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Multispecies probiotic 
supplementation in diet with 
reduced crude protein levels 
altered the composition and 
function of gut microbiome and 
restored microbiome-derived 
metabolites in growing pigs
Robie Vasquez , Sang Hoon Kim †, Ju Kyoung Oh †, Ji Hoon Song , 
In-Chan Hwang , In Ho Kim  and Dae-Kyung Kang *

Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea

Both crude protein (CP) and probiotics can modulate the gut microbiome of 
the host, thus conferring beneficial effects. However, the benefits of low CP diet 
supplemented with multispecies probiotics on gut microbiome and its metabolites 
have not been investigated in pigs. Thus, we investigated the combinatory effects 
of low CP diet supplemented with multispecies probiotics on gut microbiome 
composition, function, and microbial metabolites in growing pigs. In total, 140 
6 week-old piglets (Landrace × Yorkshire × Duroc) were used in this study. The 
pigs were divided into four groups with a 2 × 2 factorial design based on their 
diets: normal-level protein diet (16% CP; NP), low-level protein diet (14% CP; LP), 
NP with multispecies probiotics (NP-P), and LP with multispecies probiotics (LP-
P). After the feeding trial, the fecal samples of the pigs were analyzed. The fecal 
scores were improved by the probiotic supplementation, especially in LP-P group. 
We also observed a probiotic-mediated alteration in the gut microbiome of pigs. 
In addition, LP-P group showed higher species richness and diversity compared 
with other groups. The addition of multispecies probiotics in low CP diet also 
enhanced gut microbiota metabolites production, such as short-chain fatty 
acids (SCFAs) and polyamines. Correlation analysis revealed that Oscillospiraceae 
UCG-002, Eubacterium coprostanoligenes, Lachnospiraceae NK4A136 group, 
and Muribaculaceae were positively associated with SCFAs; and Prevotella, 
Eubacterium ruminantium, Catenibacterium, Alloprevotella, Prevotellaceae 
NK3B31 group, Roseburia, Butyrivibrio, and Dialister were positively correlated 
with polyamines. Supplementation with multispecies probiotics modulated the 
function of the gut microbiome by upregulating the pathways for protein digestion 
and utilization, potentially contributing to enriched metabolite production in the 
gut. The results of this study demonstrate that supplementation with multispecies 
probiotics may complement the beneficial effects of low CP levels in pig feed. 
These findings may help formulate sustainable feeding strategies for swine 
production.
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1. Introduction

Diet has a substantial impact on the health and performance of 
livestock (Tilocca et al., 2017). At livestock farms, diet composition is 
continually optimized to achieve maximum yield in terms of animal 
product quality and profitability. A balance between the proportions 
of carbohydrates (fiber) and crude protein (CP) in feed, along with 
sufficient proportions of essential vitamins and minerals, is vital to 
improve livestock performance. Numerous studies have demonstrated 
the impact of dietary CP content on animals, especially pigs (Chen 
et al., 2018; Yu et al., 2019; Liu et al., 2022). The metabolic products of 
protein fermentation play important regulatory roles in maintaining 
the health of the host (Rist et al., 2013; Pieper et al., 2016). However, 
excess dietary CP concentration has negative implications not only for 
animal growth and health but also for the environment. Previous 
studies have reported that reduction of CP content in diet improves 
post-weaning diarrhea in pigs (Nyachoti et al., 2006; Heo et al., 2010; 
Lynegaard et al., 2021), as well as improve swine intestinal health (Fan 
et al., 2017; Chen et al., 2018). In addition, lower dietary CP reduces 
the excretion of malodorous compounds to the environment (Clark 
et al., 2005; Cho et al., 2015). A low protein diet also improves meat 
quality (Zhu et  al., 2022). Recent studies have also shown that 
reduction in dietary CP leads to modulation of the gut microbiome in 
pigs, as well as its metabolites (Fan et al., 2017; Chen et al., 2018; Yu 
et al., 2019; Zhu et al., 2022). This feeding strategy can be advantageous 
but can also negatively impact the growth performance of pigs. Several 
studies have revealed that CP reduction impaired the growth 
performance of pigs potentially due to inhibition of digestion enzymes 
activity and retarded villus morphology (Yu et al., 2019).

Thus, low CP diet is usually coupled with other feeding strategies 
such as supplementation of digestible amino acids (Opapeju et al., 
2008; Millet et al., 2018), antibiotics (Zhang et al., 2016), enzymes 
(such as phytase and xylanase) (Atakora et al., 2011), or probiotics 
(Bhandari et  al., 2010; Tang et  al., 2019). The supplementation of 
livestock feed with probiotics is becoming popular due to its positive 
impact on production yield and livestock health (Barba-Vidal et al., 
2019). Probiotics exert beneficial effects on animals, such as improving 
growth performance, feed efficiency, meat quality, and alleviating 
weaning stress and diarrhea (Zimmermann et al., 2016; Barba-Vidal 
et  al., 2019). Multispecies probiotics, on the other hand, are a 
combination of microbes “containing strains of different probiotic 
species that belong to one or preferentially more genera” (Timmerman 
et  al., 2004). Ideally, each component of this type of probiotic 
complements each other, increasing its effectiveness as a probiotic. 
Previous studies have reported that the supplementation of 
multispecies probiotics in pig feed is beneficial for the overall health 
and performance of pigs (Timmerman et al., 2004; Mori et al., 2011; 
Kwak et al., 2021).

The gut microbiome has been extensively studied to develop 
strategies for improving livestock production quality and yield, and 
for reducing the excretion of malodorous compounds (Nowland et al., 
2019). Changes in the gut microbiome and its metabolites have either 
beneficial or deleterious effects on the health of growing pigs, thus 
affecting their growth performance (Davila et al., 2013; Luise et al., 
2021). The gut microbiome-derived metabolites, such as short-chain 
fatty acids (SCFAs), branched chain fatty acids (BCFAs), and 
polyamines, are highly influenced by CP levels and supplementation 
of probiotics in the diet (Davila et al., 2013; Pieper et al., 2016; Luise 

et al., 2021; Vasquez et al., 2022). In our previous study, we explored 
the effects of multispecies probiotics on the gut microbiome of 
growing pigs (Oh et al., 2021). However, insufficient data are available 
regarding the effects of low CP diet supplemented with multispecies 
probiotics on the gut microbiome, as well as on the production of 
metabolites, such as SCFAs and polyamines, by the pig gut 
microbiome. Therefore, in the present study, we  investigated the 
potential benefits of supplementing multispecies probiotics to low CP 
diet on the gut microbiome and microbial metabolites of growing pigs.

2. Materials and methods

2.1. Experimental design, animals, and diets

All animal protocols used in this study were approved by the 
Dankook University Animal Care Committee (Approval number: 
DK-2-2018). A total of 140 piglets (Landrace × Yorkshire × Duroc) 
weaned at 4 weeks of age were used in this study. The average body 
weight of the piglets was 25.01 ± 1.79 kg. All animals were fed the same 
basal diet after weaning for 2 weeks. The composition of the basal diet 
(Table 1) was formulated to meet or exceed the National Research 
Council (NRC)-recommended nutrition for pigs weighing 25–50 kg 
(National Research Council, 2012). The pigs were randomly divided 
into the following four groups with a 2 × 2 factorial design based on 
their diet: normal-level protein diet (16% CP, NP), low-level protein 
diet (14% CP, LP), NP with multispecies probiotic supplementation 
(NP-P), and LP with multispecies probiotic supplementation (LP-P). 
The multispecies probiotic was composed of Bacillus amyloliquefaciens 
G10 (2.5 × 108 colony forming units (CFU)/g feed), Levilactobacillus 
brevis M10 (1.2 × 108 CFU/g feed), Bacillus subtilis (3.3 × 108 CFU/g 
feed), and Limosilactobacillus reuteri RTR (1.2 × 108 CFU/g feed). 
These species have been previously selected for their potential 
probiotic characteristics (Oh et al., 2021). All pigs were housed in an 
environmentally controlled room. Each pen contained 4–5 pigs and 
was equipped with a one-sided self-feeder and a nipple waterer for ad 
libitum access to feed and water. The feeding period lasted for 6 weeks. 
Fecal score was evaluated daily according to the following criteria: (1) 
hard and dry pellets but low mass, (2) hard and formed stool, (3) soft 
and formed stool but moist, (4) soft and unformed stool, and (5) 
watery, liquid stool (Park et  al., 2018). On the last day of the 
experiment, fresh fecal samples were individually collected from the 
rectum of the pigs in each group and stored at −80°C for further 
analyses. For pH analysis, the fecal samples (0.5 g) were homogenized 
in distilled water, supernatant was collected after centrifugation at 
10,000 × g for 10 min, and the pH was determined using a pH meter 
(Horiba, Japan). The moisture content of the fecal samples (0.5 g) was 
measured using a moisture analyzer (Kett, Japan).

2.2. Preparation of the multispecies 
probiotic

The multispecies probiotic was prepared as described by Oh et al. 
(2021). Briefly, a solid-state fermentation process was used to prepare 
the probiotic. Subsequently, the probiotic was processed into 
powdered form and mixed with the basal feed to achieve the final 
individual doses. Genebiotech (Seoul, South Korea) performed the 
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preparation of the multispecies probiotics. Feed mixed with the 
probiotic was kept in a sterile container at 4°C. The viability of the 
probiotic was assessed daily.

2.3. Determination of fecal metabolite 
levels (SCFAs, BCFAs, lactate, and 
polyamines)

We performed high performance liquid chromatography (HPLC) 
to determine the levels of lactate, SCFAs (acetate, propionate, butyrate, 
and valerate), and BCFAs (isobutyrate and isovalerate) in the fecal 
samples; the samples for HPLC were prepared as previously described 

(Zhang et al., 2022). Briefly, the fecal samples (0.5 g) were suspended 
in 1 mL of sterile demineralized water, vortexed for 3 min, and 
centrifuged at 10,000 × g for 10 min at 4°C. The supernatant was 
collected and filtered using 0.22-μm PTFE syringe filters. The samples 
were analyzed using an Agilent Infinity 1260 HPLC System (Agilent, 
United  States) with Aminex HPX-87H column (300 × 7.8 mm; 
Bio-Rad, United  States), equipped with refractive index and UV 
detectors (λ = 210 nm). The samples (10 μL) were injected using an 
autosampler, while the column temperature was maintained at 
65°C. The mobile phase was 0.005 M H2SO4, and the flow rate was 
maintained at 0.6 mL/min for a total run time of 35 min.

The fecal samples for the analysis of polyamines (putrescine, 
cadaverine, histamine, spermidine, and spermine) were prepared 
according to previously described derivatization methods (Yoon et al., 
2015; Li et  al., 2018), with slight modifications. Briefly, the fecal 
samples (0.5 g) were suspended in 1.5 mL of 0.4 M perchloric acid 
(Sigma-Aldrich) and vortexed thoroughly, the suspension was 
centrifuged at 13,000 × g for 10 min, and the supernatant was collected. 
Next, 2 M NaOH and saturated NaHCO3 were added to the 
supernatant, the solution was reacted with dansyl chloride (5 mg/mL 
in acetone; Daejung, South Korea) at 50°C for 45 min. The reaction 
was stopped by adding 25% NH4OH and incubation at 50°C for 
15 min. The volume of the reaction mixture was adjusted to 1.5 mL 
using acetonitrile (JT Baker, PA, United  States), followed by 
centrifugation at 2,500 × g for 5 min. The supernatant was collected 
and filtered using 0.22-μm PTFE syringe filters. Samples (10 μL each) 
were analyzed using an Agilent Infinity 1260 HPLC System (Agilent, 
United States) equipped with a C-18 reversed phase (150 × 4.6 mm, 
5 μm) column (Young Jin Biochrom, South Korea) and a UV detector 
(λ = 254 nm). Acetonitrile and water were used as the mobile phases 
(linear gradient). The column temperature was set at 30°C, and the 
flow rate was maintained at 0.8 mL/min for a total run time of 35 min. 
The concentration of each metabolite was evaluated against a 
calibration curve generated using standards. All standards were 
purchased from Sigma-Aldrich (St. Louis, MO, United States).

2.4. 16S rRNA gene sequencing and 
microbial community analysis

Genomic DNA was extracted from fecal samples using the 
QiaAmp PowerFecal Pro DNA Kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions. The concentration and 
purity of the genomic DNA were determined using a UV 
spectrophotometer (Molecular Devices, CA, United States). Illumina 
MiSeq (Illumina, CA, United States) platform was used to amplify the 
V3–V4 hypervariable region of the 16S rRNA gene (CJ BioScience, 
Inc., Seoul, South Korea). The obtained raw sequencing data were 
processed using the Quantitative Insights Into Microbial Ecology 
(QIIME2) pipeline (Bolyen et al., 2019). Primers and adapters were 
removed from the raw sequences using the “cutadapt” plugin in 
QIIME2 (Martin, 2011). Sequence quality control and feature table 
construction were performed using DADA2 (Callahan et al., 2016). 
Phylogenetic diversity analyses were performed using the 
“q2-phylogeny” and “q2-diversity” plugins’; the feature classifiers were 
trained using the “q2-feature-classifier” plugin in within QIIME2, 
using the SILVA 138_99 database (Quast et  al., 2013). Principal 
coordinate analysis (PCoA) based on Bray–Curtis distance matrix was 

TABLE 1 Ingredients and chemical composition of the basal pig feed 
(as-fed basis).

Composition Experimental diets

NP LP

Ingredients (%)

  Corn 74.99 79.87

  Soybean meal (48%) 20.0 14.6

  Tallow 1.88 1.99

  DCP 1.28 1.38

  Limestone 0.73 0.71

  Salt 0.20 0.20

  Methionine (99%) 0.08 0.10

  Lysine 0.46 0.65

  Threonine (99%) 0.13 0.22

  Tryptophan (99%) 0.02 0.05

  Mineral mixa 0.10 0.10

  Vitamin mixb 0.10 0.10

  Choline 0.03 0.03

  Total 100 100

Calculated values

  Crude protein (CP), % 16.0 14.0

  Ca, % 0.66 0.66

  P, % 0.56 0.56

  Lys, % 1.12 1.12

  Met, % 0.32 0.32

  Thr, % 0.72 0.72

  Trp, % 0.19 0.19

  ME, kcal/kg 3,300 3,300

  Fat, % 4.75 4.95

  Fiber, % 2.48 2.38

  Ash, % 4.48 4.29

NP, normal-level protein diet; LP, low-level protein diet.
aProvided per kg of complete diet: Fe, 138 mg as ferrous sulfate; Cu, 84 mg as copper sulfate; 
Mn, 24 mg as manganese oxide; Zn, 72 mg as zinc oxide; I, 0.6 mg as potassium iodide; and 
Se, 0.36 mg as sodium selenite.
bProvided per kg of complete diet: vitamin A, 15,600 IU; vitamin D3, 2,040 IU; vitamin E, 
72 IU; vitamin K3 6 mg; thiamine, 4 mg; riboflavin, 20 mg; pyridoxine, 6 mg; vitamin B12, 
8.04 mg; niacin, 0.66 mg; Ca-pantothenate, 54 mg; folic acid, 2.52 mg; and biotin, 0.40 mg.
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performed using the “q2-diversity” plugin in QIIME2. Alpha diversity 
indices (Chao1, Shannon entropy, and Simpson indices), PCoA plot, 
and relative abundance bar graphs were constructed using the 
“ggplot2” package in R program v.4.0.2 (Core R Team, 2019). All 
metagenomic data generated in this study have been deposited at the 
National Center for Biotechnology Information (NCBI) Sequence 
Read Archive (SRA) (BioProject accession number:  PRJNA856074).

Differential taxonomic markers for each group were determined 
using the “run_lefse” package (Cao, 2020) in R program based on 
Linear discriminant analysis effect size (LEfSe) (Segata et al., 2011). 
Functional prediction based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database was performed using Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved 
States (PICRUSt2) (Douglas et al., 2020). Correlation analyses were 
performed by calculating Pearson correlation coefficient using the 
“Hmisc” package in R, and the data were visualized using the 
“pheatmap” package in R (Core R Team, 2019).

2.5. Statistical analyses

Statistical analyses of microbial composition and metabolite 
concentration data were performed using R (Core R Team, 2019). The 
normality of data distribution was analyzed using the Shapiro–Wilk 
test. Multivariate analysis of variance (MANOVA) was used to 
calculate the effects of CP levels, probiotics, and their interactions. 
One-way analysis of variance (ANOVA) with Tukey’s test was used to 
analyze significant differences among treatments. False discovery rate 
(FDR) correction was performed as necessary. The Kruskal–Wallis test 
for alpha and beta diversity was performed using the QIIME2 pipeline. 
Permutational multivariate analysis of variance (PERMANOVA) was 
used to determine significant differences in the PCoA plot. Data were 
considered significant at p < 0.05.

3. Results

3.1. Effect of multispecies probiotic on pH 
and moisture content of fecal samples

Fecal sample analyses (Table 2) revealed that pH significantly 
decreased with probiotic supplementation (p < 0.001). Similarly, the 
moisture content and fecal scores were significantly improved after 
probiotic supplementation, irrespective of the CP level (p = 0.04 and 
p < 0.01, respectively). Moreover, LP-P group exhibited significantly 

lower moisture content and better fecal scores than the LP group 
(p < 0.05).

3.2. Effect of multispecies probiotic on 
fecal metabolites

To investigate the effect of multispecies probiotic 
supplementation in feed with normal or low CP level on gut 
microbiome-derived metabolites, we measured the lactate, SCFA, 
BCFA, and polyamine levels in the fecal samples of growing pigs 
(Table 3). The acetate, propionate, and valerate concentrations of the 
LP group were lower than those of the NP group. Probiotic 
supplementation, regardless of CP level, significantly increased fecal 
acetate, propionate, and valerate levels (p = 0.01, p = 0.04, and 
p = 0.006, respectively). Interestingly, fecal SCFA levels of LP-P were 
comparable with NP-P compared with LP alone. However, 
significant changes were not observed in fecal butyrate and lactate 
levels, and no differences were observed in fecal isobutyrate and 
isovalerate levels. The polyamine (putrescine, cadaverine, 
spermidine, and spermine) levels of the LP group were reduced 
compared to that in the other groups; however, the differences were 
not significant (p > 0.05). By comparison, NP-P and LP-P marginally 
increased the concentrations of these polyamines (p > 0.05).

3.3. Effect of probiotics on gut microbial 
structure and composition

The gut microbiome structure and community composition of the 
growing pigs from all four groups were examined. Sequencing of the 
16S rRNA yielded 32,171,215 raw reads for 140 samples, which 
contained 15,415,965 valid reads after filtering and removing chimeric 
reads. The average length of valid reads was 412 bp. A rarefaction 
curve was generated to check the appropriateness of the reads for 
downstream analyses (Supplementary Figure S1). Alpha diversity 
analyses (Figure 1A; Supplementary Table S1) revealed that the LP-P 
group showed significantly higher species richness than the other 
treatment groups, as revealed by the Chao1 index (p < 0.001). Similarly, 
the species diversity in the LP-P group was significantly higher than 
that in the other treatment groups, based on the Shannon index 
(p < 0.001); and both the NP-P and LP-P groups exhibited increased 
species evenness compared to that of the LP and NP groups, as 
revealed by the Simpson index (p < 0.001). On the other hand, PCoA 
based on the Bray–Curtis distance matrix (Figure 1B) revealed distinct 

TABLE 2 Effect of dietary probiotic supplementation on fecal scores and pH moisture content of fecal samples of growing pigs.

Items Treatments1 SEM p values2

NP LP NP-P LP-P CP Pro CP × Pro

pH 6.55 6.50 6.39 6.33 0.03 0.27 <0.001 0.90

Moisture content, % 23.20 24.36a 23.28 22.89b 1.76 0.18 0.02 0.007

Fecal score 2.63 2.91a 2.57 2.40b 0.65 0.59 0.008 0.03

Significant differences among treatments were determined using Kruskal-Wallis test. Mean values within a row without a common superscript differ significantly (p < 0.05). NP, normal-level 
protein diet; LP, low-level protein diet; NP-P, normal-level protein diet + probiotic; LP-P, low-level protein diet + probiotic; SEM, standard error of mean; CP, crude protein; Pro, probiotics.
1Values were reported as mean (n = 35 each treatment).
2p values were calculated using multivariate ANOVA (MANOVA).
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clusters between diets with and without probiotics (p < 0.001). No 
significant differences were observed between NP and LP, or NP-P and 
LP-P groups.

Moreover, we  observed changes in the gut microbiome 
composition of the growing pigs at the phylum and genus levels. 
At the phylum level (Figure 2A; Supplementary Table S2), probiotic 
supplementation reduced the abundance of Firmicutes (p < 0.001) 
whereas increased that of Bacteroidota (p = 0.38), compared with 
that of the groups without probiotic supplementation. 
Desulfobacterota was enriched in both the NP and NP-P groups 
(0.28 and 0.33%, respectively; p < 0.001). Moreover, the abundance 
of several bacterial genera increased in the probiotic groups 
(Figure  2B; Supplementary Table S3). Irrespective of CP levels, 
Prevotella NK3B31 group (p < 0.001), Prevotella (p = 0.001), 
Muribaculaceae (p < 0.001), Rikenellaceae RC9 group (p < 0.001), 
Eubacterium coprostanoligenes group (p < 0.001), uncultured 
Selenomonadaceae (p < 0.001), and Alloprevotella (p < 0.001) were 
significantly enriched by probiotic supplementation. The 
abundance of Lachnospiraceae NK4A136 was enriched by 
probiotic supplementation (p < 0.001), but a higher increase was 
observed in case of normal-CP diet. Conversely, the abundance of 
Clostridium sensu stricto 1 and Terrisporobacter was reduced in the 
LP-P and NP-P groups (p < 0.001). On the other hand, both NP and 
NP-P enriched the abundance of Roseburia (p = 0.004) and 
Ruminococcus (p = 0.004); LP and LP-P had higher population of 
Dialister (p < 0.001) and Megasphaera (p = 0.003).

To examine the taxonomic markers in each treatment group, 
differential abundance analysis was performed using LEfSe 
(Figure 2C). NP diet differentially enriched Roseburia, Ruminococcus, 
Romboutsia, Coprococcus, Eubacterium hallii, Marvinbryantia, and 
Butyricicoccaceae UCG-008; the LP group exhibited differential 

abundance of Clostridium sensu stricto 1 and 6, Terrisporobacter, and 
uncultured Oscillospiraceae. Meanwhile, NP-P group was abundant 
in Prevotellaceae NK3B31 group, uncultured Selenomonadaceae, 
Lachnospiraceae NK4A136 group, Eubacterium ruminantium, and 
Butyrivibrio; and the LP-P group had differentially abundant 
Muribaculaceae, Prevotella, Oscillospira, Alloprevotella, 
and Catenibacterium.

3.4. Associations between the gut 
microbiome and fecal metabolites

Next, we examined the association between the gut microbiome 
and fecal metabolites. Pearson’s correlation coefficients were 
calculated and visualized using a heatmap (Figure 3). Prevotella, 
Eubacterium ruminantium, Catenibacterium, Alloprevotella, 
Prevotellaceae NK3B31 group, Roseburia, Butyrivibrio, Dialister, and 
uncultured Selenomonadaceae were positively correlated with fecal 
polyamine concentrations. Oscillospiraceae UCG-002, Eubacterium 
coprostanoligenes, Erysipelatoclostridiaceae UCG-004, Desulfovibrio, 
Lachnospiraceae NK4A136 group, Muribaculaceae, and UCG-010 
have positive associations with SCFAs. BCFAs (isobutyrate and 
isovalerate) were positively associated with the abundances of 
Parabacteroides, Alloprevotella, Prevotellaceae NK3B31, 
Erysipelatoclostridiaceae UCG-004, Lachnospiraceae NK4A136 
group, Muribaculaceae, UCG-010, and Butyricicoccaceae UCG-008. 
By contrast, Romboutsia, Clostridium sensu stricto 1 and 6, uncultured 
Oscillospiraceae, Terrisporobacter, Marvinbryantia, Eubacterium hallii 
group, and Turicibacter were negatively associated with fecal 
polyamines, SCFAs, and BCFAs. Moreover, it is noteworthy that the 
gut microbiota enriched by the addition of the multispecies probiotic 

TABLE 3 Effect of dietary probiotic supplementation on microbiome-derived metabolites.

Items Treatments1 SEM p values2

NP LP NP-P LP-P CP Pro CP  ×  Pro

SCFA, μmol/g

  Acetate 321.73a 342.08 372.58 415.00b 13.09 0.15 0.01 0.77

  Propionate 17.48 16.50a 19.81 22.20b 0.75 0.06 0.04 0.91

  Butyrate 14.37 12.78 13.48 13.44 0.55 0.89 0.85 0.54

  Valerate 2.63 1.90a 3.50 4.24b 0.39 0.04 0.006 0.19

Lactate, μmol/g 167.32 209.40 174.27 205.82 10.18 0.18 0.40 0.72

BCFA, μmol/g

  Isobutyrate 1.14 0.91 1.37 1.94 0.23 0.52 0.37 0.38

  Isovalerate 4.10 4.26 4.87 4.84 0.30 0.16 0.95 0.91

Polyamines, μg/g

  Putrescine 55.50 48.87 55.45 70.13 4.19 0.42 0.77 0.13

  Cadaverine 54.39 36.19 52.80 58.36 4.10 0.77 0.81 0.04

  Histamine 2.48 2.62 3.14 3.27 0.17 0.39 0.05 0.33

  Spermidine 130.05 107.17 130.78 144.11 7.20 0.91 0.90 0.23

  Spermine 6.97 6.69 6.81 7.86 0.23 0.08 0.73 0.27

Significant differences among treatments were determined using Kruskal-Wallis test. Mean values within a row without a common superscript differ significantly (p < 0.05). NP, normal-level 
protein diet; LP, low-level protein diet; NP-P, normal-level protein diet + probiotic; LP-P, low-level protein diet + probiotic; SEM, standard error of mean; CP, crude protein; Pro, probiotics.
1Values were reported as mean (n = 35 each treatment).
2p values were calculated using multivariate ANOVA (MANOVA).
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(either NP-P or LP-P) were generally positively associated with fecal 
metabolites, and conversely, NP- or LP-abundant microbiota had an 
inverse relationship with fecal metabolites.

3.5. Prediction of the functional markers of 
the gut microbiome

To assess the effects of multispecies probiotic supplementation in 
diet on the function of the gut microbiome of growing pigs fed 
different CP levels, metabolic pathways were predicted using 
PICRUSt2 and the KEGG database. KEGG pathways for metabolism 
(amino acid, carbohydrate, and energy) were selected and visualized 
in a heatmap (Figure  4). The addition of multispecies probiotics 
altered the predicted function of the gut microbiome with respect to 
metabolism. Several amino acid metabolism pathways showed greater 
abundance in the NP-P and LP-P groups, such as the metabolism of 
D-alanine, glycine, serine, and threonine, D-glutamine, and 
D-glutamate, D-arginine, and D-ornithine, phenylalanine, alanine, 

aspartate, and glutamate. Whereas metabolism of cysteine, 
methionine, histidine, tryptophan, and tyrosine was enriched in the 
NP and LP groups. Moreover, carbohydrate metabolism pathways 
were the most predicted in the NP and LP groups, such as the pentose 
phosphate pathway, fructose and mannose metabolism, starch and 
sucrose metabolism, galactose metabolism, amino sugar and 
nucleotide sugar metabolism, and propanoate metabolism. Finally, 
energy harvesting pathways, such as sulfur metabolism, were enriched 
in the NP-P and LP-P groups, whereas nitrogen metabolism was 
enriched in the NP and LP groups.

4. Discussion

In the present study, we  observed that multispecies probiotic 
supplementation in diet significantly modulated the gut microbiome 
structure of growing pigs; however, similar effects were not observed 
by different CP levels in the diet. These results are in accordance with 
the results reported by Tang et al. (2019) who showed that probiotics 

FIGURE 1

Changes in the gut microbiome structure. Comparison of alpha-diversity indices Chao1, Shannon entropy, and Simpson (A). Significant differences 
among treatments were determined using Kruskal-Wallis test. Principal coordinate analysis (PCoA) plot based on Bray-Curtis distance matrix (B). NP, 
normal-level protein diet; LP, low-level protein diet; NP-P, normal-level protein diet + probiotic; LP-P, low-level protein diet + probiotic.
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have a more significant effect on the gut microbiome of pigs than 
dietary CP levels. A meta-analysis data revealed that CP level 
reduction by 2–3% may not be  sufficient to influence the gut 
microbiota, especially in a short period of feeding (Luise et al., 2021). 
Yu et al. (2019) reported that reduction of CP from 17 to 14% did not 
alter the colonic microbiota of pigs. Moreover, the lack of difference 
between the microbiota of NP and LP might be influenced by the 
chosen sample in the current study (i.e., feces versus ileum), as pointed 
out by Pollock et al. (2019).

In addition to the composition of the gut microbiome, microbial-
derived metabolites, such as SCFAs, BCFAs, and polyamines, also 
affect the intestinal health of the host. SCFAs, mainly butyrate, 
propionate, and acetate, are produced in the proximal colon as a 
product of fiber and, to some extent, protein degradation (Davila et al., 
2013; Louis and Flint, 2017). Recent studies have demonstrated that 
these metabolites play a role in regulating homeostasis in the host 
gastrointestinal tract (GIT). SCFAs stimulate cell proliferation, 
suppress proinflammatory cytokines, and enhance the expression of 
tight junction proteins (Grilli et al., 2016; Zhong et al., 2019; Han et al., 
2020; Xu et al., 2020). A reduction in dietary CP level could reduce the 

capacity of gut commensals to produce beneficial metabolites due to 
impaired fermentation capacity (Luise et al., 2021). Therefore, this 
could be an unwanted effect of the CP reduction strategies. In the 
present study, we observed a decrease in the levels of SCFAs, such as 
propionate and valerate, with decreasing CP level, which has been 
observed in previous studies (Chen et  al., 2018; Yu et  al., 2019). 
However, the addition of multispecies probiotic increased the levels of 
these SCFAs, especially in LP-P group, indicating that probiotics 
restored the capacity of the gut microbiome to produce SCFAs. In 
contrast, the addition of multispecies probiotics did not significantly 
alter the levels of fecal lactate, potentially since there were no changes 
in the dietary levels of carbohydrates. Like SCFAs, BCFAs, such as 
isobutyrate and isovalerate, are important bacterial metabolites. 
Although BCFAs are associated with protein fermentation (Rist et al., 
2013; Rios-Covian et  al., 2020), low CP level or probiotic 
supplementation did not exert any noticeable effect on BCFAs in the 
present study. Correlation analysis revealed that Oscillospiraceae 
UCG-002, Eubacterium coprostanoligenes, Lachnospiraceae NK4A136 
group, Muribaculaceae, and Oscillospiraceae UCG-010 were positively 
correlated with SCFA and BCFA levels. In contrast, unclassified 

FIGURE 2

Changes in the gut microbiome composition. Relative abundance (%) at phylum (A) and genus (B) levels. Differential abundance analysis (LEfSe) showing 
taxonomical features identified among treatments (C). NP, normal-level protein diet; LP, low-level protein diet; NP-P, normal-level protein diet + probiotic; 
LP-P, low protein diet + probiotic.

https://doi.org/10.3389/fmicb.2023.1192249
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Vasquez et al. 10.3389/fmicb.2023.1192249

Frontiers in Microbiology 08 frontiersin.org

Prevotellaceae, Prevotellaceae NK3B31, and Alloprevotella were 
positively correlated with only BCFA levels. The bacterial family 
Lachnospiraceae and several members of the genus Eubacterium 
produce SCFAs (Biddle et al., 2013; Mukherjee et al., 2020). Moreover, 
Muribaculaceae and Oscillospiraceae are associated with high SCFA 
production (Smith et al., 2021; Yang et al., 2021; You et al., 2022). 
Prevotella and Eubacterium are markers for SCFA and BCFA 
production (Trefflich et al., 2021). Supplementation with probiotics 
has been shown to increase the capacity of the gut microbiome to 
produce SCFAs owing to the proliferation of metabolite-producing 
bacteria in the GIT (Sakata et al., 2003).

Polyamines are the products of amino acid fermentation by the 
gut microbiota (Matsumoto and Benno, 2007; Tofalo et al., 2019). 
Polyamine production by the microbiome is highly affected by the 
amount and source of dietary proteins (Rist et al., 2013; Wen et al., 
2018). Moreover, as microbial metabolites, polyamines have 
important regulatory functions, such as the promotion of the small 
intestine development in piglets, suppression of inflammation (Liu 
et al., 2019), and regulatory functions in swine gestation (Wu et al., 

2005). Polyamines exert beneficial effects on swine production, such 
as increasing growth and alleviating diarrhea symptoms (Van 
Wettere et al., 2016; Liu et al., 2019). However, excessive amounts of 
polyamines are linked with intestinal damage and occurrence of 
diarrhea in piglets (Ewtushik et al., 2000; Teti et al., 2002; Pieper 
et al., 2015). Polyamines may also contribute to the production of 
malodorous excretions in pigs (Jang and Jung, 2018). Some studies 
have reported that probiotics could affect the levels of polyamines in 
the GIT, although the results were inconsistent (Matsumoto et al., 
2011; Ding et al., 2021). We observed small increase in polyamine 
levels in the LP-P group, indicating limited capacity of the 
multispecies probiotic to restore polyamine production by the gut 
microbiome. Nevertheless, correlation analysis showed several gut 
commensals were positively associated with fecal polyamine 
concentrations. Prevotella produces polyamines such as spermidine 
(Hanfrey et  al., 2011; Nelson et  al., 2015), and Eubacterium and 
Ruminococcus, both members of the phylum Firmicutes, could 
metabolize amino acids, such as ornithine, arginine, and lysine, to 
produce polyamines (Li et al., 2021). Roseburia and Dialister can also 

FIGURE 3

Gut microbiome composition correlates with fecal metabolites. Heatmaps based on Pearson correlation coefficients showing the relationship between 
gut microbiome and fecal metabolite levels (SCFAs, BCFAs, lactate, polyamines). *, **, and *** represent p < 0.05, p < 0.01, and p < 0.001, respectively. 
NP, normal-level protein diet; LP, low-level protein diet; NP-P, normal-level protein diet + probiotic; LP-P, low-level protein diet + probiotic.

https://doi.org/10.3389/fmicb.2023.1192249
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Vasquez et al. 10.3389/fmicb.2023.1192249

Frontiers in Microbiology 09 frontiersin.org

produce polyamines (Nelson et al., 2015; Tamanai-Shacoori et al., 
2017). Our results strongly suggest that low CP diet could reduce 
beneficial gut microbiome metabolites, but the addition of probiotics 
could restore metabolite production by the gut commensals in low 
CP diet.

Moreover, we observed that reduction in dietary CP level also 
influenced the function of the gut microbiome, which is consistent 
with the results of previous studies (Liu et al., 2021; Tao et al., 2021). 
Pathways related to amino acid metabolism were enriched in the LP-P 
and NP-P groups compared with the NP or LP groups. This strongly 
suggests that probiotics can restore the ability of the gut microbiome 
to utilize undigested proteins in the colon, thereby enhancing the 
production of SCFAs and polyamines. This is consistent with the idea 
that probiotics enhance the protein digestion capacity of the host 

(Wang and Ji, 2018; Peng et al., 2019; Akhtar et al., 2022). Furthermore, 
the associations of several protein-utilizing commensals, such 
Prevotella, Alloprevotella, Eubacterium, and Murabaculaceae with 
protein-related metabolites, could account for the enrichment of 
amino acid metabolism pathways. Hence, we hypothesize that the 
enrichment of pathways for amino acid metabolism was favored 
rather than the carbohydrate pathways. The metabolism of amino 
acids such as glycine, threonine, glutamate, alanine, and aspartate, by 
colonic bacteria can produce SCFAs, whereas the metabolism of 
lysine, arginine, and ornithine produces polyamines (Zhao et  al., 
2018). Furthermore, supplementation with probiotics favored 
biosynthetic pathways, such as the TCA cycle; biosynthesis of 
phenylalanine, tyrosine, and tryptophan; biosynthesis of lysine; and 
pentose and glucuronate interconversion. According to Portune et al. 

FIGURE 4

Changes in the functional capacity of the gut microbiome. Heatmap showing the relative abundances of metabolism-related KEGG pathways among 
different groups. NP, normal-level protein diet; LP, low-level protein diet; NP-P, normal-level protein diet + probiotic; LP-P, low-level protein diet + 
probiotic.

https://doi.org/10.3389/fmicb.2023.1192249
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Vasquez et al. 10.3389/fmicb.2023.1192249

Frontiers in Microbiology 10 frontiersin.org

(2016), the function of the microbiome can shift to the utilization of 
nitrogenous compounds for biosynthetic pathways when there is an 
abundance of other energy sources.

The fecal pH indicates the fermentation capacity of the colon. 
Lower colonic pH is beneficial for gut health as it can suppress the 
growth of potential pathogens, enhance protein digestion, and may 
indicate increased production of gut microbiome metabolites, such as 
SCFAs (Wen et  al., 2018; Tang et  al., 2019). We  observed that 
supplementation with multispecies probiotic resulted in a significant 
decrease in fecal pH, which is in accordance with results of previous 
studies on the effect of probiotics on colonic pH (Pereira et al., 2022). 
A reduction in dietary CP level or probiotic supplementation improves 
the fecal score of pigs (Balasubramanian et al., 2018; Lu et al., 2018; 
Wen et  al., 2018). Moreover, in the present study, the addition of 
multispecies probiotics to low CP diets significantly improved the 
fecal moisture content and fecal scores of growing pigs. This suggests 
that combinatory use of multispecies probiotics with CP reduction can 
ameliorate watery stools in growing pigs.

This study has limitations. First, the effect of reduction in dietary 
CP may have a more definitive effect on other segments of the GIT 
than in colon, which was not explored by the current study. In 
addition, the effects of low CP diet with multispecies probiotics on the 
actual protein digestion or absorption were not measured as this study 
focused mainly on the gut microbiome.

5. Conclusion

In the present study, we demonstrated that the combination of 
low CP diet and multispecies probiotic supplementation improved 
the fecal scores of the pigs. Moreover, pigs fed with multispecies 
probiotics had a distinct microbiome structure and composition. 
Pigs fed with low CP diet with multispecies probiotics had higher 
species richness and diversity. Multispecies probiotic 
supplementation in feed with low CP also altered the protein 
digestion and utilization activity of the gut microbiome, 
potentially contributing to higher fecal concentrations of SCFAs 
and marginally elevated polyamine levels. Population of gut 
microbiota such as Oscillospiraceae UCG-002, Eubacterium 
coprostanoligenes, Lachnospiraceae NK4A136 group, 
Muribaculaceae Prevotella, Eubacterium ruminantium, 
Catenibacterium, Alloprevotella, Prevotellaceae NK3B31 group, 
Roseburia, Butyrivibrio, and Dialister were associated with SCFAs 
and polyamine levels. To the best of our knowledge, this is the first 
study to describe the effects of multispecies probiotic 
supplementation and low CP diet on gut microbiome function. 
Therefore, supplementation with multispecies probiotics may 
complement the beneficial effects of low CP levels in pig feed. 
These findings may help formulate sustainable feeding strategies 
for swine production. The effects of this combined approach on 
the quality of animal production and environmental aspects must 
be further validated.
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