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Background: Streptococcus agalactiae can produce CAMP factor, which can 
promote the β-hemolysin activity of Staphylococcus aureus, forming an arrow-
shaped hemolysis enhancement zone at the intersection of the two bacterial species 
on a blood agar plate. This characteristic feature of Streptococcus agalactiae has led 
to the widespread use of the CAMP test as an identification method.

Methods: Vaginal/rectal swabs, collected from women at 35–37  weeks of 
pregnancy, were first inoculated into a selective enrichment broth media, then 
subcultured onto GBS chromogenic agar and 5% sheep blood agar sequentially. 
The VITEK-2 automatic identification system and MALDI-TOF MS were initially 
employed for identification, followed by the CAMP test. CAMP-negative strains 
underwent 16S rDNA and cfb gene sequence analysis, as well as bacterial 
multilocus sequence typing.

Results: A total of 190 strains were isolated, with 15 identified as CAMP-negative. 
Further 16S rDNA gene sequence analysis confirmed that all 15 strains were 
Streptococcus agalactiae. The MLST typing assay revealed that these 15 strains 
were of the ST862 type. The cfb gene was amplified and electrophoresed, but 
no specific fragments were found, indicating that these strains lack the CAMP 
factor due to cfb gene deletion. Antibiotic susceptibility tests demonstrated no 
resistance to penicillin, ampicillin, vancomycin and linezolid among the GBS 
strains. However, there are significant differences in resistance rates to tetracycline.

Conclusion: This study found that 7.9% of GBS strains isolated from the vagina/
rectum of pregnant women were CAMP-negative, suggesting that the CAMP 
test method or primers targeting the cfb gene should not be used as the sole 
presumptive test for GBS identification.
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1. Introduction

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a Gram-positive 
coccus commonly found in the gastrointestinal and genitourinary tracts. Research indicates that 
approximately 11 to 35% of pregnant women are colonized by GBS in the vagina or rectum. 
(Russell et al., 2017; Bogiel et al., 2021). GBS is the primary pathogen responsible for neonatal 
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infections, with mother-to-child transmission being the predominant 
mode of infection. Roughly 50% of GBS-colonized pregnant women 
transmit the bacteria to their newborns. In the absence of intrapartum 
antibiotic prophylaxis (IAP), 1% ~ 2% of newborns may develop 
sepsis, meningitis, pneumonia, or other serious complications, 
potentially leading to neonatal death or neurological sequelae 
(Puopolo et al., 2019; Geteneh et al., 2020). Since the early 1990s in 
the United States, GBS screening and IAP have effectively reduced the 
incidence of neonatal infections caused by GBS (Schrag et al., 2002; 
Nanduri et al., 2019).

CAMP factor is the primary virulence factor of GBS. The CAMP 
reaction was initially characterized as the synergistic lysis of sheep red 
blood cells by Staphylococcus aureus sphingomyelinase and CAMP 
factor (Christie et  al., 1944). For an extended period, the CAMP 
phenomenon has served as a crucial basis for the laboratory diagnosis 
of GBS (Jin et al., 2018). Concurrently, the gene encoding CAMP 
factor, the cfb gene, has been utilized as the target of PCR assays for 
GBS diagnosis (Carrillo-Avila et al., 2018).

Although the CAMP test is a vital identification method for 
GBS, instances of GBS with negative CAMP tests have been 
reported occasionally (Guo et al., 2019). In this study, we employed 
GBS chromogenic agar plates to screen GBS from perinatal 
pregnant women, which demonstrated higher sensitivity compared 
to blood agar plates. We identified 15 strains of CAMP-negative 
GBS. Our laboratory has conducted preliminary molecular 
characteristics analyses of these strains, and the findings are 
presented as follows:

2. Materials and methods

2.1. Strain collection and identification

A total of 1,391 vaginal/rectal swabs were collected from pregnant 
women at 35–37 weeks of gestation between April 2020 and March 
2021 at Pingshan General Hospital of Southern Medical University. To 
enhance detection rates, the vaginal/rectal swabs were inoculated into 
a selective enrichment broth media (Jiangmen Kailin Trading Co., 
Ltd., China) and incubated for 18–24 h at 35–37°C in 5% CO2 
conditions. Subsequently, the samples were subcultured onto GBS 
chromogenic agar plates (Zhengzhou Antu Biological Engineering 
Co., Ltd., China) for approximately 24 h. The purple colonies were 
then selected and cultivated on 5% sheep blood agar (Guangzhou 
Dijing Microbial Science and Technology, China) for another 24 h. 
Suspected isolates were initially identified using the VITEK-2 
automatic identification system (BioMérieux, France) and confirmed 
by MALDI-TOF MS (BioMérieux, France).

2.2. CAMP test

The CAMP reactions of isolates identified as Streptococcus 
agalactiae were assessed on 5% sheep blood agar (Guangzhou Dijing 
Microbial Science and Technology, China) following conventional 
methods (Guo et al., 2019), Streptococcus agalactiae (ATCC13813) was 
employed as a positive control, Enterococcus faecalis (ATCC29212) as 
a negative control, and Staphylococcus aureus (ATCC25923) for the 
production of β-hemolysin.

2.3. 16S rDNA and cfb gene sequencing

Genomic DNA was isolated and purified using the bacterial 
genomic extraction kit DP302 (TIANGEN Biotech, Beijing, China). 
The 16S rDNA gene and cfb gene were amplified using Applied 
Biosystems 7,500 (Thermo Fisher, Foster City, USA) with primers as 
reported (Hongoh et al., 2003; Cezarino et al., 2008). Additionally, 
we designed another set of primers targeting the cfb gene for further 
verification (Forward: 5′-TGGTAGTCGTGTAGAAGCCTTA-3′; 
Reverse: 5′-TCCAACAGCATGTGTGATTGC-3′). All amplified 
fragments were analyzed by agarose gel electrophoresis and sent to 
Shanghai Personalbio Technology for sequencing. The obtained 
sequences were blasted in NCBI database. Streptococcus agalactiae 
(ATCC13813) was used as a positive control in the assay.

2.4. Multilocus sequence typing

Seven housekeeping genes of GBS (adhP, pheS, atr, glnA, sdhA, 
glcK and tkt) were amplified separately with primers reported (Jones 
et al., 2003). The amplified products were analyzed by agarose gel 
electrophoresis and sent to Shanghai Personalbio Technology for 
sequencing. The obtained sequences were submitted to the MLST 
analysis website1 to obtain allele numbers and STs.

2.5. Antibiotic susceptibility testing

VITEK-2 susceptibility testing, including penicillin, ampicillin, 
clindamycin, erythromycin, levofloxacin, tetracycline, linezolid and 
vancomycin, was conducted following the manufacturer’s instructions 
using the AST-GP67 card. The results obtained after a maximum of 15 h 
of incubation were analyzed and interpreted by AES 7.01 software. 
Staphylococcus aureus (ATCC29213) and Enterococcus faecalis 
(ATCC29212) were used as quality control strains to ensure the credibility 
of the results. The D-zone test with erythromycin and clindamycin 
(OXOID, United Kingdom) placed at 12 mm (edge to edge) distance was 
performed on 5% sheep blood MH agar (Guangzhou Dijing Microbial 
Science and Technology, China) and incubated for 20–24 h at 37°C.

2.6. Statistical analysis

The data were reported as numbers (percentages) and compared 
using the chi-square test. p values <0.05 were considered statistically 
significant. All data were analyzed using the statistical software SPSS 19.0.

3. Results

3.1. Multilocus sequence typing

A total of 190 Streptococcus agalactiae strains were identified using 
the VITEK-2 and MALDI-TOF MS systems. Among these, 15 isolates 

1 http://pubmlst.org/sagalactiae/
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were found to be CAMP-negative strains (Figure 1), representing 7.9% 
of the total strains. Further confirmation of these strains as 
Streptococcus agalactiae was achieved through 16S rDNA sequence 
blast (data uploaded to NCBI GenBank: OQ680135, OQ680134, 
OQ680136, OQ680133, OQ680132, OQ680130, OQ680128, 
OQ680127, OQ680129, OQ680125, OQ680126, OQ680014, 
OQ680017, OQ680013, OQ680016). The 15 strains were then 
subjected to MLST typing, revealing that all of them belonged to 
ST862 (adhP = 16, pheS = 1, atr = 4, glnA = 70, sdhA = 9, glcK = 3, 
tkt = 2). The cfb gene was amplified using two sets of primers, one 
targeting the upstream region (Figure 2A, Red) and the other targeting 
the downstream region (Figure 2A, Blue), Agarose gel electrophoresis 
results indicated chromosomal deletions of the cfb gene in these 15 
strains (Figures 2B,C), the sequence of positive control for the cfb gene 
was uploaded to NCBI GenBank: OQ871565 and OQ693682.

3.2. Antibiotic susceptibility

No GBS resistance to penicillin, ampicillin, vancomycin and 
linezolid was detected. The resistance rates of the 190 GBS strains to 
erythromycin, clindamycin, tetracycline and levofloxacin were 62.63, 
56.32, 82.11 and 16.84%, respectively. Among these, the resistance 
rates of CAMP-positive GBS to erythromycin, clindamycin, 
tetracycline and levofloxacin were 63.43, 56.57, 85.14 and 18.29%, 
respectively. In contrast, the resistance rates of CAMP-negative GBS 
were 53.33, 53.33, 46.67 and 0% for erythromycin, clindamycin, 
tetracycline, and levofloxacin, respectively. No significant difference 
was observed in resistance rates for erythromycin, clindamycin and 
levofloxacin; however, a statistically significant difference was found 
for tetracycline resistance (p < 0.01). The results are presented in 
Table 1.

4. Discussion

GBS can cause miscarriage, premature delivery, and premature 
rupture of membranes through ascending infections in the birth canal 
of pregnant women. It can also lead to neonatal sepsis and meningitis 

through vertical transmission between mother and child. 
Consequently, GBS is a pathogenic bacterium that requires close 
monitoring during the perinatal period (Simonsen et al., 2014).

Christie et al. first reported in 1944 that the CAMP factor exhibits 
high specificity for GBS (Christie et al., 1944). In 1979, Bernheimer 
et al. isolated and purified the CAMP factor (Bernheimer et al., 1979), 
and its coding gene, cfb, was discovered in 1994 (Podbielski et al., 
1994). Subsequent studies revealed that almost all GBS strains contain 
the cfb gene encoding the CAMP factor. However, some research 
reports identified CAMP-negative phenotypes (Hassan et al., 2002). 
The CAMP-negative phenotype in GBS strains with the cfb gene may 
result from transcription defects, low gene expression, or low CAMP 
factor activity (Podbielski et  al., 1994). Between 2012 and 2018, 
Tickler et al. collected 31 GBS strains from 12 laboratories in the 
United States and Ireland, which contained deletions in or near the 
chromosomal region encoding the hemolysin gene cfb, but only 5 
strains lacked the complete cfb gene (Tickler et al., 2019). CAMP-
negative GBS has also been identified in China, Guo et al. isolated 4 
CAMP-negative strains from 22 GBS strains, but only 1 strain had a 
cfb gene deficiency (Guo et al., 2019). In this study, we used two sets 
of primers targeting the upstream and downstream regions of the cfb 
gene and ultimately identified 15 cfb-deficient GBS strains from 190 
isolated GBS strains, with a deficiency rate of 7.9% (15/190). This 
finding contrasts with the current understanding that the vast majority 
of GBS (>98%) contain the cfb gene and express the CAMP factor 
(Jorgensen et al., 2015).

Since most GBS strains contain the cfb gene, many laboratories 
and companies use the cfb gene as a target for primer design and PCR 
detection of GBS in vaginal/rectal swabs from pregnant women 
during the perinatal period (Goudarzi et al., 2015; Tanaka et al., 2016; 
Ferreira et al., 2018). However, our results indicate that using a GBS 
detection kit designed for the cfb gene in this region may lead to 
missed detections. The recently developed Xpert GBS LB XC test 
targets two unique GBS genes: glucosyl transferase family gene and 
LysR family gene, exhibiting higher sensitivity and specificity 
compared to traditional methods (Thwe et al., 2022).

The MLST results of the 15 CAMP-negative strains showed that 
they all belonged to the ST862 type. This type has been previously 
reported by Cheng et al. in Guangzhou, South China. However, the 

FIGURE 1

The CAMP test of 15 suspected CAMP-negative isolates of Streptococcus agalactiae (+: positive control, −: negative control).
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six ST862 GBS strains they identified all carried the cfb gene (Cheng 
et al., 2020), contrasting with our findings. We speculate that this 
discrepancy may be due to local clonal expansion. The reason for the 
loss of the cfb gene requires further investigation.

Although the resistance rates of CAMP-negative GBS and CAMP-
positive GBS to erythromycin and clindamycin were not statistically 
significant, the resistance rate of CAMP-negative GBS to tetracycline 
was much lower than that of CAMP-positive GBS. Whether the 
absence of the cfb gene affects GBS drug resistance warrants 
further study.

The CAMP factor is a secreted protein with perforating properties, 
known to weaken the host’s immune function during systemic 
infection (Kurosawa et  al., 2016). In vivo experiments have 
demonstrated that the CAMP factor can contribute to, or even cause, 

animal death, leading to the belief that it is an essential pathogenic 
factor (Rajagopal, 2009). However, Hensler et al. (2008) conducted in 
vitro and in vivo experimental studies after allelic replacement of the 
cfb gene and concluded that the CAMP factor is not necessary for GBS 
virulence. Therefore, there are still controversies regarding the role 
and mechanism of the CAMP factor in the infection process. The 
pathogenicity of these cfb-deficient GBS strains isolated in this study 
requires further investigation.

5. Conclusion

Based on the results of this study, 7.9% of GBS isolated from the 
vagina/rectum of pregnant women were CAMP-negative. As a result, the 

FIGURE 2

Agarose gel electrophoresis of the amplified cfb gene from 15 CAMP-negative isolates. (A) Primer design for the cfb gene, with red primers targeting 
the upstream region and blue primers targeting the downstream region. (B,C) The cfb gene amplified with the two sets primers (lane1 and 17 were 
positive control; lane2-16 were 15 CAMP-negative isolates; M: DL2000 DNA Marker).
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CAMP test should not be solely relied upon as a presumptive method for 
GBS identification. Utilizing primers targeting the cfb gene could lead to 
missed detections of GBS, and thus, alternative or multitarget approaches 
are warranted to ensure optimal diagnostic accuracy.
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