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Microbial electrosynthesis (MES) is an emerging electrochemical technology 
currently being researched as a CO2 sequestration method to address climate 
change. MES can convert CO2 from pollution or waste materials into various 
carbon compounds with low energy requirements using electrogenic microbes 
as biocatalysts. However, the critical component in this technology, the cathode, 
still needs to perform more effectively than other conventional CO2 reduction 
methods because of poor selectivity, complex metabolism pathways of microbes, 
and high material cost. These characteristics lead to the weak interactions 
of microbes and cathode electrocatalytic activities. These approaches range 
from cathode modification using conventional engineering approaches to new 
fabrication methods. Aside from cathode development, the operating procedure 
also plays a critical function and strategy to optimize electrosynthesis production 
in reducing operating costs, such as hybridization and integration of MES. If this 
technology could be  realized, it would offer a new way to utilize excess CO2 
from industries and generate profitable commodities in the future to replace 
fossil fuel-derived products. In recent years, several potential approaches have 
been tested and studied to boost the capabilities of CO2-reducing bio-cathodes 
regarding surface morphology, current density, and biocompatibility, which would 
be further elaborated. This compilation aims to showcase that the achievements 
of MES have significantly improved and the future direction this is going with 
some recommendations.
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1. Introduction

The anthropogenic carbon dioxide (CO2) emission is responsible 
for global warming and climate. Furthermore, even with the 
implementation of the Paris Agreement at 33.5 Gt in 2018, climate 
change has increased to unprecedented levels in recent years. On the 
positive side, 2019 saw stable CO2 emissions at 33 Gt due to the 
implementation of renewable energy in the power sector (IEA, 
2020). Then, in 2020, CO2 emissions in the energy sector dropped 
by around 5.2% (IEA, 2020) due to the lockdown caused by Covid-
19. The slight drop in CO2 emission around the globe was an 
excellent short-term effect caused by the outbreak. As the efforts to 
recover from the pandemic, 2022 saw global CO2 emissions and 
energy rebound to reach their highest-ever annual level at a 0.9% 
increase, translating to 321 Mt. (IEA, 2023). Since 2020, the 
emissions have increased to 36.3 Gt with an average global CO2 
growth rate of 3.0% annually from the early 2000s before decreasing 
to 1.2% annually for the last decade (2010–2019) (Mofijur et  al., 
2021). Thus, an effective and reliable method for capturing and 
storing CO2 capture and storage is vital to reduce and limit 
greenhouse gasses, especially CO2, as it is the highest emitted 
pollutant worldwide.

Carbon capture, utilization, and storage (CCUS) are one of the 
proposed ideas and methods used to address the problem and reach 
net-zero carbon emissions. CCUS is a holistic approach because it can 

be used in various sectors, such as manufacturing, construction, and 
oil and gas. As of last year, around 35 commercial facilities are 
applying CCUS to industrial processes, fuel transformation, and 
power, with a total annual capture capacity of almost 45 Mt. CO2 
annually, exist around the globe, with 200 more yet to be completed 
in 2030, with 200 Mt. sequestration capacity (IEA, 2022). This method 
revolves around two categories, one of which is carbon capture and 
storage (CCS), in which the CO2 is collected, transported, and can 
be permanently stored in a facility to prevent it from ever reaching the 
atmosphere. One notable example is the Carbfix project in Iceland, 
where CO2 and hydrogen sulfide from the Hellisheidi geothermal 
power plant is injected into geothermal reservoirs, specifically porous 
basalt rocks, to form stable minerals for safekeeping (Sigfússon 
et al., 2018).

Another category is called carbon capture and utilization (CCU), 
where the CO2 generated by industry or recaptured from the 
atmosphere is used to produce carbon-based products such as fuel and 
chemicals. This method is used in enhanced oil recovery (EOR), 
where CO2 is injected into oil reservoirs to extract and displace 
remaining valuable gas where it is difficult to reach. This CCU method 
is applied worldwide, such as in Jilin Oilfield in China (Ren et al., 
2016) and The Gorgon Project in Australia (Flett et al., 2009). This 
method could recover up to 470 million barrels of oil and 10–35% of 
the original gas in reservoirs (Hamza et al., 2021). Another application 
that has caught up with many researchers worldwide, which will 
be  highlighted in this review, is the application of the microbial 
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electrosynthesis system (MES) in CCU and how it will benefit 
scientists in addressing climate change generally and CO2 emission, 
specifically.

In an economic sense, the approach is favorable because the value-
added product can be used or sold to a wide range of consumers, 
which could offset the cost of production itself instead of being stored 
in a facility. In other words, side profit can be generated by integrating 
these technologies in existing CO2-producing facilities, such as metal, 
power, and cement industries. Thus, the initiatives are incentivized to 
implement the bio-recycling system widely, contributing to the 
circular bioeconomy of MES, where the waste generated is recycled 
and converted to profitable products (Bian et al., 2020). Also, the 
design and scalability of MES can be easily implemented using existing 
fuel cell technology as both essentially run on the same principle, 
design, and component. For example, a small cluster of simple, small-
size MES stack in hybrid series and parallel configuration can be used 
as the scaling-up strategy in implementing this system with a projected 
surface/volume ratio of 1 cm2/mL using flat, multi-chamber reactors 
(Jourdin et al., 2020).

MES is a bio-electrochemical system (BES) that harnesses and 
reduces CO2 into other beneficial carbon compounds using 
biocatalysts. This method combines existing CCU technologies and 
incorporates biotic components in the system that harness CO2 as a 
substrate and transform it into value-added products. However, up to 
this day, the commercialization of the MES system is far from reality 
because of some technical barriers that need to be solved to scale up 
system feasibility. These issues include the energy-intensive 
requirement of downstream processing and anode material cost, poor 
selectivity of the valuable product, and the interaction of cathode 
catalyst and biocatalyst, the most crucial aspect in determining its 
practicality and efficiency because it is the core part of MES. Thus, this 
review will concentrate on the recent progress of cathode catalyst 
fabrication from the past decade by measuring and comparing its 
performance from various angles in MES.

2. Fundamentals of CO2RR through 
MES

Biotic CO2 reduction reaction (CO2RR) could offer a broader 
range of possibilities than conventional methods in terms of economic 
feasibility given its self-generating capability, the low cost of microbes, 
and its low energy consumption in terms of temperature and pressure 
as it could operate in mesophilic conditions (Dessì et al., 2021). To this 
day, the most well-known method of CO2RR is photosynthesis. This 
process captures and converts CO2 from the atmosphere and is used 
for growth and energy storage in the form of carbohydrates. However, 
CO2 fixation using microbes could have a significant impact because 
it could be independent of sunlight, had a faster rate of reaction or 
growth, and was easy to manipulate. These processes’ derivations have 
many applications, such as in foods, feeds, fuels, and chemicals such 
as biogas (He et al., 2023), alcohol (Izadi et al., 2021), organic acids 
(Im et al., 2022), and bioplastic (Zhang et al., 2021).

In applying this process, several microbes were studied, ranging 
from archaea, bacteria, eukarya, and algae in biochemical 
CO2RR. Moreover, the biological pathways of these mechanisms were 
studied, and a few possible routes are widely suggested. The 
biochemical method of CO2RR, in general, is more favorable than 

conventional chemical methods because it uses less or no heavy metal 
and transition metal as a catalyst, which can lead to serious adverse 
effects on human health and the environment. In addition, this 
synthesis method can produce a more diverse range of products by 
manipulating different microbes and operating environments in the 
system because the microbes react differently according to the 
environment. This method could also treat municipal and industrial 
wastewater and recover the contained energy as hydrocarbon 
products, the leading factor in CO2 emission worldwide (Lu et al., 
2018) (Figure 1).

The electrogenic microbes also metabolize substrate differently 
depending on the species. In bacteria, acetogens such as C. aceticum 
and methanogens such as M. maripaludis undergo CO2RR through 
the Wood-Ljundahl pathway (WLP), which reduces CO2 into formate 
to acetyl Co-A before it is further synthesized to alcohol, acetate, and 
butyrate (Ragsdale and Pierce, 2008). WLP are two linear branch 
pathways, methyl and carbonyl branches, in which two CO2 molecules 
are converted to one molecule of acetyl Co-A. The methyl branch 
pathway involves CO2 being reduced to formic acid before it is bound 
in an ATP-dependent reaction to the tetrahydrofolic acid (THF) 
cofactor. Then, water is removed and reduced to methyl intermediate 
before it is transferred to another cofactor called the corrinoid iron-
sulfur protein (CoFeS-P) to prepare the methyl molecule for 
condensation reaction. In the carbonyl pathway, the CO2 is reduced to 
carbon monoxide, which is enzyme-bound CO dehydrogenase 
(CODH) and acetyl Co-A synthase (ACS). The two pathways’ product 
is then condensed to form acetyl Co-A, the precursor to many organic 
products of MES that can be  materialized through subsequent 
pathways, as in Figure 2. One such example is the formation of acetate, 
where acetyl Co-A is converted to acetyl-phosphate with the help of 
phosphotransacetylase (PTA) before acetate synthesis together with 
ATP via acetate kinase (ACK). Furthermore, acetogens are known to 
directly synthesize acetate by reducing CO2 with hydrogen and 
generate only 1.5 mol of ATP per mole of acetate produced, which is 
considered the thermodynamic edge of life (Poehlein et al., 2012). This 
explains why these autotrophs live in anaerobic environments without 
oxygen and are considered one of the earliest living organisms.

Another metabolism harnesses in MES is methanogenesis, which 
anaerobic methanogens use to synthesize methane gas from CO2. This 
CO2RR starts by reducing CO2 into formyl by formyl-MF 
dehydrogenase containing methanofuran (MF). The second step 
involves transformation into formyl methanopterin (Formyl-MP) 
form, where it is further dehydrated and reduced into methenyl 
(Methenyl-MP), methylene levels (Methylene-MP), and finally to 
methyl form (MP-Methyl), respectively. Then the methyl group is then 
transferred to an enzyme called coenzyme methane (CoM) and 
coenzyme B (CoB) to be  reduced by methyl reductase to form 
methane which is illustrated in Figure  3. Unlike Wood-Ljundahl, 
which has a straight pathway, this process occurs in a cyclic pattern 
named Wolfe’s cycle, where energy conservation is achieved.

Another important mechanism in CO2RR is the electron 
transfer process which is called extracellular electron transport 
(EET), in which the microbes use to drive the electrosynthesis; it is 
widely known that two main categories include under CO2RR, 
which are direct electron transfer (DET) and indirect electron 
transfer (IET) (Song et  al., 2022). The DET process is the most 
straightforward and understandable principle in understanding 
how these electroautotrophs function in CO2RR. The microbes 
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directly attached to the surface of the cathode will gain the electrons 
directly through the conductive outer membrane, such as 
cytochromes or nanowires, as in Figure 4 (Katsyv and Müller, 2020). 
In IET, the mechanism of how the microbes uptake electrons is 
much more complex than in DET because of the presence of 
intermediates. Microbes that suspend freely in the catholyte use IET 
to facilitate CO2RR mainly because the source of electrons is not 
directly accessible. This phenomenon occurs when the media 
contain compounds that are mediators and act as electron shuttles 
between the cathode and microbes, such as flavin, resazurin, 
hydrogen, and formate, to name a few (Vassilev et al., 2022). It is 
also suggested that IET involves direct interspecies called direct 
interspecies electron transfer (DIET), in which the nanowires are 
connected symbiotically between different species or through 
conductive particles in the system (Logan, 2009). This interaction is 
known to increase the bioproduction rate, such as methane and 
power production. However, the extent of this interaction is not 
thoroughly studied.

Thus, through the discussed fundamentals, MES harnesses these 
electrogenic microbes’ properties to catalyze the CO2RR using 
low-energy electricity to supply enough electrons for CO2RR to 
higher-chain organic compounds. This process is similar to the 
conventional electrolytic cell, where the anode dissociates the water 
molecules into electrons and protons before traveling to the cathode, 
where the CO2 will associate with these components to form different 
compounds. The only difference is that the reduction process in the 
cathode will be carried out by the electrogenic microbes present in the 
chamber through several pathways mentioned before, as illustrated in 
Figure 1, instead of the abiotic cathode.

3. Cell and cathode configurations for 
CO2RR in MES

MES system is an electrochemical system that harnesses the use 
of biotic components in the form of electrogenic microbes in its 
system to convert CO2 into value-added products through the use of 
low electrical current. The MES process can be performed using a 
microbial electrosynthesis cell, which has a configuration almost 
identical to an electrochemical cell except for biotic components on 
the cathode side. In this cell, the anode side is where the water is 
oxidized to produce oxygen and proton, which will then travel to the 
cathode via the ion exchange membrane. From there, the cathode 
catalyst, together with the electrogenic microbes on the cathode 
surface, called biofilm or suspends freely in the catholyte, reducing the 
CO2 present in the catholyte to produce a wide range of chemicals as 
illustrated in Figure 5A (Liu et al., 2023).

The second configuration uses the bioanode instead of the 
abiotic anode for oxidation. This is done by introducing anaerobic 
microbes in both the cathode and anode chamber, with different 
nutrient compositions in the media. This method could treat 
wastewater using oxidation to reduce the chemical oxygen demand 
(COD), producing current and biosensor simultaneously. 
Demonstration of the principle proves that COD removal is 
achievable by up to 87% and a maximum current of 0.369 A/m2 with 
an applied voltage of 1.4 (Xiang et al., 2017). The result indicates 
that as the voltage value proliferates, the amount of electrons 
correspondingly increases, leading to better biofilm growth and 
microbial activity. Furthermore, it could also be used to remove 
toxic contaminants such as perfluorooctanoic acid (PFOA) (Tahir 

FIGURE 1

Fundamental illustration of MES.
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et  al., 2023) and sulfide (Kambara et  al., 2023) through a 
similar configuration.

The cathode chamber in the MES system runs in anaerobic 
condition as the electrogen thrives in the condition; a CO2 sparger would 
be used to purge O2 out of the chamber while offering the environment 
with carbon-rich medium for the adsorption of the CO2 by the microbes 
and cathode for reduction processes. In addition, the carbon substrate 
for the process could be supplied in the form of bicarbonate ions derived 
from the CO2 capture via carbonation from industrial flue gas (Dessì 
et al., 2021; Roy et al., 2021). Also, a new approach has been used to 
introduce a gas diffusion electrode (GDE) as the mode of CO2 supply in 
the cathode chamber, as in Figure 5C. This method performs more 
efficiently in terms of CO2 mass transfer into the cathode and dissolution 
of CO2 in catholyte for biocathode, thereby increasing the system 
efficiency for electrosynthesis. An example of this can be explained 
through the comparative study of GDE-based MES and control, 
indicating that the carbon concentration in the media increase by almost 
five times in the GDE biocathode and product formation increases by 
almost double at the same flowrate (Rojas et al., 2021).

In many MESs, many experiments can be divided into two modes 
of microbial culture: single or mixed (Saratale et  al., 2017). Most 
research was performed in single culture to study the microbes’ 

electron transfer mechanism or synthesize a specific compound. For 
example, an MES that consisted of pure culture of Moorella 
thermoautotrophica was analyzed to determine its electron uptake by 
manipulating the cell permeability of its cell structure (Chen et al., 
2018). Mixed culture is the preferred method in studying the 
performance of MES by analyzing the compound synthesis. This 
method is more favorable because the condition and parameters of the 
system are less susceptible to environmental changes, contamination 
and are easier to control. These cultures can be found in wastewater 
sediments, ponds, lakes, and underground soil, generally consisting 
of Geobacter and Schwanella species.

4. Factors affecting cathodic 
performance

The biocathode, the core of MES, must be enriched at a particular 
stage before it can be utilized in MES. This phase, called microbial 
enrichment, is the first step where the intended microbes are cultured 
to multiply and attach to the cathode surface. In most cases, the 
microbes are taken from the anaerobic sludge of any wastewater 
treatment plant, where electrogenic microbes are usually present. The 

FIGURE 2

Wood-Ljundahl pathway of CO2RR in electrogenic microbes.
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growth of microbes can be promoted by manipulating the potential 
applied to the system. Without this artificial control of potential, the 
anode potential in an MES fluctuates according to the load because of 
the redox potential of the electron carrier. Over time, as the MES 

operates continuously, the potential will drop until it approaches the 
thermodynamics of the substrate (Logan, 2009). Most research uses a 
potential lower than −0.6 V to achieve favorable electrosynthesis. 
Cathode potential is usually set at a much more negative value than 

FIGURE 3

Wolfe’s cycle in methanogenic microbes that produce methane as a bioproduct.

FIGURE 4

Electron transport mechanisms in MES.
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the theoretical potential. A larger value of ΔE′0 (corresponding to a 
more negative cathode potential for a reducing reaction) can provide 
more energy for the growth of microbial cells. Meanwhile, a more 
considerable value of ΔE′0 also indicates a more considerable driving 
and a faster reaction rate for electrochemical reaction (Li et al., 2020).

Product selectivity is essential when deciding whether to choose 
pure or mixed culture. Despite its high productivity and selectivity, 
pure culture is significantly challenging to maintain because 
contamination and aseptic conditions play a more crucial role than 

mixed culture. However, previous studies confirm that product 
selectivity can be achieved at a higher rate even with diverse cultures 
using a chemical inhibitor that stops certain microbes’ growth. For 
example, a MES that specifically run to produce acetate comes from 
acetogenic types of microbes. However, in mixed culture, acetogen 
and methanogens can thrive simultaneously, generating unwanted 
byproducts and thus reducing yield. Sodium 2-bromoethanesulfonate 
(BrES) is the best-known methanogenic inhibitor, and it is used in 
several applications and fundamental studies in which methanogenic 

FIGURE 5

Proposed configurations of MES (A) Biocathode with abiotic anode; (B) Biocathode with bioanode; and (C) GDE biocathode.
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inhibition is required. Considering that the inhibitor structure is 
similar to methyl-coenzyme M, it competes with this molecule in the 
methanogenic pathway, thus hindering methane formation. BrES also 
affects other microbes by changing the microbial community 
structures by stimulating acetate metabolism and acetogenesis. It is 
also proven that by using BrES, the suppression of methanogen can 
be  achieved up to 300 days of MES operation with acetate 
accumulation up to 10 g/L (Bajracharya et al., 2017). This technique 
is done in a two-way step where anaerobic sludge first undergoes heat 
treatment to denature heat-intolerant methanogens; the second step 
involves the enrichment stage where the addition of BrES in growth 
culture together with CO2 and H2 to proliferate the acetogens in 
autotrophic conditions before it is transferred into MES.

CO2 substrate in the form of bicarbonate ions (HCO3
−) is the 

primary precursor for the CO2RR in MES. Thus, the concentration of 
this ion also plays a significant role in maximizing the performance of 
MES. As the concentration of bicarbonate ions increase, the yield of 
the desired product falls accordingly due to the inhibition effect 
(Mohanakrishna et al., 2018). Bicarbonate ions act as a carbon source 
for acetogenic microbes to synthesize bioproducts while also serving 
as buffers because basic ions counter-act the acid, thus maintaining 
the pH. Generally, a concentration of 2.5 g/L of HCO3

−could be used 
to operate MES, although it can go up to 15 g/L. It should be noted that 
the higher the concentration, the productivity of products would 
decrease as well (Mohanakrishna et al., 2020).

The carbon chain elongation method is another method used to 
increase MES’s performance in producing higher-chain molecules 
compounds. This approach uses precursor carbon substrate added to 
the system to facilitate the chain elongation of CO2RR, such as formate, 
methanol, and acetate, to produce higher chain carbon compounds like 
butanol and butyrate. This method would reduce the metabolic pathway 
in Wood-Ljundahl in producing acetyl Co-A. It can be considered a 
shortcut, giving access to microbes to obtain more proton donors and 
use less energy for CO2RR. This approach is suitable for mixed culture-
based MES as different microbes work synergically, producing products 
that are subsequently used as reactants for chain elongation.

Most MES systems perform well in mesophilic as electrogenic 
microbes thrive in that temperature range (Yang et al., 2021) and are 
usually done through temperature-regulated heaters. As the 
temperature increases, the growth of microbes, such as methanogen, 
is suppressed, leading to an increase in the acetogenic microbes’ 
distribution. However, a lower temperature would reduce the activities 
of the microbes, which leads to the lack of efficacy of MES. Certain 
thermophilic microbes can perform CO2RR, which explains why the 
heat treatment eliminates methanogens in MES. Microbes such as 
Moorella thermoautotrophica are one of the studied organisms that can 
tolerate a higher degree of temperature than mesophilic organisms. It 
can produce acetate and formate at an accelerated rate of 23.2 and 2.8 
fold at 55°C than 25°C through the immobilized cathode method with 
carbon nanoparticles (Yu et al., 2017). However, this organism is gram-
positive microbes with a thick, less electroconductive peptidoglycan 
layer, which hinders electron transfer. Thus, to overcome this obstacle, 
chemical additives could be utilized to inhibit the production of this 
membrane. Chemical such as penicillin has been proven to reduce the 
peptidoglycan in Moorella thermoautotrophica by almost half (Chen 
et al., 2018); this is shown when penicillin at a concentration lower 
than 30 mg/L could increase cell permeability, which results in 
increasing formate and acetate at a rate of 1.96 and 2.23 higher against 

the control. This finding could be helpful in future studies using other 
gram-positive microbes in MES and thermophilic conditions.

5. Material selection for cathode 
development

5.1. Abiotic cathode

Generally, the cathode material for use in MESs should be able to 
accept electrons, have a high surface area to facilitate the CO2 or other 
small organic molecules, and accommodate biofilm growth. The 
pivotal success of MESs hangs upon their ability to accommodate 
biofilm growth, as has been discussed and upheld rigorously in past 
studies, as the presence of microbe is significant for MES to work 
(Zhang et al., 2013; Aryal et al., 2019b; Prévoteau et al., 2020). This 
account implies that the cathode in MES must be biotic and opens a 
question: can the cathode in MES be abiotic? The term “abiotic” means 
the absence of living microbes on the electrodes acting as catalysts. By 
excluding the need for accommodating microbial population on the 
cathode, in theory, it should open a wide variety of options for the 
types of material that can be employed as an abiotic cathode in MESs. 
According to Aryal et al. (2017), previous studies on the role of abiotic 
electrocatalysis in MESs resulted in abysmal findings. Simply put, 
CO2RR using abiotic electrochemistry was never identified. In turn, 
this finding solidifies that the bioelectrocatalysis of CO2RR is the main 
bulk of the process happening in MESs.

So, why are abiotic cathodes in-applicable in MESs? One reason 
is the abiotic electro-reduction of CO2, which requires a very high 
input current (above 1,000 A/m2) to work (Gabardo et al., 2019). As a 
result, the cathode becomes a hostile environment for the microbes to 
grow. According to Prévoteau et al. (2020), MSCs work at an average 
current density of 100 A/m2, much lower than abiotic CO2R 
technology. The conductivity of media used in MES is 20 times lower 
compared to another abiotic electrochemical system, such as an 
electrolyzer (Gilliam et al., 2007).

Furthermore, although the use of noble metal, such as platinum, 
as an electrode drastically improves the efficiency of MES, the high 
price and potential of being a toxicant prove to be a significant hurdle 
for further advancement of this technology (Khurram et al., 2023). 
The incompatibility between the condition required for the abiotic 
cathode to work and the requirement of a microbe-conducive 
environment of MES made it impossible to bind these two factors in 
one cell. Therefore, the best approach to this situation is to employ 
MES in a case only suitable to abiotic cathode MES.

5.2. Biocathode

5.2.1. Carbon-based biocathode
Carbon-based electrode, the most widely used material in all 

types of fuel cell technologies, has been studied and applied in this 
technology for decades mainly because they can conduct electricity 
efficiently and it is abundant, chemical resistant, and cost-efficient to 
be  synthesized. The carbon-based electrode also exhibits 
biocompatibility properties because it is a non-toxic material, thus 
harmless to the microbiome, and can be  integrated easily in 
MES. Different types of carbon-based electrodes that have been used 
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and studied for cathode materials are summarized in Table 1. Standard 
graphite plates and rods can be categorized as planar or 2D materials 
because their structure consists of carbon atoms arranged in Sp2 
hybridized orbitals with two other atoms for three lobes in a flat 
trigonal arrangement. This creates a sheet with a hexagonal structure 
with one unhybridized P orbital left on each particle, and these orbital 
forms Pi (π) bonds that merge into an extensive network on their own. 
These sheets are held together with weak Van der Waals forces that 
explain the graphite’s weak mechanical strength.

These 2D materials are some of the earlier examples of materials 
used in the MES as the cathode base for synthesizing bioproducts. 
Although essential in structure compared with new materials, it 
performs CO2RR well by acting as a base for microbial growth and 
current conductor. An example is the use of graphite plate for 
acetate synthesis via the direct utilization of CO2 from the brewery 
industry, demonstrating the viability of this material by producing 
acetate at a rate of 0.26 g/L.d (Roy et al., 2021). The experiment also 
compares pure culture C.ljungdahlii and enriched mixed culture, 
where pure culture only obtained 0.138 g/L.d, which is lower than 
diverse culture. Another research was performed to study the 
operating conditions of MES using another 2D material, a 
commercial-grade graphite block to facilitate hydrogen-mediated 
CO2RR into acetate using a pure culture of C. ljungdahlii (Im et al., 
2022). These results indicate the proven capability of basic planar 
materials, although the effect is inferior to the more developed 3D 
and advanced cathode.

Much research uses 3D materials made of carbon cloth (CC) and 
carbon felt (CF) as base or substrate electrodes for modification. CC 
comprises carbon atoms bonded to form a long cylindrical chain 
thinner than human hair. The fiber is highly stiff with high tensile 
strength, strong, flexible, and light in addition to its beneficial carbon 
properties and is used in many processes and disciplines. The intrinsic 

properties of CC make it a suitable candidate for conductive, metal-
free electrocatalyst or base for increasing the mass loading of the 
catalyst and reaction active area (Shi et al., 2020). This material has 
integrated CC into the MES cathode to synthesize acetate and 
methane in varied quantities based on the microbes used (Alqahtani 
et al., 2021). Hydrophobicity is also one of the main issues that need 
to be  addressed when using this material because it will hinder 
microbial attachment on the surface. Thus, a surface modification is 
required to increase its hydrophilicity to counter electrogenic 
microbes’ negatively charged surface membrane.

Another material, CF, is made of synthetic resin or cellulose made 
via needle punching and heat treatment (Huong Le et  al., 2017). 
Graphite felt (GF), the following form of CF, is made by the 
graphitization process using higher temperatures. Its composition is 
similar to a CC but in a different morphological structure because 
carbon fiber is interwoven in a bundle resembling fabric, while CF is 
dispersed randomly. CF materials exhibit higher porosity, specific 
surface area, permeability, electro-resistivity, and better mass transfer 
than CF. CF has been applied in MES, and the demonstrated 
experiment yielded acetate of 36.66 mmol/L when the system-applied 
voltage was −0.68 V under optimum parameters (Ameen et al., 2020). 
This finding shows the capabilities of CF in reducing CO2 into a 
functional product as a primary, cheap, and stable cathode material. 
However, as these commercial materials’ properties have been fully 
realized, most studies only used either 2D or 3D materials to 
experiment on other variables of MES, such as operating conditions, 
scale-up design, and microbial properties.

5.2.2. Composite-based biocathode
Surface modification is another approach to effectively improve 

the physical and chemical properties. Thus, the biofilm attachment, 
biocompatibility, catalytic reaction, electron, and mass transfer 

TABLE 1 List of carbonaceous biocathodes.

Cathode 
materials

Inoculum
Applied 

voltage (mV 
vs. SHE)

Current 
density

Products Yield References

Graphite plate M. thermoautotrophica −356 mV NR Acetate 49.35 mmol/m2 (Chen et al., 2018)

Formate 13.62 mmol/m2

Graphite plate Enriched chemolithoautotroph −1,400 mV −50,000 mA/m2 Acetate 1.8 g/L (Roy et al., 2021)

C. ljungdahlii 1.10 g/L

Graphite rod M. maripaludis −700 mV 219.61 mA/m2 Methane 21.85 mmol (Mayer et al., 2019)

Graphite block C. ljungdahlii −1,200 mV NR Acetate 5.56 mmol (Im et al., 2022)

Formate 6.01 mmol

Lactate 0.77 mmol

Carbon cloth Salt marsh sediment (SM) −1,200 mV −1,800 mA/m2 Methane 4.90 mmol (SM) (Alqahtani et al., 2021)

3.80 mmol (M)

Carbon cloth Mangrove sediment (M) −1,000 mV −1,500 mA/m2 Acetate 1.50 mmol (SM) 67

Carbon cloth Anaerobic sludge (AD) −680 mV NR Acetate 3.10 mmol (M) 69

Carbon felt Anaerobic sludge (AD) −880 mV NR Acetate 36.66 mmol/L (Ameen et al., 2020)

Graphite felt Activated sludge −1,200 mV NR Butyrate 19.1 mmol/L (Izadi et al., 2021)

Butanol 6.80 mmol/L

Carbon fiber brush Anaerobic sludge −900 mV NR Acetate 630 mg/L (J. Zhang et al., 2022)

*NR, Not reported.
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could be  improved. Surface modification has been categorized 
(Figure  6), including 3D modified surface, functional group 
attachment, and positively charged surface. 3D modified surfaces, 
such as carbon nanotube (CNT) and reticulated vitreous Carbon 
(RVC), outperform standard carbon electrodes regarding 
morphology and biocatalytic interaction with microbes. MES using 
RVC has demonstrated that it can achieve high microbial 
attachment and electron recovery to acetate up to 100% using 
electrophoretic deposition (Flexer and Jourdin, 2020). CNT also 
exhibits similar results by having lower internal resistance, stability, 
controllability, and uniform microporous structure up to 1 mm in 
diameter (Xie et al., 2012).

In recent years, newly discovered carbon structures are also used 
in MES to facilitate bio-electro reduction. This can be seen in using 
graphene as cathode material. Graphene, like other carbons such as 
graphite, is made entirely of carbon atom in a single layer in a 
hexagonal arrangement but is one atom thick and exhibit stronger 
hardness than steel. Graphene is also a flexible material because it can 
be used in liquid form and treated like carbon ink using a brush or 
spray for surface modification. Using this material, the performance 
of the MES has increased the production of acetate and butyrate by 
around 46%, and the current density increased by 85.7% (Hu et al., 
2021). The CF-coated graphene biocathode exhibit higher surface-
specific 3D surface area than plain and smooth CF, indicating that 
graphene carbon atoms arrangement can significantly increase 
biocathode biocompatibility.

Another almost similar materials, called graphene oxide (GO) 
and reduced graphene oxide (rGO), are also being tested to modify 
cathode catalysts. These two materials share similar structures of 
carbon arrangement but with different functional groups attached to 
the network, such as carboxylate, hydroxyl, and epoxy groups. GO 
material is made from the chemical exfoliation of graphite oxide, 
whereas rGO is made by the further reduction of GO to reduce the 

functional group of GO. To demonstrate the idea, rGO is used in an 
experiment using Manganese oxide/rGO hybrid biocathode (MnO2/
rGO) to synthesize acetate and isobutyric acid (Thatikayala et al., 
2021). The fabrication is done by mixing premade MnO2 and rGO 
with an oxidizing agent and heat treating to produce a precipitate. 
After the purification and drying, it is dissolved in nafion solution 
and airbrushed on CC. The MnO2/rGO biocathode outperforms the 
unmodified version by producing isobutyrate and acetate at a 
multiple of 2.09 and 2.19-fold higher, respectively. The formation of 
MnO2 nanowires and flowers’ crystalline nature, together with a 
hydroxyl functional group, enhances ionic diffusion and 
biofilm formation.

Furthermore, making the cathode positive makes the electrode 
surface prone to positive charges mainly because microbial cells 
consist of negatively charged surfaces. Therefore, to improve cell 
attachment and hydrophilicity, the cathode surface needs to 
be favorable to improve biofilm thickness. Several ways to do it are 
through treating the cathode with chemicals such as nitric acid, 
ammonia, and aniline. One study used nitric acid-treated granular 
graphite using a simple process where the standard granular graphite 
is pretreated with 5% nitric acid solution before washing and drying. 
This increases volumetric acetate production by 1.4 times with 
coulumbic efficiency of up to 65% compared with untreated granules 
(Shakeel et  al., 2020) since the surface of granular graphite has 
become more electropositive; thus, the biocathode can accommodate 
higher negatively charged microbial membrane. However, the 
selectivity of the product is affected due to the absence of the buffer 
in the catholyte, and the system operates in batch mode. This caused 
the pH fluctuation as the acid would lower the pH and force the 
microbes to shift their metabolites to synthesize ethanol from CO2. 
Therefore, the operating conditions of MES should also be considered 
in optimizing the efficiency and selectivity of the 
bioproducts produced.

FIGURE 6

Modification approach of biocathode in MES.
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Another conventional method used in manipulating the cathode 
is via electrodeposition method. This method is mature enough to 
be applied in any application regarding electrochemistry. This method 
could increase the surface area, make the surface cathode more 
positive, or add functional group attachment, further improving 
MES’s electrocatalytic activity. One notable example is by using Tin, a 
well-known electrocatalyst for formation synthesis that is abundant 
and cost-efficient. The 4 × 4 × 0.5 cm Sn-based biocathode is prepared 
by electrodeposition on CF; the salt bath is made by mixing SnCl2 with 
citrate as a chelating agent in the 4 mA galvanostatic electrodeposition 
coating at three different durations (Qiu et al., 2023). A mediator in 
the formate is also added into the MES to drive the electrosynthesis 
process faster, resulting in acetate production of up to 0.32 g/L.d for 
the most extended deposition duration as in Table 2. This shows time 
plays a significant factor in the electrodeposition process as the 
accumulation of electroactive metal oxides proliferates against time. 
Another interesting approach in electrodeposition is observed in a 
study of simultaneous in-situ iron deposition with nickel and CO2RR 
process, which could produce various compounds from methane and 
acetate to alcohol, depending on the operating pH (Gomez Vidales 

et al., 2021). The metals are deposed by adding FeSO4 and NiSO4 salts 
into nutrient-rich catholyte after the MES has matured. NiSO4 
addition caused the current to rise by 35% and the production of CH4 
by 24%, while FeSO4 led to a current increase, reaching 370 mA. In 
contrast, CH4 production heightened to 0.73 L/d at an applied voltage 
of 2.8 V. Interestingly, after removing both salts in the media, the 
performance of MES still constant, meaning successful deposition of 
Ni and Fe. The observation of the pH also indicates that the 
methanogenic phase is prevalent at pH 7 to 8.5, while a higher pH will 
trigger the acetogenic phase of CO2RR.

6. Advanced cathode materials

Apart from the conventional electrode configuration discussed 
previously, several types of unconventional material or newly 
discovered methods of utilizing it in fuel cell applications, specifically 
in MES, are shown in Table 3. These approaches offer new ways of 
fabricating the cathode through more efficient and feasible mean 
possible. One example is the use of MXenes material, a newly 

TABLE 2 List of composite biocathodes.

Cathode materials Inoculum
Applied 

voltage (mV 
vs. SHE)

Current 
density

Products Yield References

Carbon felt

MnO2 Anaerobic sewage sludge −1,350 mV −3.70 mA/m2 Acetate 37.90 mmol/L (Anwer et al., 2019)

Graphene Mixed culture −1,000 mV 2,600 mA/m2 Acetate 0.26 g/L (Hu et al., 2021)

Butyrate 0.09 g/L

Fe3O4/GAC Enriched mixed culture −1,050 mV 40,300 mA/m2 Acetate 5.14 g/L (Zhu et al., 2019)

TiO2 Anaerobic sludge −900 mV 7,260 mA/m2 Acetate 8.86 g/L (Das et al., 2021)

Rh 6,110 mA/m2 6.65 g/L

Neutral red/Nafion Anaerobic sludge −1,200 mV NR Acetate 340 mmol/L (S. Li et al., 2022)

Nano-titanium carburised 

electrode

Activated sludge −1,000 mV 2.75 mA/m2 Acetate 234 mg/L (Hu et al., 2021)

HNO3 treated Granular 

Graphite

Anaerobic sludge −1,050 mV −512 mA/m2 Acetate 4.40 g/L (Shakeel et al., 2020)

Graphite felt

Stainless steel C. ljungdahlii −1,100 mV −1,000 mA/m2 Acetate 10.50 mmol (Bajracharya et al., 

2015)S. thermospinisporus −1,300 mV 20,000 mA/m2 9.33 mmol

Graphite stick C. ljungdahlii −1,100 mV −7,700 mA/m2 Acetate 10 g/L (Bajracharya et al., 

2017)

Molybdenum carbide Proteobacteria −850 mV −5,200 mA/m2 Acetate 5.72 g/L (Tian et al., 2019)

Graphene oxide-coated 

copper foam

S. ovata −1,300 mV −21,600 mA/m2 Acetate 1983.60 mmol/m2 (Aryal et al., 2019a)

Activated carbon GDE Anaerobic digester effluent −1,200 mV −1,200 mA/m2 Acetate 1.30 g/ L (Rojas et al., 2021)

MnO2/rGO MES effluent −830 mV NR Isobutyrate 15.90 mmol (Thatikayala et al., 

2021)Acetate 3.50 mmol

Sn-modified electrode Matured MES planktonic cells −1,300 mV −700 mA/m2 Acetate 5.38 g/ L (Qiu et al., 2023)

In-situ deposition Ni-Fe Clostridium −1,500 mV 6.4 mA/cm2 Ethanol 8.00 g/L (Gomez Vidales 

et al., 2021)Acetate 2.40 g/L

*NR, Not reported.
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discovered 2D material with high conductivity and surface area due 
to the multiple layers in its structure. Owing to these properties, the 
CF-coated titanium carbide MXene synthesized acetate, butyrate, and 
propionate at 1.6, 1.1, and 1.7-fold, respectively (Tahir et al., 2020).

Another ingenious method of incorporating the existing engineering 
approach in MES is via the fluidized bed reactor principle. This approach 
offers many advantages compared with standard reactors, such as simple 
construction, excellent particle mixing, and large mass transfer with 
electrolyte substrate. A study indicates that the acetate production rate 
increased by 2.8 times through MES with 0.14 g/ L.d compared with the 
control using granular activated carbon (GAC) as the mobile cathode 
and the existing static CF cathode (Dong et al., 2018). This was achieved 
because the additional cathode has a massive surface area of 900 m2/g 
and an average pore diameter of 2.2 nm. In addition, further research 
modified the GAC with metal oxides such as Fe3O4, yielding acetate at a 
rate of 0.171 g/L.d which correlates to a 1.4 times better yield than an 
unmodified one (Zhu et al., 2019).

Furthermore, a new concept of bio-electrosynthesis is enzymatic 
electrosynthesis (EES). This method involves culturing microbes 
that contain specific enzymes to catalyze the reduction of CO2 and 
harvesting it in sufficient quantity before it is purified to be used on 
the cathode substrate surface. EES offers highly selective 
productivity without the unrelated metabolic pathways in the CO2 
reduction process, which would generally increase MES’s substrate 
and energy consumption. For example, the heterodisulfide 
reductase supercomplex (Hdr-SC) of M. maripaludis is culture and 
extracted via centrifugation before it is purified through 
chromatography. The enzyme obtained is inserted into the cathode 
chamber without any chemical mediator, as typically used in 
MES. The result suggests the formate production of 3 μmol/h.cm2 
obtained vs. the three times higher control (Lienemann et al., 2018). 
This technology, however, is still in its infancy as the cost of 
production is exponentially higher due to enzyme harvesting and 
purification steps.

Another futuristic approach used in MES is the synthesis of 
biofilm on the cathode surface using the 3D printer. This process 
involves mixing the electrogenic microbes with a biocompatible 
binder and injecting it directly onto the surface of the cathode 
substrate. This method has the potential for scalability as the 
technology has been used in different applications and cost 
optimization due to the relatively fast the cathode production process 
can be. An example is a study that used concentrated S. ovata strain 
and mixed it with alginate and cellulose-based hydrogel before 

printing it on the CC electrode. The result indicates acetate 
production at a rate of up to 0.68 g/L.d (Krige et al., 2021).

7. Coupling cathode with GDL for 
CO2RR

As discussed previously, the mass transfer of gaseous CO2 is a 
critical hindrance to improving the performance of the electroreduction 
of CO2. The solubility of CO2 in an aqueous electrolyte is 33 mmol at 
298 K and 1 atm (Lucile et al., 2012). The amount of CO2 that can 
be dissolved in the solution is limited by the partial pressure of CO2, 
which is explained by Henry’s law. Lowering the temperature and 
increasing pressure can increase the amount of dissolved CO2 (Cook 
et al., 1990); however, these options are not practical for commercial 
applications and may not necessarily lead to higher current densities. 
So far, the primary solution to this problem has been the sparging 
method, which results in a significant loss of CO2 into the atmosphere 
(Mateos et al., 2019). GDEs are widely used to assist in transferring 
gas-phase reactants to the electrode surface where the electrochemical 
reaction occurs. Due to high CO2 mass transport and reduced diffusion 
lengths within the catalyst layer (CL), GDEs can achieve higher current 
densities than traditional electrodes (Durst et al., 2015). GDEs are 
commonly used in a range of electrochemical systems, including fuel 
cells (Ehelebe et al., 2022), electrolyzers (Mowbray et al., 2021), and 
sensors (Becker et al., 2023). In fuel cells, for example, the GDE acts as 
the electrode where the oxygen from the air and hydrogen from the 
fuel combine to produce water and electricity (Arslan et al., 2023). The 
GDE generates hydrogen and oxygen gas from water through the 
electrochemical reaction in electrolyzers.

GDE is made up of a GDL with a CL on its surface. The gas 
diffusion layer (GDL), a porous layer between the CL and the gas flow 
channel or field, has two primary functions: it permits gas transfer 
toward the CL and provides mechanical support to the catalyst. The 
GDL is designed to be hydrophobic to prevent the electrolyte from 
clogging its pores to enable gas transport to the CL. GDLs have two 
primary categories: single-layer and dual-layer GDLs. A single-layer 
GDL comprises only a microporous layer (MPS), whereas a dual-layer 
GDL comprises an MPS and a microporous layer (MPL). Dual-layer 
GDLs are commonly used, especially in CO2 electrolysis, to prevent 
GDE flooding. A typical dual-layer GDL structure is shown in Figure 7, 
with the gas flow field directly contacting the MPS layer, which acts as 
a gas diffuser and current collector. The microporous layer is situated 

TABLE 3 Some of the advanced biocathode used in MES.

Biocathode 
materials

Inoculum
Applied 

voltage (mV 
vs. SHE)

Current 
density

Products Yield References

3D-Bioprinted microbes S. ovata −1,000 mV 14,800 mA/m2 Acetate 58.40 mmol (Krige et al., 2021)

Titanium carbide MXene 

carbon felt

Wastewater −1,000 mV −71.2 mA/m2 Acetate 0.77 g/L (Tahir et al., 2020)

Propionate 0.87 g/L

Butyrate 1.56 g/L

Fluidized granular 

activated carbon

Effluent of MFC and AD −1,250 mV −4,080 mA/m2 Acetate 16 g/L (Dong et al., 2018)

Reticulated vitreous 

carbon (RVC)

Enriched culture −1,000 mV −8,300 mA/m2 Acetate 8.2 g/m2 (LaBelle and May, 2017)
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atop the MPS and typically consists of carbon and hydrophobic agents 
to regulate catholyte flooding.

The MPL is a thin material coated onto the electrode’s surface, 
typically made of carbon fibers or carbon black. The MPL provides a 
high surface area and a hydrophobic surface that allows the diffusion 
of gas through the electrode while preventing the infiltration of liquid 
electrolytes. On the contrary, the MPS is a more extensive and porous 
layer constructed from a conductive material, such as carbon paper 
or cloth. It acts as an MPL foundation and enables an electrically 
conductive pathway for the electrochemical reaction. Additionally, 
the MPS offers mechanical stability to the electrode and promotes 
uniform gas flow distribution throughout the electrode surface. The 
combination of MPL and MPS allows efficient gas diffusion and 
electrochemical reaction while preventing electrode flooding through 
the liquid electrolyte. Additionally, using a two-layer GDE can 
improve the selectivity and efficiency of the electrochemical reaction, 
as the MPL can be tailored to enhance the activity and selectivity of 
the electrocatalyst used in the reaction. Overall, GDEs with both 
MPL and MPS layers are a practical design for facilitating gas 
diffusion and electrochemical reactions in various applications, 
including the electroreduction of CO2.

The CL is responsible for creating an efficient triple-phase 
interface by forming microchannels that contain a thin layer of 
electrolyte, ensuring adequate gas delivery and contact between the 
electrolyte and catalyst (Han et  al., 2018). For the catalyst to 
be effective, it must be covered by an electrolyte in equilibrium with 
the gas-phase reactant (Weng et al., 2018). Therefore, the wetting 
properties of the CL play a critical role in stabilizing gas 
concentrations at the interface and improving the interaction 
between the electrolyte and catalyst. Two main methods can be used 
for fabricating the CL: ink-based and ink-free. The performance and 
product distributions of the GDE are also affected by the amount of 
catalyst loading in the CL. Increasing the catalyst loading in the CL 
increases the current density by providing more catalytic active sites; 
however, this approach does not necessarily lead to better FE for the 

desired product (s) (Kopljar et al., 2014). The increased number of 
active catalytic sites can alter the GDE potential and, therefore, the 
product distribution of the electrocatalytic reactions. For example, 
during CO2RR, increasing Sn loading resulted in increased faradaic 
efficiency (FE) of CO and hydrogen evolution reaction (HER), 
leading to lower selectivity for the desired product, formate (Zheng 
et al., 2019). A higher catalyst loading typically results in a higher 
concentration of intermediates, altering the reaction pathways. For 
instance, increasing the Cu nanoparticle loading on a carbon-based 
GDL changed the product selectivity of CO2R to C2+ hydrocarbons 
and suppressed HER and C1 hydrocarbons (Kim et  al., 2017). 
Therefore, the catalyst fraction in the CL must be tailored specifically 
to the reaction and the desired products.

Although GDEs have several advantages for CO2RR, they also 
face two significant challenges: flooding (Wang et  al., 2019) and 
carbonation (Leonard et al., 2020). On the other hand, flooding is a 
problem for all GDEs, and it can cause severe hydrogen evolution in 
aqueous media. On the other hand, carbonation is unique to CO2RR, 
and it can compromise the stability and integrity of a GDE. GDE 
flooding is often associated with increasing current density and can 
lead to electrode failure. For instance, Leonard et al. (2020) found 
that a silver GDE remained stable for 5 h when the gas product had a 
constant CO fraction. However, when the current density exceeded 
100 mA/cm2, a catastrophic failure occurred, and within 30 min, the 
GDE switched from producing CO to producing hydrogen. The 
double-layer capacitance at different current densities was linked to 
GDE flooding. This capacitance can predict flooding and GDE failure 
during CO2RR because an increase in capacitance signifies the 
expansion of the electrode–electrolyte interface into the 
GDE. Carbonation is a significant issue for GDEs, especially at higher 
current densities, because it can form crystallized salts and defects 
that allow water to percolate through the pores (Duarte et al., 2019). 
Overall, GDEs have a charge threshold for flooding, and failure 
begins with carbonate salt precipitation followed by electrolyte 
percolation into the crystals and GDE pores.

FIGURE 7

Cross-sectional view of GDE.

https://doi.org/10.3389/fmicb.2023.1192187
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ibrahim et al. 10.3389/fmicb.2023.1192187

Frontiers in Microbiology 14 frontiersin.org

8. Scaling up and techno-economic 
evaluation of MES development for 
CO2RR

The research spectrum to develop MES or any technology can 
be divided into three stages: research, development, and deployment. 
Many studies are still in the fundamental research and development 
stage; thus, the true scope of deployment capabilities and business 
plans is yet to be realized in real-life scenarios except in theory. Until 
now, many studies related to scale-up MES were scarce as the 
technology is still focused on biocathode development; this is true as 
it is the major bottleneck in implementing MES. However, a 
development of large lab-scale operations of MES to produce 
hydrogen peroxide (H2O2) was done to study the ability of larger-
scale MES. A 20-L double chamber MES was set up using graphite 
felt as electrodes. The results suggested that the production of H2O2 
can be  done with a rate of 10.82 mg L/h with an accumulation 
concentration of 454.44 mg/L within 42 h of operation at a stable 
cathode potential of −0.6 V with a high current density output of 
around 2.86 A/m2 (Zou et  al., 2021) and this highlights the 
cornerstone in the MES development stage. However, the experiment 
only used the bioanode to dissociate water molecules into protons 
and electrons, simulating the microbial fuel cell (MFC) system. The 
absence of a biocathode in the system demonstrates the H2O2 as the 
product of the system. Thus, another biocathode research could 
significantly support the idea of large-scale MES.

Cost feasibility plays the most significant role in realizing CO2 
sequestration when considering the scale-up pilot plant of MES. Most 
related studies on scale-up pilot plants reported that the highest 
proportionate cost to scale up the MES or any BES system mainly 
concerns the electrode cost because the material primarily consists of 
a noble metal such as platinum in the anode. Thus, it is one of the 
primary reasons why the study in MES focused on the fabrication of 
noble metal-free catalysts to reduce the cost at a competitive level as 
the other conventional methods. Together, these two components can 
reach up to 75% of the total cost of constructing a pilot-scale plant 
(Aiken et al., 2019). The summary of the expenses is illustrated in the 
pie chart below, which consists of all the major components required 
to build a pilot plant. However, this is true when factoring in the 
electrodes are made of noble metal, requiring massive capital to 
acquire. This problem can be  solved by applying other BES 
fundamental research systems, specifically MFC that heavily relies on 
anode development, free from expensive noble metals. Through the 
synergetic approach with different systems, it is expected that the cost 
of the material could be substantially reduced.

Regarding MES’s business development, two aspects frequently 
considered in setting up this technology mainly revolve around capital 
expenditure (CAPEX) and operating expenditure (OPEX). Most of 
the cost during the initial stage involves CAPEX. CAPEX covers the 
cost of equipment of the pilot reactor, such as electrode, membrane, 
reactor, current collector, gas tank, and piping (Figure 8). Meanwhile, 
OPEX covers most utilities, labor, maintenance, and raw materials 
production costs. Electricity plays a vital role in operating MES 
systems and can take up to 2/3 of the total cost of operation (Jourdin 
et al., 2020). Thus, specific measures could be installed by installing 
solar energy sources to reduce OPEX. Although this approach could 
incur high capital costs, the cost reduction could be felt in the long-
term lifecycle of the plant.

Furthermore, applying MES as a standalone facility is currently 
not feasible due to its extended return of investment (ROI), and its 
restriction in current technology hinders the utilization of this 
biotic system on a large and industrial scale compared to an 
electrolyzer. However, several approaches that would be practical in 
the current state have been tested on a laboratory scale. Integrating 
MES technology in CO2 emitter facilities is promising because of 
the same area’s carbon substrate and biotransformation system 
source. The idea is tested using the CO2 from the brewery in 
synthesizing acetate, and the performance measure was the same as 
that of a pure carbon source (Roy et al., 2021), thereby proving the 
validity of the theory of integrating MES. Another interesting 
approach is to design MES in fossil fuel processing facilities that 
produce hydrogen and methane through steam reforming. This idea 
could be used to drive hydrogen-mediated MES while reducing the 
production of waste syngas.

Another method of integrating MES is coupling it with an 
anaerobic digester (AD), which does these two-system work in 
synergy. This approach uses the CO2 emitted from the anaerobic 
digestion of an organic matter, which is collected and supplied to 
MES to produce chemicals depending on the system’s configuration, 
such as volatile fatty acids or biomethane production, to increase 
AD output. This will reduce the waste generated while increasing 
the carbon recovery of the waste products by up to 98% (Aryal 
et al., 2020). In addition, coupling these two systems would incur a 
small fiscal burden as the system is not energy intensive in heat and 
electricity usage with minimum maintenance requirements. In 
terms of profitability, these secondary products that would 
be synthesized could offset the CAPEX and OPEX for a long time, 
thus making a surplus profit in future years. Another method of 
exploring industrial-size MES is by constructing it near green 
energy-producing facilities such as solar, wind and hydro. This 
could reduce the energy demand through energy transmission in 
on-site facilities.

9. Remaining challenges and future 
recommendation

In general, much work must be done in R&D regarding MES 
because it still needs to be  feasible for real-world adaptations. 
Currently, most research addresses biocathode catalyst 
development, which is crucial in increasing the productivity of 
synthesized chemicals, high current density, and low overpotential. 
Although this news in MES development is good, as the cost heavily 
relies on the cathode catalyst, the high cost also includes the anode 
electrode, which most research should have focused on. This is 
important because the highly efficient anode could offset the energy 
requirement of the biocathode for CO2 reduction in terms of 
current density and oxygen evolution reaction (OER). The use of 
3D printers is also an exciting insight worth exploring to build 
faster and more economical biocathode, which could lead to more 
discoveries in the future. Also, several other critical outlooks should 
be explored, such as:

 • The use bioanode as a complementary electrode and 
biocathode. Using the MFC principle by coupling with MES 
would allow the MFC-MES system to work independently 
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and minimize or eliminate the system’s need for external 
power. In addition, MFC could perform a secondary role in 
treating wastewater by using exoelectrogens to reduce COD 
and act as biosensors simultaneously. Thus, this idea could 
be  used in exploring new research on integrating various 
BESs systems.

 • Chain elongation-based MES should be  explored more in 
producing a variety of compounds. Most MES focused on 
creating C1 and C2 compound, which is relatively easy to make, 
and the fundamental theory is known chiefly. However, the same 
could not be  said for higher-chain combinations, as the 
metabolic pathways and process requirements are more complex 
and not fully realized.

 • The biotic component of MES is another field of study that needs 
to be focused on. The exact mechanism of electron transfer and 
metabolic pathways of microbes could be exploited to modify 
microbes by increasing the CO2 reduction process and removing 
unnecessary pathways involved genetically. Thus, the genetic 
engineering field of study in MES is another frontier of research 
that needs to be broadened. Enzymatic electrosynthesis is one of 
the examples of metabolic engineering that addresses this area 
of research, as previously mentioned. Thus, more related 
research could be explored in this study area to realize this green 
technology development.

 • The operation of the MES system is also one of the critical factors; 
these include the pH, temperature, mode of operations, mass 
transport, substrate, voltage and hydraulic retention are included 
in the optimization of MES. Some studies have shown that 
bioproducts produced under the same material with different 
conditions produce vastly different results.

 • Lastly, pilot plants and scale-up are critical studies that must 
be addressed and realized to enable this technology to enter 

real-world applications. This is because the difference between 
bench-scaled MES against a more elaborated design construction 
where electrodes are stacked in intricate positions is more 
challenging to formulate and cannot be  estimated through 
proportionate calculation and cost.

10. Conclusion

The MES is a BES technology proven to be a new study area 
with unrealized potential in combating climate change and 
increasing circular bioeconomy. The catalyst development of MES 
proved that many works in increasing the effectiveness of CO2 
reduction via microbes were done previously. This review also 
covers the metabolic pathways related to the process, which could 
help harness it to improve the process, such as hydrogen-mediated 
pathways. Many approaches are being applied in modifying the 
biocathode through different ranges, from conventional methods 
to new methods, materials, and technology strategies, to transform 
CO2 into various chemicals. All new research mainly focused on 
a noble free metal catalyst that could be fabricated economically 
and work better than previous studies to achieve the final result, 
the biocompatible electrode. Also, some new key finding, such as 
3D printer is an interesting method of biocathode preparation and 
is a promising technology for making better biocathodes. The 
factors of the MES process are also discussed to optimize the 
process better and with the idea of scaling up the MES for 
deployment on an industrial scale. All the key findings in MES 
research could help achieve CCU and decarbonise the economy, 
thus following the global aspiration to pursue sustainable 
development goals.

FIGURE 8

CAPEX estimation of MES components.
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Glossary

ACK Acetate kinase

ACS Acetyl Co-A synthase

AD Anaerobic digester

BES Bio-electrochemical system

BrES Bromoethanesulfonate

CAPEX Capital expenditure

CC Carbon cloth

CCUS Carbon capture, utilization, and storage

CCU Carbon capture and utilization

CCS Carbon capture and storage

CF Carbon felt

CL Catalyst layer

CNT Carbon nanotube

CO2 Carbon dioxide

CoB Coenzyme B

COD Chemical oxygen demand

CODH CO dehydrogenase

CoFeS-P Corrinoid iron–sulfur protein

CoM Coenzyme methane

CO2RR CO2 reduction reaction

DET Direct electron transport

DIET Direct interspecies electron transfer

EET Extracellular electron transport

EES Enzymatic electrosynthesis
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