
future study considerations and best practices. CosmosID, Kraken and 
MetaPhlAn are commonly-used analysis pipelines that were all 
separately applied in this study to profile taxa of biofilm communities 
(Couto et  al., 2018). These analysis tools and pipelines notably 
influenced observations, though consensus data of bacterial 
abundance was achieved. These differences in data outputs are a result 
of the underlying databases used for alignment. Specifically, Kraken 
uses genomes based on the NCBI RefSeq database consisting of over 
128,299 organisms (O’Leary et  al., 2016); MetaPhlAn compares 
sequences against the CHOCOPhlAn_201901 database v.4.0 (Segata 
et  al., 2012), containing over 771,500 metagenomic assembled 
genomes; and CosmosID aligns against the GenBook database 
(150,000 microbial genomes and 5,000 viral species) using k-mer-
based alignment (Yan et al., 2019; Zaouri et al., 2020). In the present 
study, MetaPhlAn was less able to identify sequences to the species 
level (20 of 59 species were categorized as unclassified), whereas 
Kraken assigned the most sequences to species level.

Similar to taxonomic analysis, three different commonly used 
resistome databases were evaluated for sensitivity and accuracy of 
ARG annotation of metagenomes: CosmosID (5,500 ARGs), CARD 
(1,600 manually-curated ARG sequences) and ResFinder (3,000 
ARG). Again, the selection of database directly affected final 
observations; however, all three analysis streams displayed the trend 
of sub-MIC antibiotics selecting for an increase in ARG abundance 
within biofilms. Correlation analysis revealed that CARD and 
ResFinder databases were most similar in their output and 
performance (Supplementary Figure S7B).

Despite the known challenges of comparing metagenomic data 
between studies (Couto et  al., 2018), the dependence of data 
interpretation and conclusions on database quality, environmental 
metagenomics studies frequently present data produced from a 
favored tool or database. By performing analysis using one method 
and failing to compare the output against other available tools, 
particularly in the field of environmental AMR, researchers’ risk either 
under- or over-interpreting their results. Here we conclude that the 
CARD database and associated tools are currently the most reliable 
resistome database due to its high level of curation and maintenance, 
and that the CosmosID database is a reliable source for taxonomic 
profiling of aquatic environmental microbiomes, especially if the 
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study seeks to identify Gram-negative or pathogenic bacteria within 
samples (Couto et al., 2018).

4.4. Resistome composition enhanced after 
sub-MIC antibiotic exposure

Resistome profiling of riverine biofilms developed under a 
sub-MICs antibiotic cocktail mix of ciprofloxacin, oxytetracycline and 
streptomycin revealed an abundance prevalence and dominance for 
aminoglycoside ARGs (Supplementary Figure S3). Resistome 
distribution classified by drug resistance and mechanism was 
consistently similar across the three resistome pipelines, with 
sub-MICs antibiotic treated biofilms yielding greater number of 
resistome elements in comparison to control biofilms 
(Supplementary Figure S6). These findings are consistent with 
resistome abundance observed in biofilms influenced by hospital 
wastewater (Petrovich et al., 2020) and WWTP discharge (Matviichuk 
et al., 2022). Microbiome composition aligned with resistome results 
in that the highest richness of taxa/genes were registered for the 
sub-MIC 1/50 treatment in comparison to control biofilms. Overall, 
aph6-Id, aph3”-Ib, aadA2 tetC, tetG, sul1, and sul2 were highly 
abundant and/or prevalent across all biofilms under sub-MICs 
exposure (Supplementary Table S3).

It has been previously reported that aminoglycoside resistance 
genes co-select with other ARGs such as those encoding β-lactamases 
and are often located within different mobile genetic elements (MGE) 
such as integrons and plasmids (Beceiro et al., 2013). Since ARGs are 
often co-located with pathogen virulence factors in biofilm organisms, 
we also screened for the occurrence of virulence genes. Virulence 
refers not only the ability of bacteria to cause disease in the host (i.e., 
degree of pathogenicity) but also the ability of an organism to infiltrate 
and colonize a host (Schroeder et al., 2017). TpnA transposase and 
sul1 sulfonamide genes were notably prevalent across all treatments 
including control biofilms according to the VFDB database 
(Supplementary Figure S8). TpnA has been reported to commonly 
occur in drinking water systems (Brumfield et al., 2020), whereas sul1 
and sul2 have been recorded to be prevalent ARGs in influent and 
effluent riverine biofilms (Auguet et al., 2017).

Interestingly, relative abundance of intI1, a class I integron gene 
usually located in MGE such as transposons and plasmids (Gillings 
et  al., 2015) and linked to several resistance genes including sul1 
(Subirats et  al., 2018; Cheng et  al., 2020), was enhanced in all 
sub-MICs antibiotic treated samples. The sul1 ARG is of significant 
clinical relevance (Petrovich et al., 2020) and its abundance has been 
found to be greater in extracellular DNA than intracellular DNA in 
estuarine biofilms (Guo et  al., 2018), supporting the idea that 
mobilization of this gene plays an important role in resistance 
transmission. The prevalence of intI1, sul1 and tpnA genes across 
biofilms under sub-MICs antibiotic exposure might be result of their 
mobilization across bacteria, particularly Proteobacteria species, as 
HGT dissemination events are more common between 
phylogenetically related bacteria (Subirats et al., 2018). Given this 
increase in suspected HGT events and the fact that constant sub-MICs 
exposure of antibiotics can select for tolerance mutations (Schuster 
et al., 2022) it is plausible to assume that presence of both virulence 
and ARGs would result in multiple drug resistance within constituent 
microorganism (Schroeder et al., 2017). However, there is still not a 

clear understanding of the co-selection relationship(s) between 
virulence and resistance factors, nor virulence and antibiotic 
concentrations (Beceiro et  al., 2013; Matviichuk et  al., 2022). 
Therefore, tracking AMR in environmental microbiomes is an 
essential step required to anticipate the spread and risk of ARGs/
ARB transmission.

Environmental concentrations of ciprofloxacin in European 
WWTP effluent released into surface freshwater were higher than 
estimated and found to promote resistance in 5% of bacterial species 
in contact with the antibiotic (Emara et al., 2023). The same study 
reported a similar pattern for tetracycline, trimethoprim, ofloxacin, 
and norfloxacin. Recently, ciprofloxacin (among other antimicrobials) 
has been measured in the range of 542–32,800 ng/L in effluents close 
to two Canadian pharmaceutical manufacturing facilities (Kleywegt 
et al., 2019). It has also been determined in France that river biofilms 
exposed to WWTP discharge with oxytetracycline concentrations ≥ 
to 108 μg/L represented an environmental risk for aquatic bacteria 
(Matviichuk et al., 2022). These in-situ concentrations are within the 
range used in our present study (Supplementary Table S1), with values 
covering 1/10, 1/50, and 1/100 of MIC and ranging from 5,000 to 
50,000 ng/L (below MICs of 500,000 ng/L), supporting the notion that 
global freshwater microbial communities are currently exposed to 
sub-MICs of antibiotics, with potential functional and structural 
impacts such as those observed in this study.

4.5. Broader microbial functional impacts

Significant changes in metabolic pathways found within the whole 
biofilm community under sub-MICs antibiotic exposure were also 
observed. In general, genes belonging to metabolic pathways related 
to biosynthesis processes were differentially abundant in treatment 
biofilms. For example, two peptidoglycan pathways were similarly 
abundant in each of the three sub-MIC antibiotic treatments; 
suggesting that even at the lowest concentration (5–5,120 μg/L) 
antibiotic presence can increase peptidoglycan biosynthesis. This 
upregulation of cell wall biosynthesis is likely in response to sub-MICs 
antibiotics exerting selective pressure on microbial communities, and 
in particular, the abundant group of Proteobacteria (Gram-negative 
bacteria) present. β-lactam antibiotics can interfere with the bacterial 
cell wall biosynthesis by inactivation of penicillin-binding proteins 
(PBPs), enzymes requisite for synthesis of the peptidoglycan layer 
(Pazda et al., 2019). β-lactam resistance mechanisms against Gram-
negative bacteria mostly consist in β-lactamases, followed by 
permeability alterations and extrusion by efflux pumps (Beceiro et al., 
2013); blaOXA-10 and blaOXA-24 have further been implicated in 
virulence properties by changing peptidoglycan composition 
(Fernández et  al., 2012). Results from our functional prediction 
demonstrate that sub-MICs antibiotics enhanced the abundance of 
peptidoglycan-related metabolism, with a similar pattern observed for 
the abundance of blaOXA-1 and blaOXA-2 genes.

Functional metagenomic analysis also revealed shifts in gene 
abundance related to amino acid biosynthesis pathways at sub-MIC 
1/10 and 1/50 conditions, including those responsible for synthesis of 
arginine, lysine, histidine, and isoleucine (Figure 9). Genes associated 
with lysine biosynthesis have been shown to be required in bacteria 
for protein synthesis, cell wall biosynthesis and generation of 
diaminopimelate (DAP), the latter being a key cell wall component in 
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many Gram-negative bacteria (Grundy et al., 2003). Nucleotide and 
nucleoside biosynthesis genes consistently showed reduced (negative 
fold-change) gene abundance in treated samples relative to control 
samples. These results indicate potential disruptions in bacterial 
growth, since genes associated with these pathways are key in 
synthesizing precursor metabolites for central anabolic processes 
(Caspi et al., 2018). Considering that antibiotic resistance often causes 
fitness costs (Andersson and Hughes, 2012), shifts in genes associated 
with nucleoside and nucleotide pathways and overall growth rates 
could be  related to the increased replication demands from more 
abundant MGE such as plasmids or integrons.

Interestingly, no other metabolic pathway genes associated with 
stress response or resistance displayed significant differential 
abundance in response to sub-MICs antibiotic exposure. In addition, 
no significant variations in carbon-related gene abundance were 
observed. This was not surprising given that carbon biosynthesis 
would largely result from autotrophic and/or microalgae organisms 
(non-prokaryotic) processes which were excluded from bacterial gene 
abundance screen regarding metabolic pathway analyses. Overall, 
sub-MIC antibiotic exposure seemingly influences cell wall 
biosynthesis and processes related to bacterial growth regulation. As 
biofilms are key participants in biogeochemical organic and inorganic 
cycles, including primary productivity, alterations to biofilm growth 
dynamics can potentially lead to downstream impacts on these 
environmental functions.

4.6. Microbiome and resistome linkages 
post-antibiotic exposure

Network analysis patterns from biofilm communities at different 
sub-MIC antibiotic conditions demonstrated that the overall resistome 
composition correlated to Proteobacteria genera.

Proteobacteria genera such as Bradyrhizobium, Methylibium, 
Methylorubrum, Novosphingobium, Sphingobium and Variovorax 
showed the highest correlations (number of edges) to the resistome 
(Figure 10; Supplementary Figure S11) suggesting that the presence of 
these genera strongly contribute to shaping the microbial composition 
and that they may play important ecological roles in riverine biofilms.

With respect to ARGs composition, aminoglycosides (aadA3, aph3” 
Ib, aph6-Id, rrsA), β-lactam (blaOXA-2, blaOXA-21), and sulfonamide 
(sul1) were the most prevalent across biofilms under sub-MICs antibiotic 
exposure (Figure  10). The aph6-Id gene displayed co-occurrence to 
aph3”-Ib in all sub-MICs treatments, and correlation with other ARGs 
increased with the concentration of sub-MICs antibiotics. Indeed, the 
co-occurrence of Proteobacteria, particularly Variovorax, suggests that 
this bacterial genera could act as potential host of aminoglycosides, 
β-lactams and sulfonamides and trimethoprim ARGs.

Moreover, Proteobacteria taxa, Mycobacterium and 
Mycobacteroides (Actinobacteria) showed correlation to blaOXA-2, 
sul1, and tetG genes. Occurrence of the sul1 gene was negatively 
correlated to Nitrospira, showing different observations from that of 
Matviichuk et al. (2022) who reported that sul1 was correlated with 
Bacteroidetes and Nitrospirae phyla from samples upstream of a 
WWTP, but with no correlation in downstream biofilms. Though 
co-occurrence patterns between resistome and microbiome across the 
different sub-MICs antibiotic conditions were observed, this approach 
and dataset is limited in its ability to ascribe with certainty the 

abundance of resistance genes to specific bacterial taxa 
(Supplementary Figure S11). However, the totality of our results 
suggests that predominance of Proteobacteria could serve as an 
indicator of AMR risk and aid in defining strategies for aquatic 
environmental surveillance efforts, given that the abundance of this 
taxa group is strongly correlated with ARG abundance.

5. Conclusion

This study demonstrated that the combined presence of 
sub-MICs oxytetracycline, ciprofloxacin and streptomycin in riverine 
biofilm communities decreased microbial diversity and selected for 
Proteobacteria genera including Methylorubrum and Variovorax, 
particularly at the sub-MIC 1/10 antibiotic level. In contrast, the 
relative abundance and richness of resistome composition increased 
at the sub-MIC 1/50 antibiotic level, suggesting greater opportunities 
for HGT events and transfer of MGE occurred under this condition. 
At sub-MIC 1/50 antibiotic conditions, exposure did not affect EPS 
matrix thickness as significantly as observed for the 1/10 treatment 
level, thereby potentially enabling enhanced cell–cell communication 
(quorum sensing) between biofilm microorganisms. Accordingly, 
there are a range of biofilm impacts and lifestyle trade-offs, with 
respect to structural stability and genetic diversity across the range of 
sub-MICs concentrations examined here. Our results have important 
implications for the overall functional capacity, ecosystem services, 
and broader ecological roles that sub-MICs antibiotic impacted 
biofilms play in aquatic ecosystems. Altogether, these observations 
confirm that the presence of environmentally relevant concentrations 
of antibiotics promote and accelerate the acquisition of resistance in 
aquatic microbial communities.
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