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The research aimed to explore the potential probiotic characteristics of

Levilactobacillus brevis RAMULAB49, a strain of lactic acid bacteria (LAB)

isolated from fermented pineapple, specifically focusing on its antidiabetic

e�ects. The importance of probiotics in maintaining a balanced gut microbiota

and supporting human physiology and metabolism motivated this research.

All collected isolates underwent microscopic and biochemical screenings,

and those exhibiting Gram-positive characteristics, negative catalase activity,

phenol tolerance, gastrointestinal conditions, and adhesion capabilities were

selected. Antibiotic susceptibility was assessed, along with safety evaluations

encompassing hemolytic and DNase enzyme activity tests. The isolate’s

antioxidant activity and its ability to inhibit carbohydrate hydrolyzing enzymes

were examined. Additionally, organic acid profiling (LC-MS) and in silico studies

were conducted on the tested extracts. Levilactobacillus brevis RAMULAB49

demonstrated desired characteristics such as Gram-positive, negative catalase

activity, phenol tolerance, gastrointestinal conditions, hydrophobicity (65.71%),

and autoaggregation (77.76%). Coaggregation activity againstMicrococcus luteus,

Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was

observed. Molecular characterization revealed significant antioxidant activity

in Levilactobacillus brevis RAMULAB49, with ABTS and DPPH inhibition rates

of 74.85% and 60.51%, respectively, at a bacterial cell concentration of 109

CFU/mL. The cell-free supernatant exhibited substantial inhibition of α-amylase

(56.19%) and α-glucosidase (55.69%) in vitro. In silico studies supported these

findings, highlighting the inhibitory e�ects of specific organic acids such as

citric acid, hydroxycitric acid, and malic acid, which displayed higher Pa values

compared to other compounds. These outcomes underscore the promising

antidiabetic potential of Levilactobacillus brevis RAMULAB49, isolated from

fermented pineapple. Its probiotic properties, including antimicrobial activity,

autoaggregation, and gastrointestinal conditions, contribute to its potential

therapeutic application. The inhibitory e�ects on α-amylase and α-glucosidase

activities further support its anti-diabetic properties. In silico analysis identified

specific organic acids that may contribute to the observed antidiabetic e�ects.
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Levilactobacillus brevis RAMULAB49, as a probiotic isolate derived from fermented

pineapple, holds promise as an agent formanaging diabetes. Further investigations

should focus on evaluating its e�cacy and safety in vivo to consider its potential

therapeutic application in diabetes management.
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Introduction

Diabetes mellitus is a metabolic syndrome characterized by
hyperglycemia, and it is caused by a disturbed metabolism because
of the ingested food, resulting in a lack of insulin secretion
or insulin resistance (Ramu et al., 2014; Sreepathi et al., 2022).
Multiple pharmacological approaches have been derived to reduce
hyperglycemia with various targets and modes of action, which
include inhibition of gluconeogenesis, insulin injection, inhibition
of glucose absorption, inhibition of carbohydrate hydrolyzing
enzymes, and an increasing number of glucose transporters
(Forouhi et al., 2018; Patil et al., 2022a). Among these approaches,
inhibition of the carbohydrate hydrolyzing enzymes α-glucosidase
and α-amylase has been the most effectively used therapeutic
antidiabetic drugs. α-amylase and α-glucosidase are carbohydrate
digestive enzymes present in the brush border layer of the small
intestine, and both enzymes result in a level-up of glucose in
the bloodstream (Etxeberria et al., 2012; Ramu et al., 2016a).
The dysregulation between carbohydrate hydrolyzing enzymes
and insulin hormone effectively leads to diabetes. During the
dysregulation condition, a hyperglycemic state persists for an
extended period of time, leading to several associated complications
such as angiopathy, neuropathy, nephropathy, and retinopathy
(Telagari and Hullatti, 2015). Although therapeutic drugs are
effective in the management of postprandial hyperglycemia,
their consumption for a long term is often associated with
multiple adverse effects. These side effects have further driven the
researchers to seek an effective therapy with fewer adverse effects
(Chaudhury et al., 2017; Ramu and Patil, 2021).

Consumption of food that replaces medication promotes
health status and reduces the risk of the disease. A previous
study proposed a new approach to nutrition science to treat the
condition and addressed in parallel the increasing life expectancy,
promoting an improved quality of life (Patil et al., 2021a). In
this context, functional foods such as probiotics have received
attention in healthcare systems. Functional foods are those that act
as traditional nutrients and are accompanied by other beneficial
effects such as preventing nutrition-related diseases (Nguyen et al.,
2019; Ramu et al., 2022).

For the treatment of hyperglycemia, probiotics are an
alternative reliable approach used to inhibit carbohydrate
hydrolyzing enzymes and monitor gut health (Ayyash et al., 2018).
As microorganisms colonizing the gut (called gut microbiota) play
a vital role in physiology and metabolism, they are expected to play
a pivotal role in rendering health-promoting effects (Gérard and
Vidal, 2019). It is a well-known fact that patients with diabetes
mellitus have altered gut microbiota; thus, inhibiting carbohydrate
hydrolyzing enzymes and monitoring gut health probiotics

could be an effective remedy that would produce minimal side
effects. Probiotics are also economical in comparison with any
other orally consuming synthetic hypoglycaemic drug (Li et al.,
2020). Probiotics have effective antihyperglycemic components;
nevertheless, for historical and technological reasons, most of the
available probiotics are based on dairy products, which may cause
some inconvenience to the consumer who are lactose intolerant.
Fermented vegetables and fruits were evaluated for their probiotic
potential more recently by Nguyen et al. (2019).

Ananas comosus (pineapple) is the third most important
fruit of the tropical and sub-tropical regions and belongs to the
Bromeliaceae family. It is a fruit rich in carbohydrates, proteins,
vitamins (C, K, A, and B6), riboflavin, thiamine, pantothenic acid,
choline, betaine, phytosterols, minerals (calcium, iron, magnesium,
phosphorous, potassium, sodium, zinc, copper, and manganese),
and phenolic compounds (gallic acid, chlorogenic acid, and ferulic
acid; Brat et al., 2004; Mhatre et al., 2009; Nguyen et al., 2019).
Pineapple was also found to possess antioxidant, anticarcinogenic,
and antimutagenic properties along with a protective role against
cataracts and cardiovascular diseases. According to Nguyen et al.
(2019), the fermentation of pineapple juice with Lactobacillus and
Bifidobacterium strains of probiotic bacteria demonstrated their
ability to survive in a highly acidic environment (Nguyen et al.,
2019). Because all of the beneficiary nutrients of pineapple are
highly supported by its pleasing taste, the fruit can be considered
a unique food matrix to carry probiotics to all age groups with
a convincing taste (Perricone et al., 2015). With this background,
the objective of the present study was framed to isolate potential
lactic acid bacterial strains from fermented pineapple with the high
potentiality to inhibit carbohydrate hydrolyzing enzymes.

Materials and methods

Materials

All the required chemicals for the present study were purchased
from HiMedia Laboratories (Mumbai, India). The pathogens that
were used in the study for antibacterial tolerance and coaggregation
assay were purchased from Microbial Type Culture Collection and
Gene Bank (MTCC), Chandigarh, India.

Sample preparation and isolation

The fresh medium-ripened pineapple (2 kg) belonging to the
“Queen” variety was purchased from a local marketplace during
the growing season (June 2022, Mysuru, Karnataka). To maintain
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a sterile environment, the fruit was washed with lukewarm water.
After removing the peel, the fruit was cut into small pieces and
rewashed with lukewarm salt water. The fruit pieces (800 g) were
added to a glass jar with 3% table salt and left to ferment in two
batches for 6 days. To obtain the LAB strains, 1 g of pooled sample
was serially diluted and plated on MRS agar on the last day of
fermentation. The obtained single distinctive colonies were further
inoculated into MRS broth, followed by replating for purification.
Colonies were selected for further studies based on Gram staining
and catalase test, and glycerol stock was prepared from the same
colonies possessing the baseline criteria (Kumari et al., 2022a,b).

Physiological properties and biochemical
characterization of LAB strains

The isolate was further characterized based on the physiological
properties to withstand different temperatures (4, 15, 37, and 45◦C),
pH (2, 4, 6, and 7.4 in 37◦C for 24 h), and NaCl concentrations (2, 4,
6, and 10% in 37◦C for 24 h) as per Bergey’s manual. The ability of
the isolate to ferment different monosaccharides and disaccharides
was assessed as per the protocol described by Divyashree et al.
(2021). Furthermore, biochemical tests such as Voges–Proskauer,
gelatin liquefaction, starch hydrolysis, indole, and methyl red tests
were performed as mentioned by Huligere et al. (2022).

Molecular identification

The LAB isolate was subjected to DNA extraction and evaluated
through molecular techniques using 16S rRNA gene sequencing
with 27F [5′AGA GTTTGATCCTGGCTCAG3′] and 1492R
[5′GGTTACCT TGTTACGACTT3′] primers. After sequencing,
the sequence was deposited in the GenBank sequence database. The
obtained sequence was assessed through the homology search using
BLAST. Furthermore, the MEGA X software (version 10.2.4, CA,
USA) was used to build a phylogenetic tree with 1,000 bootstraps
(Tamura and Nei, 1993).

Probiotic properties of an LAB strain

Phenol tolerance assay
The resistance of the isolate against phenol was determined

as per the protocol described by Jena et al. (2013) with some
modifications. In brief, the overnight culture of LAB isolate was
inoculated into MRS broth with 0.1 and 0.4% phenol, separately,
and incubated (0, 4, and 24 h; 37◦C). After the incubation period,
the viable cell count was calculated by plating the above suspension
on an MRS agar plate.

Acid and bile salt tolerance
The overnight LAB culture was inoculated into MRS broth (pH

2) with 0.3 and 1% oxgall [HiMedia Laboratories (Mumbai, India)],
separately, and incubated for 4 h according to the methodology
described in the study by Kumari et al. (2022a,b) with slight

modifications. The above suspensions were plated at 0, 2, and 4 h of
inoculation to observe the survivability of LAB isolates against acid
bile conditions at varying time intervals. The plates were incubated
for 24 h at 37◦C to understand the survivability of the cells.

Cell surface hydrophobicity of LAB isolate
The protocol by Guan and Liu (2020) with slight modifications

was used to know the cell surface hydrophobicity of the isolate
with polar xylene solvent, which indirectly determines the ability
of the isolate to adhere to intestinal cells. The assay was performed
in duplicates and repeated thrice, and surface hydrophobicity was
computed using the equation below:

Autoaggregation and coaggregation ability of the
LAB strain

The autoaggregation and coaggregation assay was conducted as
previously described by Li et al. (2020) with minor modifications.
In brief, for autoaggregation, the overnight culture was harvested
by centrifuging at 500 × g for 10min. The obtained pellets were
washed thrice with sterile PBS and resuspended in the same PBS to
obtain a cell count of 108 CFU/mL. The suspension was incubated
at 37◦C and at varying time intervals (2, 4, 6, 10, and 24 h).
A measure of 100 µL of the topmost layer of the suspension
was transferred to a 96-well plate, and the absorbance was read
at 600 nm. The rate of autoaggregation was determined by the
equation below:

Autoaggregation (%) =
Az − At

Az × 100

Az = absorbance at time zero.
At = absorbance at time (2, 4, 6, 10, and 24 h).
Coaggregation was performed using LAB pellets suspended

in PBS as mentioned in the autoaggregation procedure and
mixed with 1mL of different bacterial suspension (Pseudomonas

aeruginosa MTCC 424, Salmonella enterica serovar Typhimurium
MTCC 98, Bacillus subtilisMTCC10403,Micrococcus luteusMTCC
1809, and Escherichia coli MTCC 4430) and incubated for 120min
at 37◦C. After incubation, the absorbance of all the suspensions
was read at 600 nm. The below equation was used to calculate the
percentage of coaggregation:

[(ALAB + Apathogen)− Amixture × 100

[ALAB + Apathogen]

ALAB + Apathogen = absorbance of LAB and pathogen
suspension mixture at 0 h.

Amixture = absorbance LAB and pathogen suspension mixture
at 2 h.

Survivability at simulated gastric and intestinal
fluids

The ability of the LAB isolates to tolerate gastric and intestinal
juices was assessed as per the protocol described by Reale et al.
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(2015) with slight modifications. To provide simulated gastric
and simulated intestinal juice conditions, pepsin (3,000 mg/L of
PBS, pH 3; 1:3,000 AU/mg, Sisco Research Laboratories Pvt. Ltd.,
Mumbai, India) and trypsin (1,000 mg/L of PBS, pH 8; 2,000 U/g,
Sisco Research Laboratories Pvt. Ltd., India) were dissolved. The
isolates were then added to the simulated juices in an in vitro

environment under gastrointestinal conditions (108 CFU/mL). The
equation below was used to calculate the survival rate:

Survival rate (%) =

(

Log CFU Na
)

(

Log CFU Nb
) × 100

Na = number of viable cells after treatment.
Nb = number of viable cells before treatment.

Antibacterial activity
The antagonistic activity of the isolate was determined by

the disk diffusion method as described by Mezaini et al. (2009)
with modifications against 10 foodborne pathogens (Escherichia
coli MTCC 443, Bacillus subtilis MTCC 10403, Micrococcus luteus

MTCC 1809, Pseudomonas aeruginosa MTCC 424, Salmonella

enterica serovar Typhimurium MTCC 98, Bacillus cereus MTCC
1272, Staphylococcus aureus MTCC 1144, Klebsiella pneumonia

MTCC 10309, Pseudomonas fluorescens MTCC 667, and Klebsiella

aerogenes MTCC 2822). The results are predicted as good,
moderate, weak, and null inhibition based on the size of the clear
inhibitory zone observed around the disk.

Antibiotic susceptibility test
The antibiotic sensitivity of the LAB isolate was determined

by disk diffusion method against 10 antibiotics gentamicin (10
µg), chloramphenicol (30 µg), clindamycin (2 µg), ampicillin (10
µg), kanamycin (30 µg), tetracycline (30 µg), vancomycin (30 µg),
erythromycin (15 µg), streptomycin (100 µg), rifampicin (5 µg),
methicillin (5 µg), azithromycin (15 µg), and cefixime (5 µg). The
diameter of the antibiotic zone was measured using the Clinical and
Laboratory Standards Institute (CLSI 2018) scale (Chang, 2018),
and the results are predicted as sensitive and resistant (Hana et al.,
2015).

Adhesion assay
Adhesion assay of the isolate was performed with chicken crop

epithelial cells and buccal epithelial cells. Through crystal violet
staining and microscopic observation, the adherent ability of the
isolate with chicken crop epithelial cells under in vitro conditions
was assessed as per the protocol described by Somashekaraiah et al.
(2019). In brief, about 100 µL (108 CFU/mL) of LAB isolate was
mixed with 400 µL of chicken crop cell and incubated for 30m
at 37◦C. After incubation and centrifugation (500 × g, 5min),
the pellets were washed with PBS twice to remove non-adherent
cells. Furthermore, the pellet was resuspended in PBS (100 µL)
and stained for microscopic observation. The bacterial adhesion is
examined and scored positive if a minimum of 10 LAB cells have
adhered with one chicken crop epithelial cell.

The ability of the isolate to adhere to the buccal epithelial
cells was studied as per the protocol described by Kumari et al.
(2022a,b). In brief, the buccal epithelial cells were collected from a
volunteer after rinsing the mouth with saline to avoid microbiota.
The collected cells were washed with saline and centrifuged
(500 × g, 5min), and the pellets were washed with PBS and
resuspended in saline. About 400 µL of buccal epithelial cells were
mixed with 100 µL (108 CFU/mL) of LAB isolate and incubated
for 30min. After crystal violet staining, through microscopic
observation, the adhesion of the isolate with the buccal epithelial
cell was determined.

Hemolytic and DNase activity of the LAB isolate
The two safety assessment assays, namely, hemolytic andDNase

activity, were performed as per the protocol described by Li et al.
(2020) and Somashekaraiah et al. (2021), respectively. In brief, the
hemolytic activity of the isolate was determined by streaking LAB
isolate on a blood agar medium containing sheep blood (5% w/v)
and incubated at 37◦C for 24 h. After incubation, the plates were
examined for α-hemolysis, β-hemolysis, and γ-hemolysis (no zone
formation around colonies) activities.

The ability of the LAB isolates to produce DNase enzyme was
determined by streaking LAB isolate on the DNase agar medium
and incubating it at 37◦C for 24 h. The formation of the pink zone
around the colonies indicates that the isolate is positive for the
DNase enzyme.

Antioxidant activity
The scavenging effect of the LAB isolates on ABTS and DPPH

was performed as per the protocol described by Huang et al. (2019)
and Li et al. (2012) with slight modifications. The below-mentioned
equation was used to compute the scavenging activity of the isolate:

ABTS scavenging activity (%) =
Ac − As ± Am

Ac
× 100

DPPH scavenging activity (%) =
Ac − As

Ac
× 100

Ac = absorbance of control.
As = absorbance of the sample.
Am = absorbance of the mixture (sample with control).

α-glucosidase and α-amylase inhibition
The ability of the isolate to inhibit α-glucosidase and α-amylase

was determined as per the protocol described by Maradesha et al.
(2022a) and Banu et al. (2023) with slight modifications. In this
assay, the inhibitory activity of intact cells (I), cell-free extract (E),
and cell-free supernatant (S) was prepared as per the description
by Kumari et al. (2022a,b). Test samples I, E, and S were combined
with 50mM of potassium phosphate buffer (pH 6.8, 700 µL) and
then they were left for 10min. It was then pre-incubated at 37◦C
for 15min with the enzyme α-glucosidase (100 µL, 0.25 U/mL).
Then, 100 µL of 5mM p-nitrophenol-D-glucopyranoside (pNPG)
substrate was added. The reaction was then stopped with 1,000
µL of 0.1M Na2CO3 after 30min of incubation at 37◦C. Using
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a microplate reader, the 4-nitrophenol absorption was measured
at 405 nm (Multiskan FC Microplate Photometer, Thermo Fisher
Scientific, France), and the inhibition of the α-glucosidase activity
of LAB strain was calculated as below:

Inhibition of α − glucosidase (%) = (1− SA/CA)×100

where, SA = absorbance of the reactants with the sample and
CA = absorbance of the reactants without the sample.

The amylase inhibitory assay utilized porcine pancreatic
amylase. In a brief, 500mL of I, E, and S were pre-incubated for
10min at 25◦C with 500mL of 0.1M PBS (pH 7.4) containing α-
amylase enzyme (0.5 mg/mL). Additionally, 500mL of a 1% starch
solution in 0.1M PBS were added to each tube (pH 7.4). The
reaction solutions were then stopped with 1.0mL of the 3,5-dinitro
salicylic acid reagent after being incubated for 10min at 25◦C.
After 5min in a boiling water bath, the test tubes were cooled to
room temperature, diluted with 10mL of distilled water, and the
absorbance was measured at 540 nm. The percentage of inhibition
exerted by the bacterial strain on α-amylase activity was obtained
as defined for α-glucosidase.

Extraction of organic acid
The inhibitory activity of cell-free supernatant of LAB against

carbohydrate hydrolyzing enzymes was further analyzed by
extracting organic acids. The sample preparation for extraction was
performed as per Lee et al. (2012) with slight modifications. In brief,
5mL of MRS broth in screw cap test tubes was inoculated with
0.5mL of previously activated LAB isolate and incubate at 37◦C
for 5 days in a shaking incubator (150 rpm). After incubation, the
poured samples were centrifuged at 5,590 × g for 20min at 4◦C.
The obtained sample was then used for LC-MS analysis to extract
organic acids (Ramu et al., 2015; Pushpa et al., 2022).

In silico studies

Pass pharmacological analysis
The pharmacological activity of the analyzed secondary

metabolites was evaluated by PASS (online server). The server
evaluated the potentialities of the input sample and specifies its
pharmacological impacts (Patil et al., 2022b). The whole collected
data were computed and classified as probable active and inactive
and denoted as Pa and Pi, respectively. The compound with the
Pa value greater than Pi was considered probable active with a
particular pharmacological activity (Patil et al., 2022c).

Molecular docking simulation
For molecular docking simulation, the protein preparation

(α-glucosidase and α-amylase) was performed according to the
protocol described by Maradesha et al. (2022b). Furthermore, the
binding site prediction for both the target proteins was performed
based on the literature survey. The grid box size of both α-
glucosidase and α-amylase targets was 40 Å × 40 Å × 40 Å
positioned at the coordinates x = −17.489 Å, y = −8.621 Å, z

= −19.658 Å and x = 103.469 Å, y = 37.176 Å, z = 19.607
Å, respectively (Martiz et al., 2022a). Concurrently, the ligand
structures of lactic acid, pyruvic acid, malonic acid, maleic acid,
fumaric acid, succinic acid, malic acid, tartaric acid, shikimic
acid, citric acid, and hydroxycitric acid was optimized into 3D
models using ACD ChemSketch (Patil et al., 2021b). Currently, the
prepared ligand and protein were docked using AutoDock Vina
1.1.2 with acarbose as the positive control (Gurupadaswamy et al.,
2022; Jyothi et al., 2022).

Molecular dynamics (MD) simulations
After the docking study, the compound with the best binding

affinity, hydrogen bond, and the number of interactions was
screened and considered the lead compound. An MD simulation
was performed for this compound to understand the binding
stability and conformational changes that take place during the
complex formation (Patil et al., 2022d,e). The simulation was
performed for a 100 ns timescale using the biomolecular software
package GROMACS-2018.1. The pdb2gmx program protein was
assigned with CHARMM36 force field to obtain protein topology,
and the ligand topology was obtained by the SwissParam server
(Kumar et al., 2021). To maintain neutrality and salt concentration
(0.15M) of the entire system, the counter Na+ and Cl- ions were
supplied. Furthermore, energy minimization was performed using
the steepest descent method of 50,000 steps, and the system was
equilibrated in two phases, NVT and NPT ensemble (1,000 ps
each), with a 310K temperature and 1 bar pressure (Kumar et al.,
2022). After MD simulation, the trajectories were analyzed, and a
graph was generated for the RMSD, RMSF, Rg, SASA, and hydrogen
bond using xmgrace software (Maradesha et al., 2023).

Binding free energy calculations
Using the g_mmpbsa program, which is a GROMACS plugin,

the binding free energy of the complex was estimated by
employing the Molecular Mechanics Poisson–Boltzmann Surface
Area (MM-PBSA)method.MM-PBSAwas quantitatively evaluated
in accordance with the research done by Martiz et al. (2022b).
The binding free energy is calculated using three components:
molecular mechanical energy, polar and apolar solvation energies,
and molecular mechanical energy. The calculation was performed
for the last 50 ns frames, which were extracted from MD trajectory
data (Martiz et al., 2022c).

Statistical analysis

All the experiments were carried out in triplicates, and the
standard deviation is displayed in error bars on the graph. Data
were examined using ANOVA, and differences were considered
substantial at a p-value of ≤ 0.05 (Ramu et al., 2014, 2016b).

Results

Initially, several colonies from the fermented pineapple sample
were isolated and selected six colonies that showed distinct
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morphological characteristics. Among the colonies, the isolate
RAMULAB49 was chosen because it was a rod-shaped, Gram-
positive, catalase-negative bacterium with optimal growth at 37◦C
and demonstrated tolerance for pH values ranging from 2 to
6, with 7.4 being considered the ideal pH. Additionally, the
isolate demonstrated tolerance for NaCl concentrations as high
as 4%. The biochemical characteristics of the isolate revealed its
heterofermentative nature, and its fermentation of carbohydrates
did not produce any gas (Table 1).

Molecular character and phylogenetic
analysis

With a similarity of 98.83%, Levilactobacillus brevis was
determined to be the LAB isolate obtained in this study and
termed RAMULAB49 based on 16S rRNA sequencing and
evolutionary investigations by MEGA X (Version 10.2.4, CA,
USA). MEGA X was used to construct a phylogenetic tree using
other additional reference strains from different sources, which
produced findings that were equivalent and indicated that the
additional strains are members of the same Lactobacillaceae family.
The GenBank accession number for the partial sequence was
ON171663, which was obtained after submission to NCBI in
Figure 1.

Probiotic properties of LAB isolate

Phenol tolerance
The graph indicates that the isolate exhibited phenol tolerance.

The viable count of the isolate, assessed at a higher phenol
concentration of 0.4% during the last hour of incubation, was
determined to be 7.42 log CFU/mL. Distinct variations in growth
rate were observed at 0.4% phenol concentrations but different
incubation intervals (0, 4, and 24 h; Table 2).

Acid bile salt tolerance
The ability of the LAB isolates to withstand acid bile conditions

was determined with this assay. Figure 2 represents the survival
rate of the isolate at pH 2 with 0.3 and 1% oxgall concentration.
The difference in survival between the various concentrations was
found to be 1% at 4 h, and the survival rate was determined to be
above 90%. The probability of survival did not change significantly
with changes in oxgall concentration.

Cell surface hydrophobicity
The hydrophobic elements of the outer membrane are present

in the LABs and serve as the foundation for the cell surface’s
hydrophobicity. For LAB, hydrophobicity was used to assess
isolate colonization and cell adhesion to epithelial cells. The strain
RAMULAB49 hydrophobicity to xylene (a non-polar solvent) was
discovered to be 65.71 ± 0.22%. Higher hydrophobicity in a strain
promotes greater colonization of the intestinal lining.

TABLE 1 Preliminary tests, phenotypic characterization, biochemical

properties, and fermentation ability of the LAB strain isolated from

fermented pineapple.

Test Isolate∗

RAMULAB49

Preliminary tests Gram staining Positive

Catalase Negative

Morphology Rod

Temperature tolerance
(◦C)

4 -

15 -

37 +

45 -

pH 2 +

4 +

6 +

7.4 +

NaCl tolerance
(%)

2 +

4 +

6 -

10 -

Biochemical tests Citrate utilization test -

Gelatin liquefaction test -

Voges-Proskauer test -

Starch hydrolysis test -

Indole test -

Methyl red test +

Carbohydrate fermentation Lactose +

Maltose +

Sucrose +

Lactose +

Arabinose +

Fructose +

Sorbitol +

Mannitol +

Galactose +

Xylose -

Glucose +

∗”+” indicates presence and “-“ indicates absence.

Autoaggregation and coaggregation
An exponential rate of autoaggregation was observed with a

progression in the incubation time. At the end of the incubation
period, an autoaggregation of 77.76 ± 3.09% was observed. The
isolate expressed the highest percentage of coaggregation with M.

luteus (21.98 ± 0.18%) and the lowest percentage of coaggregation
with Salmonella enterica serovar Typhimurium (15.72 ± 0.11%).
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FIGURE 1

Phylogenetic tree of RAMULAB49 (Levilactobacillus brevis) isolated from fermented pineapple based on the maximum likelihood bootstrap analysis

of 16S rDNA.

For bacterial colonization and defenses, the probiotics’ capacity to
autoaggregate and coaggregate is essential (Table 3).

Survivability at simulated gastric and intestinal
fluids

Figure 3A demonstrates that the strain had a survival rate
of more than 80% at various incubation intervals of simulated
gastrointestinal conditions. The gastric survival was determined
to be 88.49 ± 0.12% during the initial incubation period and
decreased by 5% after 3 h of incubation. The strain’s intestinal
survivability decreased with time (∼2%) as the incubation period
prolonged, as shown in Figures 3A, B.

Antibacterial activity
The antibacterial activity of the isolate RAMULAB49 from

fermented pineapple was tested against 10 food-borne pathogens,
revealing varying degrees of inhibition in the resulting zone. The
inhibition zone varied between 5 and 18mm (Table 4).

TABLE 2 Viable count of the RAMULAB49 under phenolic conditions (0.1

and 0.4%).

Phenol tolerance (Log CFU/mL)∗

0.1% 0.4%

0 8.6624±0.1c 7.8006± 0.2c

4 8.5612± 0.5b 7.4532± 0.4b

24 8.4635± 0.2a 7.4206± 0.1a

∗Data are expressed in mean ± SD with significantly different P-values (P ≤ 0.05), which are
represented with superscripts (a–c) and separated by the Duncan-multiple range test.

Antibiotic susceptibility test
To determine the antibiotic sensitivity, the isolate was screened

against 10 different antibiotics, and the results were compared with
a standard reference chart. The assessment of antibiotic sensitivity
of the LAB isolates can be considered one of the basic criteria to
be qualified as a potent probiotic agent. In this study, the LAB
strain was found to be sensitive to chloramphenicol, clindamycin,
streptomycin, cefixime, gentamicin, ampicillin, tetracycline,
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FIGURE 2

The survival rate of the LAB isolates under acid bile conditions (0.3 and 1.0%) is expressed as mean ± SD with significantly di�erent P-values (P ≤

0.05), which is represented with a and b superscripts, and separated by the Duncan-multiple range test.

erythromycin, and azithromycin and resistant to kanamycin,
vancomycin, methicillin, and rifampicin (Table 5).

Adhesion assay
One of the most important criteria for choosing a probiotic

is the adhesion of bacteria to mucosal surfaces and epithelial
cells. Pathogen adherence can be prevented by probiotic strains by
competing for the binding sites on the host cell. It was discovered
that 20–45 bacterial cells could adhere to chicken crop epithelial
cells. The isolate also demonstrated adhesion with buccal epithelial
cells, with an average of 32–57 bacterial cells adhering to each
epithelial cell.

Hemolytic and DNase activity
Hemolytic and DNase activities are the two tests that can be

used to predict if a LAB isolate will be harmful when administered
as a probiotic. After 24 h of incubation, as no zone formation
was observed around the bacterial colonies, the LAB isolate is
considered safe and categorized as γ-hemolysis. A DNase activity
assay also expressed no zone, which means that the LAB strain
used in the present study is negative for DNase enzyme activity,
non-pathogenic by nature, and safe as a probiotic.

Antioxidant activity
The scavenging effect of the LAB strain on ABTS and DPPH

was performed using a different count of cells. From the graph,
it can be inferred that the scavenging activity increases with an
increase in cell count. The highest scavenging activity of ABTS

and DPPH was found to be 74.85 ± 0.75 and 60.51 ± 0.41%,
respectively, with 109 CFU/mL of bacterial cells (Figure 4).

α-glucosidase and α-amylase inhibition
The study used intact cells, a cell-free extract, and the cell-free

supernatant tomeasure the inhibitory activity against α-glucosidase
and α-amylase. The highest percentage of inhibition is expressed
by the cell-free supernatant. The inhibition of α-glucosidase and α-
amylase ranged between 5.08–55.69 and 8.1–56.19%, respectively,
with intact cells, the cell-free extract, and the cell-free supernatant,
as shown in Figure 5.

Organic acids profile
The major function of any probiotic strain is to metabolize the

sugar present in its media to produce lactic acid and secondary
metabolites such as organic acids. The organic acids listed in Table 6
were observed by LC-MS analysis. In this experiment, the cell-
free supernatant of RAMULAB49 strains showed higher inhibition
against carbohydrate hydrolyzing enzymes (α-glucosidase and α-
amylase). Thus, the cell-free extract was subjected to the organic
acid profile, which showed that succinic acid is present in large
amounts in comparison to the other organic acids listed in Table 6.

In silico approach

Pass pharmacological potential analysis
Table 7 represents the findings of PASS analysis for all the

compounds, which indicate that the compounds have significant
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TABLE 3 Autoaggregation and coaggregation abilities of the LAB strain isolated from fermented pineapple.

Autoaggregation Coaggregation

Incubation time (h) Autoaggregation (%)∗ Pathogens Coaggregation (%)∗

2 29.87± 0.71a Escherichia coli 19.14± 0.17d

4 39.09± 0.52b Micrococcus luteus 21.98± 0.19e

6 50.66± 0.77c Bacillus subtilis 17.32± 0.15c

10 69.36± 0.46d Salmonella enterica serovar Typhimurium 15.72± 0.11a

24 77.76± 0.91e Pseudomonas aeruginosa 16.06± 0.19b

∗The values are shown as mean± SD. According to Duncan’s multiple range test, means in the same column denoted by various letters (a–e) are substantially different (P ≤ 0.05).

FIGURE 3

Gastric (A) and intestinal juice (B) survivability of RAMULAB49 strains after incubation for various time intervals at 37◦C. The values are expressed as

mean ± SD with significantly di�erent P-values (P ≤ 0.05), which are represented with superscripts and separated by the Duncan-multiple range test

(a–d).

antidiabetic activity. The Pa values of citric acid, hydroxyl citric
acid, and malic acid were found to be greater than the Pi value of
other compounds.

Molecular docking studies
After docking, the obtained output was visualized using

Discovery Studio to understand the mechanisms of interaction
between target proteins and ligands. By 3D visualization, the
total number of interactions, the number of hydrogen bonds,
and binding affinity of each protein–ligand complex are listed in
Table 8. Among all the ligands, hydroxycitric acid was found to have
a high docking score of 7 non-bonding interactions, 7 hydrogen
bonds, and−6.4 kcal/mol binding affinity with α-glucosidase
and 6 non-bonding interactions, 6 hydrogen bonds, and −5.9
kcal/mol with α-amylase. Furthermore, by 2D visualization, the
interactions between hydroxy citric acid and the important amino
acid residues of α-glucosidase and α-amylase were analyzed, and
it was observed that the lead compound interacted with ASN241,
ARG312, GLU304, SER308, HIS279, PRO309, and PHE311 of α-
glucosidase. The binding mode of the hydroxycitric acid with
α-glucosidase was similar to that observed in previous studies

TABLE 4 Antibacterial activity of the LAB strain isolated from fermented

pineapple.

Pathogens Inhibition activity∗

M. luteus +++

P. aeruginosa +++

Salmonella enterica serovar Typhimurium +++

Bacillus subtilis ++

Escherichia coli ++

Staphylococcus aureus ++

Bacillus cereus ++

Klebsiella pneumonia -

Klebsiella aerogenes ++

Pseudomonas fluorescens +

∗Symbols represent the type of inhibition: (+++) good inhibition 15–18mm, (++)moderate
inhibition 9–15mm, (+) weak inhibition 3–9mm, and (-) null inhibition.

(Nivetha et al., 2022; Prabhakaran et al., 2022). Similarly, the results
for α-amylase were in accordance with the previous studies (Ganavi
et al., 2022; Patil et al., 2022f) (Figure 6). The results showed that
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TABLE 5 Antibiotic susceptibility of RAMULAB49 against 10 antibiotics.

Antibiotic Susceptibility∗

Chloramphenicol S

Clindamycin S

Kanamycin R

Vancomycin R

Streptomycin S

Methicillin R

Cefixime S

Gentamicin S

Ampicillin S

Tetracycline S

Erythromycin S

Rifampicin R

Azithromycin S

∗The letter (S) represents sensitivity and (R) represents resistance.

GLU233, ASP197 residues of alpha-amylase bound via hydrogen
bonds (Figure 7), which were in accordance with previous studies
(Ganavi et al., 2022; Patil et al., 2022f).

Molecular dynamics simulation
After understanding the interaction between the lead

compound and target proteins through docking, its simulation was
performed to evaluate its dynamics. The difference in interaction
between the ligand and targets was unclear, especially with respect
to the stability and flexibility of the formed complex (Martiz et al.,
2022c; Sajal et al., 2022). Thus, to validate the docking result of
hydroxycitric acid with the target proteins, dynamic simulation
was conducted using the trajectories in terms of root mean square
deviation (RMSD), root mean square fluctuations (RMSFs), radius
of gyration (Rg), solvent accessible surface area (SASA), and ligand
hydrogen bonds (H-bond number; Pradeep et al., 2022; Patil et al.,
2023).

The stability of the complex’s conformation at a given time
was evaluated using RMSD. Based on the RMSD analysis of the
α-glucosidase complex, it can be predicted that both the complex
and apoprotein reached the equilibrium after 25 ns. Hydroxycitric
acid was observed to remain inside the inhibitor binding site
throughout the simulation period. Compared with the interaction
with the acarbose complex, the hydroxycitric acid complex reached
equilibrium more rapidly, thus showing higher stability (Kumar
et al., 2021; Banu et al., 2023). The RMSF analysis of α-amylase
depicts that the hydroxycitric acid complex and apoprotein were
found to be within the range of 0.20–0.30 nm, whereas the acarbose
complex ranged between 0.25 and 0.35 nm. In comparison with
that of the acarbose complex, hydroxycitric acid was found to be
more stable with minimal fluctuations throughout the simulation
(Shivanna et al., 2022; Banu et al., 2023).

The RMSF analysis was performed to examine the binding
affinity of the lead compound with its targets. The values for all

the residues were measured based on a 100 ns trajectory. In case
of α-glucosidase, the plot indicates that the target protein has
minimal fluctuations and comparable secondary conformational
stability when bound to the compounds, whereas the acarbose
complex has more fluctuation, which is the indication of instability
inside the inhibitor binding site. Similarly, in case of α-amylase, the
RMSF value of hydroxycitric acid complex, acarbose complex, and
apoprotein is on par with an almost similar pattern of fluctuations
(Maradesha et al., 2022a,b).

The Rg plot analysis was performed to evaluate the possible
changes that take place in the structure of protein during the
complex formation. On analyzing the Rg plot of α-glucosidase,
it is observed that the Rg value of hydroxy citric acid complex
and acarbose complex did not change significantly throughout
the simulation and kept fluctuating at 2.4 nm, which indicates
that the binding site had less influence on the structures.
Furthermore, the Rg value of α-amylase along with lead
compound and acarbose complex was found to be within
the same range of 2.31 nm (Martiz et al., 2022a; Patil et al.,
2022c).

The SASA plot in this study was evaluated to predict the
possible conformational changes that take place in the binding
region during complex formation. The SASA value of both
hydroxycitric acid-α-glucosidase complex and acarbose-α-
glucosidase complex and the SASA value of both hydroxycitric
acid-α-amylase complex and acarbose-α-amylase complex
fluctuated within the range of 190–200 nm2. Finally, the ligand
hydrogen bonds were analyzed to understand the structural
reagreement. In case of α-glucosidase, based on the plot, it can
be observed that the complex may have undergone structural
modifications. It was observed that hydroxycitric acid formed
more H-bonds with the protein during the 100 ns simulation,
indicating that the hydroxycitric acid complex was more stable
(Maradesha et al., 2022c; Patil et al., 2022f). Concurrently, in
the H-bond plot of α-amylase, it was evident that the complex
underwent conformational changes. In terms of the ligand
hydrogen bonding interactions, acarbose formed fewer hydrogen
bonds than hydroxycitric acid (Figures 8, 9).

Binding free energy calculations
To gain a deeper understanding of protein–ligand interactions

of hydroxycitric acid and acarbose with α-glucosidase and α-
amylase as target proteins, binding free energy calculations
were considered. The binding free energy analysis revealed
that van der Waal’s binding energies played a significant role
in the formation of complexes. All the binding free energy
calculations for hydroxycitric acid were energetically feasible. In
comparison, the complexes bound to acarbose had lower binding
free energies than those bound to hydroxycitric acid, indicating
that their protein–ligand interactions and binding affinities were
weaker. The results from binding affinity support the outcomes
from molecular docking and dynamics simulation. Additionally,
these findings were consistent with previous studies that have
performed binding free energy calculations for α-glucosidase
and α-amylase (Martiz et al., 2022a). Table 9 summarizes the
results of binding free energy calculations obtained using the
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FIGURE 4

The antioxidant ability of the LAB isolates (103, 106, and 109 CFU/mL) against ABTS and DPPH is expressed in mean ± SD with significantly di�erent

P-values (P ≤ 0.05), which is represented with a, b, and c superscripts and separated by the Duncan-multiple range test.

FIGURE 5

Inhibitory activity of LAB isolates (I, E, and S) against carbohydrate hydrolyzing enzymes is expressed in mean ± SD with significantly di�erent

P-values (P ≤ 0.05), which are represented with a, b, and c superscripts and separated by the Duncan-multiple range test.

MM-PBSA technique. Consequently, the study emphasizes the
molecular mechanisms underlying protein–ligand interactions and
provides details that may aid in the creation of more effective
treatments for diabetic nephropathy and other consequences
of diabetes.

Discussion

In the present study, the isolation of probiotics from fermented
pineapple with the ability to survive in gastrointestinal conditions
and the potentiality to inhibit carbohydrate-hydrolyzing enzymes
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(α-amylase and α-glucosidase) is emphasized. Out of the six single
colonies formed, one isolate was selected after the preliminary
screening of LAB. Probiotics are bacteria that, when ingested as
a food component, frequently have positive effects on health. The
presumptive probiotic strain was further evaluated for its ability
to withstand different temperatures, pHs, and salt concentrations,
and the isolate from fermented pineapple expressed tolerance to
all varying conditions. The isolate would have to resist a range of
temperatures, pH levels, and salt concentrations to survive once
they reach the gut. Furthermore, the aromatic amino acids present
in the gut microbiota, which are derived from dietary proteins, lead
to the production of phenol (Yadav et al., 2016). Therefore, for a
LAB strain to be qualified as a probiotic, it is highly important
to have tolerance to phenol. The isolate in this study expressed
tolerance up to 0.4% phenol until the last hour of incubation with
no significant loss in the cell count, and the results are similar to

TABLE 6 Organic acids’ profile obtained by the LC-MS analysis.

Organic acids RAMULAB49 (mg/mL)

Lactic acid 1.36453

Pyruvic acid 1.38166

Malonic acid 0.04465

Maleic acid 0.04354

Fumaric acid 0.04216

Succinic acid 14.5368

Malic acid 0.46725

Tartaric acid 0.05346

Shikimic acid 0.12474

Citric acid 0.79254

Hydroxycitric acid 0.6102

previous studies (Jena et al., 2013; Abbasiliasi et al., 2017; Jawan
et al., 2019). It is critical for a specific LAB strain to be able
to withstand some phenol. The LAB strains isolated from the
fermented beverage raabadi have a resistance to phenol that ranges
from 6.3 to 7.7 log CFU/mL (Yadav and Shukla, 2020). Any food
consumed must first endure the harsh environment of the stomach
and the small intestine before it can be absorbed into the large
intestine. To have beneficial effects of the food consumed on health,
probiotics must endure harsh stomach and intestinal conditions.
The isolate was evaluated for its ability to withstand extreme acidic
and bile conditions, indicating that the isolate can survive at low pH
and bile conditions. There are multiple instances reported of gastric
and intestinal juice tolerance of probiotic strains isolated from

TABLE 7 Predicted PASS results.

Sl. No. Name of the
compound

Activity Pa Pi

1 Citric acid Antidiabetic 0.648 0.009

2 Fumaric acid Antidiabetic 0.512 0.021

3 Hydroxycitric
acid

Antidiabetic 0.708 0.006

4 Lactic acid Antidiabetic 0.680 0.007

5 Maleic acid Antidiabetic 0.512 0.021

6 Malic acid Antidiabetic 0.639 0.009

7 Malonic acid Antidiabetic 0.270 0.100

8 Pyruvic acid Antidiabetic symptomatic 0.228 0.095

9 Shikimic acid Antidiabetic 0.203 0.160

10 Succinic acid Antidiabetic 0.440 0.034

11 Tartaric acid Antidiabetic 0.719 0.005

12 Acarbose Antidiabetic 0.693 0.007

TABLE 8 Virtual screening of Levilactobacillus brevis derivatives against α-glucosidase and α-amylase.

Sl. No. Name of the
compound

Binding a�nity (kcal/mol) Total no. of non-bonding
interactions

Total no. of conventional
hydrogen bonds

α-glucosidase α-amylase α-glucosidase α-amylase α-glucosidase α-amylase

1 Citric acid −6.1 −5.9 5 3 5 3

2 Fumaric acid −6.3 −5.4 5 4 5 4

3 Hydroxycitric acid −6.4 −5.9 7 6 7 6

4 Lactic acid −5.5 −5.1 4 4 4 3

5 Maleic acid −6.3 −5.0 5 3 5 3

6 Malic acid −6.2 −5.2 3 6 3 6

7 Malonic acid −5.8 −5.1 3 5 3 5

8 Pyruvic acid −5.5 −5.3 4 2 4 2

9 Shikimic acid −5.9 −5.6 6 4 6 4

10 Succinic acid −6.1 −4.9 5 5 5 5

11 Tartaric acid −6.0 −4.3 7 5 7 5

12 Acarbose −5.9 −5.4 7 4 6 4
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FIGURE 6

3D representation of ligands in the stick model for hydroxycitric acid and acarbose is given in di�erent colors: (A) purple: hydroxycitric acid and (B)

red: acarbose. The di�erent types of interactions and their respective distance are represented by dotted lines in maroon color and the three-letter

amino acids. 2D representation of ligands along with their bounded and non-bounded interactions are represented with their distance as follows: (C)

purple: hydroxycitric acid and (D) red: acarbose.

many fermented foods (Nguyen et al., 2019; Kumari et al., 2022a,b).
In this study, the survival rate of the RAMULAB49 strain in gastric
and intestinal fluids was 6.21 and 7.35 log CFU/mL in the last
hour of incubation. The obtained results are on par with previous
studies (Zhou et al., 2009; Feng et al., 2017). The non-polar solvent
xylene was used to check the surface hydrophobicity of the LAB
strain, and the observed affinity was 67.71%. The hydrophobicity
supports the adhesion of bacterial cells to the intestinal epithelial
cells, and it is directly connected with the autoaggregation ability
of the probiotic strain. The autoaggregation of the isolate after 24 h
of incubation was >75%, and the obtained results are on par with
the findings of Li et al. (2020) and Tuo et al. (2013). The percentage
of coaggregation of RAMULAB49 varied with a different pathogen
and ranged between 15.72 and 21.98%, and it is an essential part
of balancing the ecosystem inside the intestine. Any consumed
probiotics will pass through all extreme abdominal conditions in
the same pattern of food and get exposed to gastric and intestinal
fluids. Therefore, any probiotic needs to show survivability to
gastrointestinal fluids. In this study, the survival rate of the isolate

was 6.21 and 7.35 log CFU/mL at the incubation periods of 3 and
8 h with pepsin and trypsin, respectively. The observed tolerance
was much higher than in previous studies (Vamanu, 2017; Stasiak-
Rózańska et al., 2021). The isolate was further checked for its
antibacterial activity against 10 food pathogens, and high inhibition
was observed by the cell-free supernatant against M. luteus, P.
aeruginosa, and S. typhimurium. The observed inhibition indicates
the production of organic acids during the fermentation process
and also increases acidic conditions in media. The low pH in
the media thus reduces the intercellular pH of the pathogen,
which leads to disruptive cell function and cell death (Kivanç
et al., 2011). Susceptibility of the probiotics toward antibiotics
have underlined importance, and the resistant strain observes all
the space to express its benefit to the consumer when probiotics
are administered along with antibiotics (combined therapies). The
efficiency of the probiotics can also be restricted with antibiotics in
case of hypersensitivity to probiotics (Imperial and Ibana, 2016). In
the present study, the isolate was resistant to six out of 10 antibiotics
and was sensitive to kanamycin, vancomycin, methicillin, and
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FIGURE 7

3D representation of ligands in sticks model for hydroxycitric acid and Acarbose is given in di�erent colors: (A) purple: hydroxycitric acid and (B) red:

acarbose. The di�erent types of interactions and their respective distance are represented by dotted lines in maroon color and the three-letter amino

acids. 2D representation of ligands along with their bounded and non-bounded interactions are represented with their distance as follows: (C)

purple: hydroxycitric acid and (D) red: acarbose.

rifampicin. The adhesion of probiotics to the intestinal epithelial
cells is highly important, and this action mechanism of bacteria
is multifactorial, where it can block the possibility of pathogen
adhesion by competing for the binding site of the host cell
and also produces antimicrobial components (Monteagudo-Mera
et al., 2019). In other words, probiotic adhesion to intestinal
epithelial cells leads to immunomodulation (Cammarota et al.,
2009). Additionally, it is crucial to understand the isolate’s capacity
to adhere to gut epithelial cells. This adhesion ability is screened
under in vitro conditions with chicken crops and buccal epithelial
cells. In the present study, the isolate expressed better adhesion
with both the epithelial cell. Furthermore, a safety assessment of
the isolate was performed, and the isolate was negative for both
hemolytic and DNase enzyme activity. Because the isolate lacked
DNase, no cell death was noticed, no hemolysis was observed
in the hemolytic experiment, and probiotic strains isolated from
the curd sample, as shown in the study by Halder et al. (2017),
exhibited comparable outcomes. The antioxidant activity of any
drug is tremendously important as the ability of the drug to
protect the body from damages caused by free radicals induces

oxidative stress (Zehiroglu and Sarikaya, 2019). The antioxidant
ability of the isolate in this study with DPPH and ABTS was
>60 and >74%, respectively, and the results were approximately
equal to the MG860 strain used in the study of Kim et al. (2005)
and higher than the probiotic strain isolated from kimchi and
infant feces (Jang, 2014). The main objective of the present study
was to isolate the effective probiotic strain with the ability to
inhibit carbohydrate hydrolyzing enzymes. On assessment, the
inhibition was found to be 56.19 and 55.69% for α-amylase and
α-glucosidase, respectively, with the cell-free supernatant. As the
inhibition of carbohydrate hydrolyzing enzyme was predominant
in the cell-free supernatant, the organic acids were extracted (LC-
MS) from the same, and the inhibitory activity has been further
analyzed and confirmed by in silico studies. All organic acids were
found to have pharmacological potential, whereas the Pa value of
citric acid, hydroxycitric acid, and malic acid was found to be
greater than that of the other compounds. In this study, the lead
compound was found to interact with the following amino acid
residues: ASN241, ARG312, GLU304, SER308, HIS279, PRO309,
and PHE311 present in α-glucosidase and HIS239 and HIS279
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FIGURE 8

Analysis of RMSD, RMSF, Rg, SASA, and number of hydrogen bonds of hydroxycitric acid (purple) and acarbose (red) bound α-glucosidase complex as

well as apoprotein (α-glucosidase: green) at 100 ns. (A) Time evolution of the RMSD value of both the complexes along with protein, (B) RMSF, (C)

radius of gyration (Rg), (D) SASA, and (E) hydrogen bonds.

present in α-amylase via hydrogen bond. In molecular docking and
binding free energy calculations, binding affinities are expressed
as negative values because they represent the free energy change
associated with the binding of a ligand molecule to a receptor
molecule (Maradesha et al., 2022a; Martiz et al., 2022a). The
binding affinity is defined as the difference in energy between
the bound and unbound states of the ligand–receptor complex.
In other words, it is the energy required to break the ligand–
receptor complex formed through molecular docking simulation.
A negative binding affinity indicates that the binding process is

energetically favorable, meaning that the complex is more stable
than the separate ligand and receptor molecules. Therefore, the
greater the negative binding affinity, the more energy is required to
break the complex, and the greater the stability of the complex (Patil
et al., 2022a,b). A similar pattern of interaction was observed with
the positive control used, and the obtained results are in accordance
with the previous studies conducted by Patil et al. (2022c,f) and
Prabhakaran et al. (2022) with the same target proteins. Inhibition
of these enzymes effectively manages blood glucose levels with
negligible side effects.
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FIGURE 9

Analysis of RMSD, RMSF, Rg, SASA, and number of hydrogen bonds of hydroxycitric acid (purple) and acarbose (red) bound α-amylase complex as

well as apoprotein (α-amylase: green) at 100 ns. (A) Time evolution of the RMSD value of both the complexes along with protein, (B) RMSF, (C) radius

of gyration (Rg), (D) SASA, and (E) hydrogen bonds.

Conclusion

The present study demonstrated that fermented pineapple
contains Levilactobacillus brevis RAMULAB49, a probiotic with
antidiabetic properties. This study is the first to obtain LAB
isolates with antidiabetic potential from fermented pineapple.
The safety and high potential for survival in challenging gut
environments of the Levilactobacillus brevis RAMULAB49 have

been established. These results aid in the development of a
potentially effective and affordable antidiabetic supplement with
minimal adverse effects when compared to any other synthetic
medicine. The autoaggregation, hydrophobicity, and adhesion to
epithelial cells of the RAMULAB49 strain were also shown to
be remarkable. The expression of inhibitory activity against the
enzymes α-glucosidase and α-amylase was evaluated in vitro and
in silico. Both the cell-free extract and the intact cells displayed
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TABLE 9 Binding free energy values of target proteins complexed with hydroxycitric acid and acarbose.

Protein-ligand complexes Types of binding free energies

Van der Waal’s
energy
(kj/mol)

Electrostatic
energy
(kj/mol)

Polar solvation
energy
(kj/mol)

SASA energy
(kj/mol)

Binding
energy
(kj/mol)

α-glucosidase-hydroxycitric acid −220.118 −9.313 96.102 −28.166 −189.1022

α-glucosidase-acarbose −134.192 −4.813 62.125 −9.310 −90.102

α-amylase-hydroxycitric acid −211.002 −4.101 29.410 −19.142 −179.001

α-amylase-acarbose −130.161 −2.106 39.340 −9.564 −87.109

inhibitory capacity, demonstrating that the necessary elements
are present in both. However, the cell-free supernatant showed
higher inhibition. Therefore, the inhibitory action of this probiotic
against the enzymes is strongly supported by an in silico approach
using organic acid from cell-free supernatant, whereas citric acid,
hydroxycitric acid, and malic acid were found to have greater
pharmacological potential than the other organic acid from the
cell-free supernatant. This research demonstrates the presence
of LAB in fermented pineapple, which has potential antidiabetic
activities. Therefore, the probiotic strain can be utilized as an
efficient antidiabetic therapy and combined with an appropriate
dietary composition for improving human health.
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