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Viruses and tumors are two pathologies that negatively impact human health, 
but what occurs when a virus encounters a tumor? A global consensus among 
cancer patients suggests that surgical resection, chemotherapy, radiotherapy, 
and other methods are the primary means to combat cancer. However, with 
the innovation and development of biomedical technology, tumor biotherapy 
(immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus 
therapy, etc.) has emerged as an alternative treatment for malignant tumors. 
Oncolytic viruses possess numerous anti-tumor properties, such as directly 
lysing tumor cells, activating anti-tumor immune responses, and improving the 
tumor microenvironment. Compared to traditional immunotherapy, oncolytic 
virus therapy offers advantages including high killing efficiency, precise targeting, 
and minimal side effects. Although oncolytic virus (OV) therapy was introduced 
as a novel approach to tumor treatment in the 19th century, its efficacy was 
suboptimal, limiting its widespread application. However, since the U.S. Food and 
Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, 
interest in OV has grown significantly. In recent years, oncolytic virus therapy 
has shown increasingly promising application prospects and has become a 
major research focus in the field of cancer treatment. This article reviews the 
development, classification, and research progress of oncolytic viruses, as well as 
their mechanisms of action, therapeutic methods, and routes of administration.
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1. Introduction

In recent years, significant advances in cancer genomics and the application of various 
therapeutic interventions, such as chemotherapy, radiation therapy, and immunotherapy, have 
led to remarkable improvements in the prognosis of cancer patients. However, these treatments 
still have substantial limitations, including (1) serious side effects associated with chemotherapy 
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and radiation therapy, (2) development of drug resistance in tumor 
cells, and (3) suboptimal efficacy of immunotherapy in severe and 
highly immunosuppressed diseases (Chiocca and Rabkin, 2014; Zhu 
et al., 2022; Tripodi et al., 2023). Therefore, the development of a novel 
therapeutic approach is necessary, which should avoid adverse effects 
on normal tissue cells while exhibiting high specificity for tumor cells. 
Oncolytic viruses (OVs) are natural or genetically modified drugs that 
possess a characteristic of elevated sensitivity to innate antiviral 
signaling and dependence on tumor signaling pathways, allowing for 
targeted infection and intracellular proliferation within tumor cells, 
triggering both innate and adaptive immune responses in the host, 
ultimately resulting in tumor cell death (Chiocca and Rabkin, 2014; 
Ghasemi Darestani et  al., 2023; Malhotra and Kim, 2023). This 
property renders oncolytic viruses a promising therapeutic approach 
for cancer treatment. Simultaneously, the ruptured tumor cells can 
release their progeny OVs to continue infecting the remaining tumor 
cells, playing a role in continuously killing tumor cells (Russell et al., 
2012; Lawler et al., 2017). After all the tumor cells are infected and 
cleared by the virus, the virus generally breaks the immune system’s 
tolerance and triggers an immune response, which results in its 
elimination (Russell and Barber, 2018). Therefore, as an emerging 
cancer treatment approach, OVs treatment has significant research 
prospects and is of great research importance.

With the development of genetic engineering, several OVs treatment 
has been applied, such as the marketing of Rigvir (Doniņa et al., 2015; 
Alberts et al., 2018) was approved in Latvia, H101 (Liang, 2018) in China, 
T-VEC (Wall and Baldwin-Medsker, 2017) in the United States, and the 
Japanese herpes simplex virus Deltyact (Teserparturev/G47 ∆; Frampton, 
2022). However, these viruses have not been particularly widely used after 
being marketed due to the different structures and biological 
characteristics of oncolytic viruses. Their production processes and 
quality control are quite diverse. At present, the understanding of their 
biological mechanism of action and the quality of oncolytic viruses used 
for treatment are not comprehensive, which poses great challenges for the 
research and application of oncolytic viruses in cancer treatment. 
Moreover, there is currently a lack of comprehensive reviews on clinical 
trials of most oncolytic viruses in the research field. Therefore, our study 
aims to fill this gap.

In this review, we will focus on the diversity of OVs, the potential 
harm to the human body, the high efficiency of killing tumor cells, and 
their therapeutic methods, and clarify the great role of OVs in the 
treatment of tumor cells. By searching the PubMed database and 
ClinicalTrials.gov, we collected many articles and data about OVs in 
clinical studies and summarized the treatment methods of most OVs 
and the efficacy of combination therapy.

2. Development, species, and research 
progress of oncolytic viruses

2.1. The development of oncolytic viruses

In 1896, a case of leukemia was reported in which the white blood 
cells of a woman infected with the influenza virus decreased 
dramatically (Tian et  al., 2022). The phenomenon that cancer 
remission following influenza infection made people realize that 
viruses and tumors, as diseases that are difficult to cure, may interact 
with each other. After that, cases of tumor reduction or disappearance 

following virus infection were reported one after another. In 1912, an 
Italian doctor discovered that a cervical cancer patient’s tumor began 
to recede after a rabies vaccination (Das et  al., 2021). Since then, 
scientists conducted clinical trials using various wild-type viruses to 
treat tumors from the 1950s to the 1980s. However, due to limited 
medical conditions, technology, and understanding of viruses and 
tumor mechanisms, viruses did not revolutionize tumor treatment, 
and the development of oncolytic viruses was slow (Moore, 1952; 
Southam and Moore, 1952; Asada, 1974). With advancements in 
modern genetic engineering and research on viral genes, designing 
and manipulating viruses using genetic engineering has emerged as a 
promising approach for OVs. In 1991, the first OV was used to inhibit 
the growth of glioma in mice (Ezzeddine et  al., 1991), and the 
development of OVs began to advance rapidly. In 1996, research 
proved that the adenovirus with an E1B55K gene mutation could 
selectively replicate in p53 defective tumor cells (Bischoff et al., 1996), 
and then the genetically modified adenovirus ONYX-015 entered 
phase I clinical trials (Rothmann et al., 1998). In 2004, RIGVIR was 
approved for melanoma treatment in Latvia, followed by H101 in 
China in 2005, and T-VEC in the United States and Europe in 2015 
(Bilsland et  al., 2016; Kaufman et  al., 2022; Zhang et  al., 2022), 
marking the maturity of oncolytic virus technology and recognition 
of the efficacy of oncolytic virus. In 2017, Cell reported that the 
combination of oncolytic virus T-VEC and PD-1 anti-tumor drug 
Keytruda was used to treat melanoma (Ribas et al., 2017), setting off 
an upsurge of research on oncolytic virus combined therapy. In 2021, 
Deltyact (Teserpatricev/G47 ∆) in Japan was approved for listing 
(Zeng et al., 2021). Until now, numerous genetically modified OVs 
have undergone various clinical trials and achieved notable results 
(Macedo et al., 2020), making oncolytic virus one of the promising 
tumor immunotherapy methods in clinics.

2.2. Introduction and development of 
some oncolytic viruses

Current research shows that the size of oncolytic viruses is mostly 
distributed between 20 and 200 nm. Selective replication in tumor 
cells is a critical characteristic of oncolytic viruses for tumor 
immunotherapy. The replication ability of OV depends on the viral 
infection ability, the characteristics of tumor cells, and the host 
resistance (Sostoa et al., 2020). Not all viruses are suitable for use as 
oncolytic viruses, and their selection depends on factors such as the 
potential pathogenicity, immunogenicity, and genes encoding the 
therapeutic ability of the virus (Russell et al., 2012). Several oncolytic 
viruses are currently in use, including adenovirus (Ad; Gállego Pérez-
Larraya et  al., 2022; Nisar et  al., 2022; Yngve et  al., 2022), herpes 
simplex virus (HSV; Kawamura et  al., 2022; Scanlan et  al., 2022; 
Shayan et  al., 2022), vaccinia virus (VV; Zhou et  al., 2020; Yang 
Z. et al., 2021), reovirus (Seyed-Khorrami et al., 2021; Yang C. et al., 
2021), poliovirus (Ghajar-Rahimi et  al., 2022; Wei et  al., 2022), 
coxsackie virus (CV; Lu et al., 2020; Sarwar et al., 2021), Newcastle 
disease virus (NDV; Chan et al., 2021), vesicular stomatitis virus (VSV; 
Sarwar et  al., 2021), myxoma virus (Villa et  al., 2022), and some 
enteroviruses (Xu et al., 2021; Kolyasnikova et al., 2023).

Nonetheless, the ability to selectively infect certain tumors may 
also limit the virus’s applicability to specific tumor types. Su et al. 
found a way to overcome this limitation by employing the survivin 
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promoter as a regulatory element to direct the adenovirus toward 
cancer cells (Su et al., 2022). Additionally, they reduced the expression 
of Elb-55kD to augment the virus’s tumor selectivity, allowing for 
adenovirus replication in various tumor cells while minimizing 
excessive viral replication in normal cells. Consequently, the modified 
adenovirus demonstrated a broad-spectrum anti-cancer effect.

2.2.1. Adenovirus
Adenovirus (Ad) is a type of double-stranded DNA virus. Ads are 

the primary focus of oncolytic virus research. Oncolytic adenovirus 
can infect almost all types of cells and is easy to prepare and purify. 
However, it also has the disadvantage that Ad in the body is easy to 
cause induction of autoimmunity to reject the Ad. Back in 2005, China 
approved the first OV, an Ad called H101 (Liang, 2012; Wei et al., 
2018), for the treatment of squamous cell carcinoma of the head and 
neck (SCCNH; Garber, 2006). Ads are used to treat several types of 
cancer, including melanoma (García et  al., 2019; Milenova et  al., 
2021), lung cancer (Watanabe et al., 2006), colorectal cancer (Kuhn 
et al., 2008), prostate adenocarcinoma (PRAD ; Chen et al., 2001; 
DeWeese et al., 2001; Ramesh et al., 2006; Small et al., 2006; Huang 
et al., 2008; Burke et al., 2012; Rojas-Martínez et al., 2013; Packiam 
et al., 2018; Oronsky et al., 2022), malignant glioma (MG; Chiocca 
et al., 2004; Lang et al., 2018; Kieran et al., 2019; Carpenter et al., 
2021), ovarian cancer (OC; Kimball et al., 2010; Kim et al., 2013; 
Vassilev et al., 2015), head and neck cancer (HNC; Chang et al., 2009; 
Nakajima et al., 2009), and solid tumors (Lin et al., 2007; Li et al., 2009; 
Nemunaitis et al., 2010; Nokisalmi et al., 2010; Pesonen et al., 2012; 
Machiels et al., 2019).

Adenovirus is commonly modified by four methods: the first 
method involves modifying the gene sequence in the E1 region. For 
example, the E1b55K of the virus does not prevent the apoptosis 
pathway in normal cells, but it does in tumor cells (Cheng et al., 2015). 
The second method involves using tumor-specific promoters to 
replace the necessary promoters in Ad, such as the promoters of 
telomerase reverse transcriptase, to regulate E1A gene expression in 
cancer cells with high levels of telomerase reverse transcriptase 
(Tazawa et al., 2020). The third method is to modify the Ad capsid 
protein to make the virus bind more selectively to tumor cells (Wang 
et  al., 2016; Franke et  al., 2023). Furthermore, inserting genes to 
express pro-apoptotic proteins can enhance the ability of the virus to 
kill tumor cells (Cerullo et  al., 2010). Some of the oncolytic 
adenoviruses under study are listed in Table 1.

2.2.2. Herpes simplex virus
Herpes virus is a group of DNA viruses enclosed by a cellular 

membrane. It exhibits strong replication ability and is commonly used 
in genetic engineering. Herpesvirus has numerous advantages, 
including a wide range of infected hosts, high infection efficiency, large 
genome capacity, clear gene and protein functions, and low 
pathogenicity. Research on HSV-1 in the herpesvirus group has shown 
that it has a positive effect on the treatment of tumor cells. HSV has 
demonstrated a significant effect on melanoma (Senzer et al., 2009; 
Kaufman et  al., 2010; Andtbacka et  al., 2015; Johnson et  al., 2015; 
Killock, 2015; Puzanov et al., 2016; Chesney et al., 2018a,b; Andtbacka 
et al., 2019; Yun et al., 2022), breast cancer (BC; Teshigahara et al., 2004; 
Gholami et al., 2014; Fan et al., 2021; Parmar et al., 2022), HNC (Mace 
et al., 2008; Harrington et al., 2010), glioblastoma (Papanastassiou et al., 
2002; Kanai et al., 2011; Patel et al., 2016; Omar et al., 2021), PRAD 

(Wang et al., 2019), peritoneal cancer (Nakano et al., 2005), colorectal 
cancer (CC; Kemeny et al., 2006; Geevarghese et al., 2010), pancreatic 
cancer (PAAD; Nakao et al., 2011; Kelly et al., 2016; Hirooka et al., 
2018), solid tumor (Zhang et al., 2021), and other tumor cells. Currently, 
there are several strategies for HSV virus transformation, including 
deleting UL39 and other genes required for replication in nondividing 
cells and deleting the neural virulence gene ICP34.5 and immune 
escape-related gene ICP47 (Campadelli-Fiume et  al., 2011). For 
example, in 2015, the T-VEC virus became the first OV approved by the 
FDA for the treatment of malignant melanoma (Johnson et al., 2015). 
The T-VEC deleted ICP34.5 and ICP47 genes and inserted foreign genes 
that can express immune-activating protein granulocyte-macrophage 
colony-stimulating factor (Harrington et al., 2015). The protein encoded 
by the ICP34.5 gene is critical for the infection of healthy cells. 
Therefore, deleting the ICP34.5 gene is a strategy to improve the virus’s 
tumor selectivity (Russell and Barber, 2018; Jin et al., 2021; Tian et al., 
2022). However, deleting the ICP34.5 gene may make the virus more 
susceptible to clearance by immune cells (Yin et al., 2017). To avoid this, 
researchers have deleted the ICP47 gene to prevent the virus from being 
cleared by immune cells (Jin et  al., 2021). And Japan’s Deltyact 
(testerpaturev/G47 Δ) also deleted these two genes and mutated the 
ICP6 gene (Frampton, 2022). The second strategy involves improving 
the targeting of the virus to tumor cells. For example, the glycoprotein 
of the virus can be modified to enhance the targeting of the virus to 
tumor cells (Menotti et al., 2008). In addition, the specific recognition 
receptor can also be constructed into the gene sequence of the virus to 
build a virus mutant that recognizes and expresses tumor cell-related 
receptors (Menotti et al., 2006; Grandi et al., 2010). The third strategy 
involves inserting immune stimulator-related genes to enhance local 
immune toxicity, such as GM-CSF, PD1/PD-L1, IL-2, etc. Table 2 shows 
some of the HSVs currently under study.

2.2.3. Vaccinia virus
Vaccinia virus is a giant double-stranded DNA virus that comes 

in two forms. It is a vaccine against smallpox infection with detailed 
human safety data. And have multiple mechanisms of action that 
target human and rodent tumors, making the virus more effective. For 
example, the Pexa-VEC contains a deletion of viral thymidine kinase 
gene (Chaurasiya et al., 2021). The advantage of utilizing VV to treat 
tumors is that it replicates quickly. The genome does not integrate 
itself into the host cell, and the genome is large enough to insert whole 
segments of foreign genes. VV is effective in targeting hepatocellular 
carcinoma (HCC) (Park et al., 2008; Heo et al., 2013), melanoma 
(Hwang et al., 2011), CC (Park et al., 2015), HNC (Mell et al., 2017), 
peritoneal cancer (Lauer et al., 2018), OC (Mori et al., 2019), BC 
(Beguin et al., 2020), glioblastoma (Breton et al., 2010), and some 
other tumors (Cripe et al., 2015; Downs-Canner et al., 2016; Peng 
et al., 2018). At present, the first modification strategy for the vaccinia 
virus is to delete the genes necessary for virus replication in normal 
cells, such as thymidine kinase (Parato et  al., 2012), and vaccinia 
growth factor (McCart et al., 2001), so that the virus can only replicate 
in tumor cells. The second strategy is to insert genes encoding specific 
tumor-associated antigens or tumor-specific antigens to increase 
specific T-cell-mediated immune responses. In addition, 
immunogenicity is further enhanced by arming the virus or modifying 
the viral vector with immune-stimulating molecules such as 
interleukins and colony-stimulating factors (Guo et al., 2019). Some 
of the VV under-studying can be seen in Table 3.
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TABLE 1 Some oncolytic adenoviruses are under study.

Number The virus 
name

Modification Phase Combination Applicable 
disease

Reference

1 H101

Deletion in the E1B-55 k 

gene and four deletions in 

the E3 gene

Listed Chemotherapy EC, NPC, and HNC
Xu et al. (2021); Garber (2006); Liang 

(2012); Wei et al. (2018); Jin et al. (2021)

2 ADV-TK

Deletion of the ICP34.5 

gene and ICP47 gene Phase III

Chemotherapy, 

radiotherapy, and 

PD-1

HCC, lung cancer, 

MG, PAAD, PRAD, 

and SCCHN

Rojas-Martínez et al. (2013); Kieran 

et al. (2019)

3 CG0070

Carriage of the cancer-

selective promoter E2F-1 Phase III / BDC

Ramesh et al. (2006); Burke et al. 

(2012); Packiam et al. (2018); Oronsky 

et al. (2022)

4 E10A
Deletion in the E1 and 

partial E3 region
Phase III Cisplatin, paclitaxel Solid tumor Lin et al. (2007); Li et al. (2008)

5

DNX-2401

(CCTG-602, 

Delta-24-RGD)

E1A 24 bp-deleted

Phase II PD-1 Glioblastoma

Kimball et al. (2010); Pesonen et al. 

(2012); Kim et al. (2013); Hemminki 

et al. (2015); Lang et al. (2018); 

Carpenter et al. (2021); Oronsky et al. 

(2022)

6 KH901

The sequence of the 

promoter was modified to 

include two E2F-1 binding 

sites

Phase II Chemotherapy SCCHN
Shen et al. (2007a,b); Chang et al. 

(2009); Wei et al. (2018)

7 LOAd703

Deletion of 24 base pairs 

within the E1A region’s 

retinoblastoma binding 

domain

Phase II PD-1, paclitaxel PAAD, MM

Eriksson et al. (2017); Wenthe et al. 

(2020); Wenthe et al. (2021); Oronsky 

et al. (2022)

8 OBP-301

hTERT promoter sequence 

inserted into the DNA 

sequence before the E1 

genes

Phase II Chemotherapy Solid tumor

Watanabe et al. (2006); Huang et al. 

(2008); Nakajima et al. (2009); 

Nemunaitis et al. (2010); Huang et al. 

(2008); Shirakawa et al. (2021); Oronsky 

et al. (2022)

9

ONCOS-102

(CGTG-102, 

Ad5/3-D24-

GMCSF)

Deletion of 24 base pairs in 

the retinoblastoma binding 

domain of the E1A region
Phase II

Chemotherapy, 

PD-1

CC, melanoma, 

MPM, OC, and 

PRAD

Kanerva et al. (2013); Bramante et al. 

(2014); Siurala et al. (2015); Vassilev 

et al. (2015); Oronsky et al. (2022)

10

ONYX-015

(dl1520, 

CG7870)

Deletion of 827 bp in the 

E1B region
Phase II

Chemotherapy, 

radiotherapy

BC, PRAD, and 

SCCHN

Heise et al. (1997); Kirn et al. (1998); 

Reid et al. (2002); Chiocca et al. (2004); 

Galanis et al. (2010); Dilley et al. (2005); 

Small et al. (2006); Parmar et al. (2022)

11 ORCA-010

T1 mutation in the E3/19K 

gene, 24 mutations in the 

E1A region

Phase II / PRAD
Dong et al. (2014); Milenova et al. 

(2021)

12
ColoAd1

(Enadenotucirev)

Generated through 

directed evolution of the 

adenovirus

Phase I Radiotherapy
BDC, CC, HCC, OC, 

and renal carcinoma

Kuhn et al. (2008); Garcia-Carbonero 

et al. (2017); Machiels et al. (2019)

13 CV706

Insertion of a minimal 

promoter-enhancer 

construct by human PSA 

gene (PSE) 5′ of E1A and 

3′ of the E1A promoter

Phase I
Chemotherapy, 

radiotherapy
PRAD

Chen et al. (2001); DeWeese et al. 

(2001)

14 H103
Carriage of the heat shock 

protein (HSP) 70 gene
Phase I / Solid tumor Li et al. (2009); Wei et al. (2018)

(Continued)
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2.2.4. Newcastle disease virus
Newcastle disease virus is an RNA virus that causes Newcastle 

disease in birds but has mild symptoms in humans. It is a typical 
example of oncolytic viruses. Recent studies have shown that NDV 
combined with radiotherapy and combined point inhibitors has been 
shown to improve the clearance rate of melanoma in mice 
(Vijayakumar et al., 2019). Similarly, NDV infects melanoma (Lazar 
et al., 2010), HNC (Prince et al., 2005), glioma (Freeman et al., 2006), 
solid tumor (Pecora et al., 2002), and other tumors (Yaacov et al., 
2008). NDV can increase its number in tumor cells by using the B cell 
lymphoma overexpressed by tumor cells (Mansour et al., 2011). NDV 
is mainly used for immune regulation, such as by introducing IL-2 
(Zamarin et al., 2009) or reverse genetics (Vigil et al., 2007) to improve 
the efficacy of tumor lysis. One example shows that the L289A 
mutation of the F gene has increased cytotoxicity, which can be used 
to treat HCC patients with improved safety and effectively (Altomonte 
et al., 2010). Some of the NDVs under-studying can be seen in Table 4.

2.2.5. Reovirus
A naturally occurring double-stranded RNA virus, reovirus 

normally infects the respiratory and intestinal systems of mammals. 
The oncolytic ability of reovirus is associated with the good 
replication and dissolution of these cells found in various cancer cell 
lines. The virus works against a variety of cancers, including BC, 
SCCNH, melanoma (Galanis et al., 2012; Mahalingam et al., 2017), 
multiple myeloma, PAAD, CC (Goel et al., 2020; Chaurasiya et al., 
2021), glioma (Forsyth et al., 2008; Kicielinski et al., 2014), and lung 
cancer. Reovirus likes to replicate in cells with dysregulated growth 
factor signaling cascade (Shmulevitz et al., 2005). In tumor cells 
lacking anti-virus PKR signal transduction defects, tumor lysis can 
occur directly. At the same time, cytotoxicity mediated by NK cells 
and T cells is a determining factor for anti-tumor efficacy (Rajani 
et  al., 2016). Transformed cells that activate the Ras signaling 
pathway are tolerant to reovirus by enhancing viral membrane 
detachment, increasing particle infectivity, and viral apoptosis 

release (Marcato et al., 2007). The reovirus situation can be seen in 
Table 5.

2.2.6. Some other viruses
In 2004, Latvia launched Rigvir (Doniņa et al., 2015), a naturally 

occurring virus with oncolytic features, which is used to treat 
melanoma, CC, PAAD, BDC, renal carcinoma, PRAD, lung cancer, 
uterine cancer, lymphoid sarcoma, gastrointestinal cancer (GC), and 
other cancers (Alberts et al., 2016; Brokane et al., 2019). A case study 
involving the use of Rigvir therapy demonstrated the therapeutic value 
of this treatment in advanced melanoma. The patient, a 1972-born 
female, was diagnosed with malignant melanoma in the lumbar 
region. Following surgical and chemotherapy interventions, the tumor 
showed a poor response and was associated with severe systemic side 
effects (Alberts et  al., 2016). In February 2013, the patient began 
receiving Rigvir treatment as the sole therapy. After treatment, the size 
of the inguinal lymph nodes was reduced by half, and the patient’s 
condition remained stable until the time of publication in 2016. These 
findings highlight the significant therapeutic potential of Rigvir in 
late-stage melanoma (Alberts et al., 2016).

Coxsackie virus (CV) is an enterovirus that infects people with 
symptoms such as fever, cough, and cold. Research by British scientists 
has shown that CV has the potential to target, infect, and destroy 
cancer cells in patients with BDC (Annels et al., 2019). CV is also used 
against many types of cancer (Bradley et al., 2014; Li et al., 2022), 
including melanoma, BDC, lung cancer, and PRAD. It can enter 
tumor cells through cells via intercellular adhesion molecule 1 
(CD54), decal accelerating factor (CD55), or connectors that may 
be overexpressed in multiple myeloma, melanoma, breast cancer, and 
other tumor cells (Shafren et al., 2004; Au et al., 2007; Guo et al., 2014).

Poliovirus is a tiny RNA enterovirus that invades nerve cells, and 
humans are the only host for the virus. Poliovirus can be used as a new 
cancer treatment tool (Brown et al., 2014). The poliovirus solely relies 
on the CD155 receptor to enter the host cell and CD155 is abundant 
in malignant cells (Gromeier et al., 2000). This CD155 receptor may 

TABLE 1 (Continued)

Number The virus 
name

Modification Phase Combination Applicable 
disease

Reference

15 ICOVIR5

Deletion of the E1A region 

responsible for 

retinoblastoma protein 

binding, an RGD sequence 

inserted at the fiber knob

Phase I /
Melanoma, 

retinoblastoma

Abate-Daga et al. (2011); Rincon et al. 

(2017); García et al. (2019)

16 ICOVIR-7

Modification of the E2F 

promoter and an Rb-

binding site deletion of 

E1A

Phase I / Solid tumor
Rojas et al. (2009); Nokisalmi et al. 

(2010)

17 TILT-123

E2F promoter and the 

24-base-pair deletion in 

constant region 2 of E1A

Phase I PD-1 Solid tumor Havunen et al. (2021)

18 VCN-01
E1A 24 bp-deleted, 

partially E3 deleted
Phase I

Paclitaxel, 

gemcitabine
Solid tumor

Rodriguez-Garcia et al. (2015); Pascual-

Pasto et al. (2019)

BDC, bladder cancer; CC, colorectal cancer; EC, esophageal carcinoma; GC, gastrointestinal cancer; HCC, hepatocellular carcinoma; HNC, head and neck cancer; MG, malignant glioma; 
MM, multiple myeloma; MPM, malignant pleural mesothelioma; NPC, nasopharyngeal carcinoma; OC, ovarian cancer; PAAD, pancreatic adenocarcinoma; PD-1, programmed cell death 
protein 1; PRAD, prostate adenocarcinoma; and SCCNH, squamous cell carcinoma of the head and neck.
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damage the response of anti-tumor immune cells and be overexpressed 
by tumor cells (Carlsten et  al., 2009). Poliovirus is used to treat 
glioblastoma, BDC, melanoma, and other symptoms. In 2018, 
PVSRIPO, a treatment developed at Duke University, significantly 
improved long-term survival in patients with recurrent glioma. 
However, some studies have shown the cytotoxicity of poliovirus 
(Goetz et al., 2010; Brown and Gromeier, 2015).

In 2014, the research group Yan found that the natural oncolytic 
virus M1 can selectively infect a variety of human cancers with ZAP 
deficiency (Lin et  al., 2014), including Hepatocellular carcinoma 
(HCC), BDC, and melanoma, and it has no toxic side effects on 
normal cells (Zhang et al., 2016; Cai and Yan, 2021).

There are also relevant studies on other oncolytic viruses, such as 
measles virus (Hasegawa et al., 2006; Galanis et al., 2010; Zhang et al., 
2012; Aref et al., 2016; Dispenzieri et al., 2017; Packiriswamy et al., 

2020), H1 Parvovirus (Geletneky et  al., 2017; Hajda et  al., 2017), 
myxoma virus (Cornejo et al., 2020), Seneca Valley virus (Rudin et al., 
2011; Burke et al., 2015; Burke, 2016; Schenk et al., 2020), and VSV 
(Tober et al., 2014; Schreiber et al., 2019), to prove the development of 
these OVs in fighting tumors.

Table 6 shows some of the viruses currently under study.

2.3. Clinical research status of oncolytic 
virus

By visiting Clinicaltrials.gov and searching for the keyword 
“oncolytic,” 186 clinical study registries were identified, 147 of which 
had detailed clinical data. The remaining clinical trial registrations 
were rejected for further analysis because their status was withdrawn, 

TABLE 2 Some herpes simplex viruses are under study.

Number The virus 
name

Modification Phase Combination Applicable 
disease

Reference

1 T-VEC
Deletion of the ICP34.5 

gene and ICP47 gene
Listed PD-1, CTLA-4 Melanoma

Andtbacka et al. (2015); Killock 

(2015); Johnson et al. (2015); Puzanov 

et al. (2016); Ribas et al. (2017); 

Chesney et al. (2018a, 2018b); 

Andtbacka et al. (2019)

Jin et al. (2021); Chaurasiya et al. 

(2021)

2 G47Delta

Deletion in the gene ICP47

Phase III

Temozolomide, 

chemotherapy, and 

radiotherapy

BC, gastric cancer, 

melanoma, and PRAD

Wang et al. (2019); Fan et al. (2021); 

Chaurasiya et al. (2021)

3 G207

Deletion of the ICP34.5 

gene and insertion of the 

Escherichia coli lacZ gene 

into ICP6

Phase II /
Glioblastoma, 

peritoneal cancer

Nakano et al. (2005); Markert et al. 

(2014); Chaurasiya et al. (2021)

4 HSV1716

Deletion of the ICP34.5 

gene Phase II chemotherapy

glioblastoma, HCC, 

melanoma, MPM, and 

SCCHN

Papanastassiou et al. (2002); Mace 

et al. (2008); Streby et al. (2017); Streby 

et al. (2019); Chaurasiya et al. (2021)

5 NV1020
Deletion of α0, α4, γ34.5, 

UL56, and UL24 genes
Phase II Chemotherapy CC, HCC

Kemeny et al. (2006); Geevarghese 

et al. (2010); Yun et al. (2022)

6
OrienX010

(GM-CSF)

Deletions in ICP34.5 and 

ICP47 Phase II PD-1, Dacarbazine
HCC, lung cancer, 

melanoma, and PAAD

Senzer et al. (2009); Kaufman et al. 

(2010); Harrington et al. (2010); Yun 

et al. (2022); Wei et al. (2018)

7 HF10

Absence of UL43, UL49.5, 

UL55, and UL56 Phase II

Chemotherapy, 

paclitaxel, and 

gemcitabine

Solid tumor

Teshigahara et al. (2004); Nakao et al. 

(2011); Hirooka et al. (2018); Jin et al. 

(2021)

8 M032
Substitution of ORF and P 

γ134.5 gene with α27-tk
Phase I / Glioblastoma

Patel et al. (2016); Omar et al. (2021); 

Yun et al. (2022)

9 NV1066
Deletions of UL23

Phase I / BC, PAAD
Gholami et al. (2014); Kelly et al. 

(2016)

10 ONCR-177

Insertion of the miRNA 

sequence into ICP4, ICP27, 

and UL8

Phase I PD-1 Solid tumor
Haines et al. (2021); Chaurasiya et al. 

(2021)

11 VG161
Deletion of the γ34.5

Phase I CAR-T Solid tumor
Chouljenko et al. (2020); Yun et al. 

(2022)

BC, breast cancer; CAR-T, chimeric antigen receptor T-cell immunotherapy; CC, colorectal cancer; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; HCC, hepatocellular carcinoma; 
MPM, malignant pleural mesothelioma; PAAD, pancreatic adenocarcinoma; PD-1, programmed cell death protein 1; and SCCNH, squamous cell carcinoma of the head and neck.
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terminated, unknown, or suspended and because the articles did not 
conform to the contents of this review. Further analysis of 147 clinical 
study registries was performed, and multiple variables were assessed, 
including clinical trial phase, number of patients, route of 
administration, and indications of application. A complete list of 
clinical study registries is in Tables 1-6.

2.3.1. Research stage
A total of 7,776 cancer patients were enrolled and completed 147 

clinical trials. Most clinical studies were in Phase I (n = 72), Phase I/II 
(n = 34), Phase II (n = 36), and Phase III (n = 5; Figure 1). This shows 
that OVs research is currently in its early stages and has great potential 
for development.

TABLE 3 Some vaccinia viruses are under study.

Number The virus 
name

Modification Phase Combination Applicable 
disease

Reference (PMID)

1
Pexa-VEC (JX-

594)

Deletion of viral thymidine 

kinase gene
Phase III Sorafenib

BC, CC, HCC, melanoma, 

and renal carcinoma

Park et al. (2008); Hwang et al. 

(2011); Breitbach et al. 

(2011a); Heo et al. (2013); 

Cripe et al. (2015); Park et al. 

(2015); Chaurasiya et al. 

(2021)

2
GLV-1 h68 (GL-

ONC1)

The F14.5 L, J2R and A56R 

genes are replaced with Ruc-

GFP, β-glucuronidase, and 

β-galactosidas

Phase II
Chemotherapy, 

radiation therapy
Solid tumor

Mell et al. (2017); Lauer et al. 

(2018); Mori et al. (2019); 

Chaurasiya et al. (2021)

3 T601 (TG6002)
Deletion of the thymidine 

kinase gene
Phase II 5-Fluorouracil CC, GC, HCC

Beguin et al. (2020); Beguin 

et al. (2021); Jin et al. (2021)

4 MVA-FCU1
Containing the yeast-

originated transgene FCU1
Phase I 5-Fluorouracil HCC, glioblastoma

Breton et al. (2010); Husseini 

et al. (2017)

6 vvDD
Deletion of J2R and C11R 

genes
Phase I /

BC, CC, HCC, melanoma, 

PAAD, SCCNH

Downs-Canner et al. (2016); 

Chaurasiya et al. (2021)

BC, breast cancer; CC, colorectal cancer; GC, gastrointestinal cancer; HCC, hepatocellular carcinoma; PAAD, pancreatic adenocarcinoma; and SCCNH, squamous cell carcinoma of the head 
and neck.

TABLE 4 Newcastle disease virus under study.

Number The virus 
name

Modification Phase Combination Applicable 
disease

Reference

1 NDV-HUJ
Passaged multiple times in 

specific eggs
Phase I / Glioblastoma

Freeman et al. (2006); Yaacov et al. 

(2008); Lazar et al. (2010)

2 PV701
Naturally occurring virus 

with oncolytic features
Phase I / Solid tumor

Pecora et al. (2002); Prince et al. (2005); 

Laurie et al. (2006); Lorence et al. (2007)

TABLE 5 Reovirus under study.

Number The virus 
name

Modification Phase Combination Applicable 
disease

Reference

1
REOLYSIN® 

(Pelareorep)

Naturally occurring virus 

with oncolytic features
Phase III

Chemotherapy, Paclitaxel, 

PD-1

BC, CC, FTC, 

melanoma, MG, OC, 

PAAD, and PRAD

Forsyth et al. (2008); Comins et al. 

(2010); Adair et al. (2012); Galanis 

et al. (2012); Morris et al. (2013); 

Chakrabarty et al. (2013); Kicielinski 

et al. (2014); Mahalingam et al. 

(2017); Goel et al. (2020); 

Chaurasiya et al. (2021)

2 RT3D

Naturally occurring virus 

in the human body with 

oncolytic features

Phase I
Chemotherapy, 

radiotherapy
HNC

White et al. (2008); Karapanagiotou 

et al. (2012); Roulstone et al. (2015)

BC, breast cancer; CC, colorectal cancer; FTC, fallopian tube carcinoma; HNC, head and neck cancer; MG, malignant glioma; OC, ovarian cancer; PAAD, pancreatic adenocarcinoma; PD-1, 
programmed cell death protein 1; and PRAD, prostate adenocarcinoma.
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2.3.2. Route of administration and indications of 
application

A collation of clinical study registries found that 73 trials (49.7%) 
involved intratumor injection, and 43 (29.3%) involved intravenous 
injection. There were 5 (3.4%) experiments of both intratumor 
injection and intravenous injection, eight involving Intraperitoneal 
administration, five involving intravesical injections, four involving 
Convection-enhanced delivery (CED), two involving intraperitoneal 
injections, one involving intra-arterial injection, and six without 
explanation of how to conduct the administration (Figure 2A).

Tumor site administration is also referred to as an intratumoral 
injection. Currently, intratumoral virus injection, which allows the 
virus to expand in tumor cells, is the preferred method for most OVs 
in clinical and development stages. However, intratumoral injection 
becomes very difficult once tumor cells develop total metastasis due 
to the need to accurately locate tumor cells and the difficulty of 
monitoring and controlling the therapeutic effect. Although OVs will 
not migrate to the location of the metastatic tumor, they will activate 
the host’s anti-tumor response to control the metastatic tumor 
(Twumasi-Boateng et  al., 2018; Hinterberger et  al., 2021). The 
intratumoral injection is used for melanoma, glioblastoma, BC, liver 
cancer, PAAD, HNC, CC, BDC, and other benign solid tumors 
(Figure 2B). A total of 4,411 patients received intratumoral injections, 

including over 1,300 in the melanoma study. At the same time, many 
articles have studied the effect of intratumoral injection (Li et al., 2008; 
Nakao et al., 2011; Morris et al., 2013; Streby et al., 2017; Hirooka 
et al., 2018).

Intravenous injections avoid the need to look for specific tumor 
cells and allow for a single treatment option for the patient, something 
that intratumoral drugs cannot. Intravenous injection can accurately 
deliver the drug to a location that the local injection cannot reach. 
However, drugs given intravenously need to be minimal or harmless 
to normal cells in the body, and some neutralizing substances in the 
blood may neutralize the virus, and the immune system’s response 
may eliminate the virus too quickly to be effective in treating tumor 
cells. In addition, the combination of the virus with certain 
components in the blood limits the delivery route of the virus and 
makes treatment less effective (Kaufman and Bommareddy, 2019). It 
may even produce adverse reactions of varying degrees (Imperiale, 
2008). And Intravenous injection is one of the main research 
directions at present (Laurie et al., 2006; Lorence et al., 2007; White 
et al., 2008; Comins et al., 2010; Breitbach et al., 2011a; Chakrabarty 
et al., 2013; Park et al., 2015; Garcia-Carbonero et al., 2017; Mell et al., 
2017; Streby et al., 2019; Beguin et al., 2021).

Several oncolytic viruses are being tested intravenously, including 
REOLYSIN®(Pelareorep; Adair et  al., 2012; Galanis et  al., 2012), 

TABLE 6 Some other oncolytic viruses are under study.

Number Virus type Modification The virus 
name

Phase Applicable 
disease

Reference

1 EHCO-7

Naturally occurring virus with 

oncolytic features Rigvir Listed

BCD, CC, melanoma, 

PAAD, PRAD, renal 

carcinoma, and SCLC

Doniņa et al. (2015); Alberts 

et al. (2016); Brokane et al. 

(2019)

2
Coxsackie 

virus

Naturally occurring virus in the 

human body with oncolytic 

features and without 

pathogenicity

CVA21 (Cavatak) Phase II
BDC, melanoma, 

SCLC, and PRAD

Bradley et al. (2014); Annels 

et al. (2019);

Li et al. (2022)

3
Parainfluenza 

virus

Naturally occurring virus after 

removal of pathogenicity HVJ (SeV) Phase II PRAD

Kaneda et al. (2010); 

Kiyohara et al. (2020); Fujita 

et al. (2020)

4
Influenza A 

virus

Naturally occurring virus with 

oncolytic features M1 Phase II

BCD, CC, HCC, 

melanoma, NPC, and 

PRAD

Zhang et al. (2016); Cai and 

Yan (2021)

5 H-1PV
Naturally occurring virus with 

oncolytic features
ParvOryx Phase II Glioblastoma

Hajda et al. (2017); Geletneky 

et al. (2017)

6 Measles virus

Insertion of the human CEA gene 

upstream of the MV N gene MV-CEA Phase I
Glioblastoma, HCC, 

OC

Hasegawa et al. (2006); 

Galanis et al. (2010); Zhang 

et al. (2012)

7 SVV

Naturally occurring virus with 

oncolytic features
NTX-010 (SVV-

001)
Phase I Carcinoid, NEC

Rudin et al. (2011); Burke 

et al. (2015); Burke (2016); 

Schenk et al. (2020)

8 Poliovirus

Exchanging of cognate internal 

ribosomal entry site with human 

rhinovirus type 2

PVSRIPO Phase I
BC, MG, melanoma, 

and glioblastoma

Goetz et al. (2010); Brown 

et al. (2014); Brown and 

Gromeier (2015)

9 VSV

Glycoprotein replaced by the 

lymphocytic choriomeningitis 

virus

VSV-GP Phase I
Glioblastoma, HCC, 

and melanoma

Tober et al. (2014); Schreiber 

et al. (2019)

BDC, bladder cancer; CC, colorectal cancer; GC, gastrointestinal cancer; H-1PV, H1 Parvovirus; HCC, hepatocellular carcinoma; NEC, neuroendocrine carcinoma; NPC, nasopharyngeal 
carcinoma; OC, ovarian cancer; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; SCCNH, squamous cell carcinoma of the head and neck; and SVV: seneca valley virus.
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Enadenotucirev (ColoAdl; Garcia-Carbonero et  al., 2017; Marino 
et al., 2017; Machiels et al., 2019), HSV1716 (Streby et al., 2019), JX594 
(Breitbach et al., 2011b), MV-NIS (Dispenzieri et al., 2017), NDV-HUJ 
(Freeman et al., 2006), PV701 (Hotte et al., 2007), RT3D (White et al., 
2008; Karapanagiotou et  al., 2012), vvDD (Downs-Canner et  al., 
2016), and TG6002 (Beguin et al., 2021). Other OVs such as Seneca 

Valley virus and Coxsackievirus A21, have also been studied to show 
the feasibility and safety of intravenous administration (Kennedy 
et al., 2022). Intravenous injection can be used for lung cancer, HNC, 
CC, gynecological tumor, and other malignant tumors (Figure 2C). 
The number of patients who received intravenous injections was 
2,198, accounting for 28% of the total.

Intra-arterial injection, in which the virus is selectively 
transported throughout the body, and because of the limited 
volume of the blood and target organs, can avoid the reaction of the 
antibodies in intravenous injection with the virus, which can reduce 
the effectiveness of the virus. Experiments on the treatment of OVs 
with intrahepatic artery administration have been conducted (Reid 
et al., 2002; Fong et al., 2009). Quantum-enhanced delivery can 
be used for the treatment of glioblastoma. Intravesical injection, 
intraperitoneal injection, and intrathoracic injection are all used for 
tumors in the bladder, abdominal cavity, and thoracic cavity 
(Figure 2D).

Although the effect of intratumoral injection of OVs is good, 
intravenous and arterial administration also has a certain effect. The 
elimination of OVs by antibodies in the body, the destruction of 
viruses by complements, and the clearance of viruses by organs and 
tissues such as the liver, spleen, and kidney will affect the effect of 
OVs in treating tumors (Kolb et  al., 2015; Roy et  al., 2020). 
Therefore, many studies have attempted to use carrier tools to 
improve the problem of how to avoid being attacked by the immune 
system after intravenous administration, such as using liposomes 
(Iscaro et  al., 2022), nanoparticles (Fusciello et  al., 2019), 

FIGURE 1

The pie chart shows the study stage of 147 clinical studies, most of 
which were in Phase I (n = 72, 48.9%), Phase I/II (n = 34, 23.1%), and 
Phase II (N = 36, 24.5%) and Phase III (n = 5, 3.40%).

FIGURE 2

Analysis of administration pattern and indications in clinical study registry. (A) Intratumoral injection (n = 73) and intravenous injections (n = 43) were the 
main administrative methods in the study, and the number of other administrative methods is shown in the figure. (B) Shows the number of studies on 
tumors where intratumoral injection can be used, among which melanoma has the largest number of studies (n = 17, 20.5%), which are mostly used in 
benign solid tumors but also some malignant tumors. (C) Shows the number of studies of tumors that can be injected intravenously, the majority of 
which are malignant solid tumors. (D) Showing tumors that can be treated by administration other than intratumoral and intravenous injections, it can 
be seen that glioblastoma is a tumor that can be treated by virtually every administration method.
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immunoliposomes (Li et al., 2016), mesenchymal stem cells (Naji 
et al., 2019; Franco-Luzon et al., 2020), and other carrier tools.

Mesenchymal stem cells have great advantages as the carrier 
tool of OVs in systematic administration because they can 
be isolated from a variety of tissues, have low immunogenicity, and 
possess chemotaxis to solid tumors (Volarevic et  al., 2018). 
Mesenchymal stem cells can be used as the cell carrier of OVs for 
multiple injections and as the replication site of OVs to generate 
more progeny viruses and promote the tumor-killing effect of OVs. 
In the latest research, mesenchymal stem cells have the 
characteristics of chemotaxis to solid tumors (Najar et al., 2016; 
Karagiannis et  al., 2017; Vangala et  al., 2019; Kostadinova and 
Mourdjeva, 2020). At the same time, some studies have shown that 
cytokines secreted by tumor cells are one of the key reasons for 
inducing mesenchymal stem cells to chemotaxis to tumor cells 
(Lejmi et al., 2015; Pavon et al., 2018), and which may promote the 
occurrence of anti-tumor immunity (Morales-Molina et al., 2018).

Although mesenchymal stem cells carrying oncolytic viruses 
have shown potential efficacy in preclinical studies, but their 
effectiveness in clinical trials is still being evaluated. They can also 
promote the occurrence of tumor cells, inhibit apoptosis of tumor 
cells, and promote tumor metastasis through a variety of 
mechanisms (Naji et al., 2019; Atiya et al., 2020; Kostadinova and 
Mourdjeva, 2020). There are some controversies about the delivery 
of oncolytic virus by mesenchymal stem cells, but in general, the 
destructive effect on tumors may be  greater than the 
promoting effect.

2.4. Combination therapy with oncolytic 
virus

Oncolytic viruss can enhance the exposure of tumor antigens, 
regulate the tumor microenvironment, activate immune cells, and 
so on through a variety of ways to induce the anti-tumor immune 
response of the whole-body system to kill tumor cells. The clinical 
efficacy of first-generation OVs (weakly effective wild-type or 
naturally occurring variants) was limited, while the new 
generation of genetically modified OVs has achieved tumor 
eradication in clinical studies (Bilsland et al., 2016; Russell and 
Barber, 2018; Jin et al., 2021; Tian et al., 2022). However, current 
research trends favor the use of combination therapies because 
monotherapy with OVs faces challenges such as T cell loss due to 
tumor heterogeneity and the immunosuppressive 
microenvironment and the difficulty of expression of inhibitory 
molecules in tumor microenvironment (Zou et al., 2023). Clinical 
studies have confirmed that the combination of OVs with 
chemotherapy and the combination of OVs with immunotherapy 
have achieved remarkable therapeutic effects, surpassing the 
efficacy of chemotherapy or immunotherapy alone (Tian et al., 
2022; Zou et al., 2023). A tumor is not a large number of isolated 
cancer cells but a complex tissue composed of many different 
types of cells that perform heterogeneous interactions with each 
other. This is one reason why a single drug cannot cure cancer 
completely. Of the 147 clinical registries, 82 (55.8%) were 
combined studies. Among them, 41% were combined with 
immune checkpoint inhibitors, and 31% were combined with 

chemotherapy (Figure 3A). The tumors that can be tested include 
most solid tumors of the brain, chest, abdomen, and genitals 
(Figure  3B), which can be  treated in combination with other 
conventional tumor treatment methods. Therefore, OVs can exert 
greater benefits, promote and increase therapeutic efficacy, and 
give the oncolytic virus more attention in the international clinical 
oncology community (Roulstone et al., 2015; Husseini et al., 2017).

The efficacy of immune checkpoint inhibitors has been 
widely recognized for their efficacy in cancer treatment, but the 
response rate is not high, and patients with programmed cell 
death protein 1 (PD-1) resistance make tumor treatment more 
difficult. Studies have shown that OVs combined with checkpoint 
inhibitors can significantly improve the objective response rate 
of various solid tumors, induce a large number of immune cells 
to infiltrate tumors, and change the tumor microenvironment 
(Chon et al., 2019), thus enhancing the anti-tumor activity of 
immunotherapy and the survival rate of human infected with 
tumor cells. It is an ideal immune platform to enhance immune 
responses and tumor types in patients with poor response to 
immune checkpoint suppression, inducing auto proliferation and 
antitumor activity through a variety of mechanisms. Melanoma 
was the most tested tumor in combination with immune 
checkpoint inhibitors, followed by breast cancer (Figure 3C). In 
2017, the efficacy of T-VEC combined with PD-1 antibody in the 
treatment of melanoma was significantly improved (Drescher 
et al., 2019). The combination of PD-1 inhibitors and oncolytic 
viruses seems to be the darling of the new age for treating cancer 
cells, and it is showing signs of potential in clinical trials 
(Havunen et al., 2021).

Chemotherapy combined with OVs is the most common 
combination. Chemotherapy is one of the main therapeutic 
methods that induce DNA damage by inhibiting DNA synthesis, 
mitosis, and cell division of cancer cells with intracellular toxins 
and other chemicals. Tumors treated by chemotherapy combined 
with OVs include celiac tumors, breast cancer, etc. (Figure 3D). Not 
only does Pelareorep have research reports on the treatment of 
combined chemotherapy (Mahalingam et al., 2018, 2020) that show 
that combined chemotherapy is effective, but also other types of 
oncolytic viruses have research reports that combined chemotherapy 
is safe (Karapanagiotou et  al., 2012; Siurala et  al., 2015). 
Radiotherapy combined with OVs therapy is also a common 
combination, and some studies show the safety of combined 
radiotherapy (Markert et al., 2014).

Surgical treatment can generally cure early tumors, but once the 
tumor metastases, surgery is very difficult, and the tumor cannot 
be completely cleared. Radiation and chemotherapy have limited 
effects, serious damage to normal cells and tissues, and great side 
effects. The overall effectiveness of antibody therapy is not high, and 
drugs are difficult to break through the barrier and tumor 
microenvironment. In comparison, OV therapy is safe and reliable, 
more effective than other immunotherapies, has a simple 
preparation method, low price, and wide adaptability, and can 
be  used for a variety of cancers. The opportunity for OVs to 
combine drugs in cancer is huge. It can alter the tumor 
microenvironment and induce immune cells to infiltrate tumor 
cells, and various undiscovered anti-tumor properties are being 
revealed through experiments.
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3. The process of treating a tumor 
with an oncolytic virus

3.1. Mechanism of action of oncolytic 
viruses

The oncolytic virus represents a promising immunotherapeutic 
agent in current cancer therapy. Its anti-tumor activity is mediated by 
a variety of mechanisms that impact the immune system in tumors.

Natural oncolytic viruses exhibit poor controllability, weak killing 
ability toward tumor cells, and are easily cleared by the body’s immune 
system. In contrast, the genetically modified oncolytic virus can 
be highly expressed in specific areas of the body to avoid triggering 
the systemic immune response, thereby prolonging the virus’s action 
time and enhancing its ability to kill tumor cells.

Tumor cells in the tumor suppressor gene are inactivated or 
missing after their antiviral infection ability is abated to allow OVs to 
multiply and ultimately destroy tumor cells in the body. When tumor 
cells are infected by the virus, they break and die, and then new virus 
particles are released, further infecting the surrounding tumor cells. 
This is a kind of antitumor mechanism similar to the chain reaction 
(Figure  4). OVs mainly eliminate tumor cells through the host’s 
immune system. That is, OVs not only kill tumor cells on their own 
but also stimulate the body’s immune system to enhance the effect of 
treating tumor cells (Kelly and Russell, 2007). This can be applied both 
systematically and locally and is much better than traditional 

treatments for cancer cells. OVs fight tumor cells in four ways: 
oncolysis, antitumor immunity, transgenic expression, and collapse of 
blood vessels supplying tumor cells (Gujar et al., 2019).

The mechanism of action of OVs can be roughly divided into two 
parts, one is the direct tumor-killing mechanism mediated by a virus, 
and the other is the anti-tumor immune response mechanism 
activated by the body to kill tumor cells.

3.2. Oncolytic viruses enter tumor cells

Oncolytic refers to the ability to dissolve tumor cells. To enhance 
the effectiveness of OVs in targeting tumor cells, research, and 
development are focused on tumor-specific targeting. Currently, many 
OVs can mutate to target the surface proteins abnormally expressed 
by cancer cells, weakening the antiviral ability of tumor cells and 
providing OVs with an opportunity to enter the tumor cells.

For example, adenoviruses can be designed to target the unique 
receptors expressed by tumor cells (DeWeese et al., 2001), or they can 
be inserted into the promoters in tumor cells to utilize the signal 
pathways to enter tumor cells directly. HSV may enter tumor cells 
through herpesvirus entry mediator or Nectin (Yu et al., 2005), which 
are overexpressed in cancer cells, especially melanoma, or it can 
be designed to bind integrins highly expressed on tumor cells (You 
et al., 2001). Vaccinia virus can replicate in some cancer cells that 
overexpress epidermal growth factor receptors by enhancing the 

FIGURE 3

Analysis of combination therapy in the registry of clinical studies. (A) Combination therapy in the study was mainly immune checkpoint inhibitors and 
chemotherapy, and the other combination therapy methods were also studied in A certain number of studies. (B) This shows the number of studies on 
tumors that can be treated with combination therapy, with melanoma being the largest. And breast cancer and glioblastoma also have a large number 
of studies, including the majority of solid tumors. (C) Showed the number of studies on tumors treated with immune checkpoint inhibitors combined 
with OVs, with melanoma being the largest, accounting for 25.6%. (D) This shows the number of studies on tumors treated by chemotherapy 
combined with OVs, with the largest number being abdominal tumors, followed by brain tumors.
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FIGURE 4

Oncolytic virus (OV) after entering the host can identify receptors on cells, meet with receptors unique to cancer cells can enter the cancer cells, and 
can breed will kill cancer cells in cancer cells, and cancer cells burst into offspring OVs are released, and can infect nearby cancer cells and kill, and in 
the normal cells of the human body does not have this kind of peculiar receptor, OVs cannot get into normal cells to multiply.

induction of RAS signal (Parato et al., 2012). NDV can increase its 
number in tumor cells by using the B cell lymphoma overexpressed 
by tumor cells (Mansour et  al., 2011). In normal healthy cells, 
reovirus can enter the cells and start to produce viral RNA, thus 
activating the double-translated RNA-dependent protein kinase 
pathway, which is an immune mode that can inhibit protein 
translation and prevent virus transmission (Bischoff and Samuel, 
1989). However, the double-translated RNA-dependent protein 
kinase pathway will not be activated in cancer cells, causing the virus 
to infect tumor cells and eventually leading to the splitting of cancer 
cells (Strong et al., 1998).

At the same time, many OVs can rapidly replicate by using the 
defect of the antiviral mechanism of tumor cells in type I interferon 
signal (Stojdl et al., 2000; Wilden et al., 2009). The measles virus can 
use the surface receptor CD46, a factor that prevents cells from being 
destroyed and is overexpressed by cancer cells through the 
complement pathway of the immune system (Dorig et  al., 1993; 
Anderson et  al., 2004), or it can be  designed to recognize 
carcinoembryonic antigen and directly enter tumor cells (Hammond 
et al., 2001).

3.3. Tumor-killing mechanism mediated by 
an oncolytic virus

Here are some ways in which OVs can kill tumors.
Firstly, through virus-mediated cytotoxic killing, OVs use the 

energy and raw materials of tumor cells as a breeding site for their 
proliferation. The virus can inhibit the growth of tumor cells and 

use the cell as a factory for replication and lysis of tumor cells. After 
the release of the progeny virus, it continues to infect neighboring 
tumor cells, creating a cycle that continues until the immune 
response weakens the replication of the virus or the tumor cells in 
the host are depleted (Hamid et al., 2017). Because the antiviral 
response of tumor cells has certain defects, oncolytic viruses will 
preferentially replicate in tumor cells, while in normal cells, viruses 
can hardly replicate due to the presence of interferon and related 
factors. Additionally, some viruses can produce substances with 
certain cytotoxicity and oncolytic activity. For example, proteins 
encoded by the E3 region of Ad can directly mediate the lysis of 
tumor cells (Suzuki et al., 2002).

Secondly, OVs can indirectly kill tumors by destroying the 
vascular system of tumor cells. Tumor growth depends on the 
nutrients provided by the tumor vascular system, so the destruction 
of the tumor vascular system can effectively inhibit tumor growth 
(Figure 5A). Angiogenesis is one of the markers of malignant tumor 
cells, and research shows that oncolytic viruses can specifically 
infect and destroy tumor vascular endothelial cells and stromal 
cells, as well as destroy tumor blood vessels by promoting the 
production of endostatin and angiostatin (Hutzen et al., 2014). For 
example, the oncolytic vaccinia virus has been proven to inhibit the 
formation of vascular endothelial cells of tumor cells, thereby 
damaging the tumor vascular system and inhibiting the formation 
of new blood vessels. This reduces the blood flow to supply tumor 
cells and ultimately limits the growth and development of tumors 
(Goradel et  al., 2017; Hashemi Goradel et  al., 2018). VSV can 
directly infect and damage tumor blood vessels in the body without 
affecting normal blood vessels (Breitbach et al., 2011b).
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3.4. Mechanism of anti-tumor immune 
response induced by oncolytic viruses

The tumor-bearing host cannot make an effective immune 
response to prevent tumor growth. The inhibition state of the tumor 
microenvironment is due to the inactivation of cytotoxic T 
lymphocytes (Jiang and Shapiro, 2014) or active inhibitory T cells 
(Postow et al., 2018), leading to tumor immune escape.

Oncolytic viruss have a strong stimulation effect on the immune 
cells in the existing tumor tissues and can greatly change the tumor 
microenvironment, changing the tumor from cold to hot. By doing 
so, OVs can convert the immunosuppressive tumor 
microenvironment into an immunostimulatory one, thereby 
promoting anti-tumor immune responses (Chaurasiya et al., 2018; 
Sivanandam et al., 2019). Tumor cells infected with OVs can express 
some signaling molecules that induce immune cells outside the 
tumor to infiltrate the tumor in large numbers (Figure 5B; Ribas 
et al., 2017). Activated nonspecific immune cells kill and engulf 
other tumor cells, and lysed tumor cells release large amounts of 
tumor proteins that can be engulfed by innate immune cells and 
produce long-term adaptive immune responses against tumor-
specific antigens (Figure 5C; Del Papa et al., 2019; Chouljenko et al., 
2020; Kdimati et al., 2021). Some tumor-specific antigens can also 
be expressed by antigen-presenting cells, inducing T cells to attack 
uninfected tumor cells. This process is similar to a vaccine, but it 
occurs within tumor tissues and ultimately induces the killing effect 

of CD8 T cells, effectively preventing tumor recurrence and 
metastasis (Figure  5D; Macleod et  al., 2014; Eissa et  al., 2021; 
Yamashita et al., 2021).

Type I interferon can not only promote the immune response of 
clearing a virus but also reduce cell proliferation and activate 
apoptosis-promoting protein p53 (Takaoka et al., 2003). Therefore, 
OVs are more specific for tumor cell environment or an environment 
with limited type I interferon response.

The anti-tumor effect of the oncolytic virus seems to have immune 
memory. Some experiments have shown that the efficacy of OV 
injected into the mice immunized with OV in advance is better than 
that of the mice immunized without OV (Zhu et al., 2007). At the 
same time, some studies have shown that repeated intratumoral 
injection of OV can prolong its anti-tumor effect and induce lasting 
anti-tumor memory (Ghonime et al., 2018). It is possible that vaccines 
that have been injected as OV, such as the measles virus, may also act 
on anti-tumor (Qi et al., 2018; Leb-Reichl et al., 2021), but may also 
inhibit the anti-tumor effect (Laksono et al., 2018; Rudak et al., 2021).

Although OVs infection can trigger anti-tumor immunity, the 
immune system can also inhibit the virus, leading to reduced efficacy. 
OVs may cause the human body to acquire live viruses with acute 
toxicity and, in some cases, may cause latent infections and chronic 
diseases. This pathogenicity largely depends on the type of virus, 
virulence, immune destructiveness, and the host’s immune response. 
At present, no serious adverse events have been reported in the clinical 
trials, but the follow-up of the experimental patients is incomplete. 

FIGURE 5

Oncolytic viruses can change the microenvironment of tumor cells from “cold” to “hot.” (A) OVS can specifically attack the supply vessels of tumor cells, 
making tumor cells have no nutritional supply to kill tumor cells, while OVS have no response to the supply vessels of normal cells. (B) After OVs act on 
tumor cells, tumor cells can release a large number of signal molecules to activate non-specific immune cells outside tumor cells. A large number of 
activated immune cells infiltrate tumor cells and accelerate the process of killing tumor cells. (C) Cleaved tumor cells will release a large amount of 
tumor protein, but non-specific immune cells can use this tumor protein to continuously play an immune role and form a long-term anti-tumor effect. 
(D) OV activates specific antigens in tumor cells, which can be expressed by antigen-presenting cells and induce the killing effect of T cells.
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Most OVs currently use toxicity reduction to prevent acute and 
chronic poisoning (Mejias-Perez et al., 2018; Nakatake et al., 2019).

As a pathogen, the pathogenicity of the oncolytic virus cannot 
be ignored. Some viruses may damage normal tissues during tumor 
lysis, so the biological safety of oncolytic virus therapy deserves 
further research, especially for people with low immunity. After 
chemotherapy, radiotherapy, and other traditional treatment schemes 
for cancer patients, bone marrow is usually damaged, and the body 
cannot produce a normal number of red blood cells, white blood cells, 
and platelets. When the body does not have enough white blood cells, 
oncolytic virus therapy is fatal (Perkins, 2002). Although some 
oncolytic viruses are not toxic, the body does not have enough 
immunity to resist the oncolytic virus, which will lead to toxic 
reactions. T-VEC guidelines clearly state that people with low 
immunity or who are pregnant should avoid using T-VECs. At 
present, the potential safety problems and long-term adverse events of 
the oncolytic virus are still unclear (Li et al., 2020).

4. Problems and challenges of 
oncolytic virus therapy for tumors

Although OVs can respond well to tumor cells, they still face several 
challenges. One challenge is how OV manipulates the host’s immune 
system to promote anti-tumor immune responses while limiting 
antiviral immune responses and virus clearance with minimal damage 
(Tan et al., 2020; Wu et al., 2021). Systemic drug administration has 
higher value and application prospects and is expected to cure 
metastatic tumors or blood tumors (Zhang et al., 2020; Tang et al., 2021; 
Xie et  al., 2021). However, the therapeutic effect of systemic drug 
delivery is not ideal, and researchers need to spend a lot of energy to 
limit the antiviral immune response of systemic drug delivery. Using cell 
vectors to deliver oncolytic viruses to tumors without damaging 
surrounding tissues is one strategy to overcome this challenge.

Another huge challenge is to select the right patients to use OVs for 
clinical treatment. Tumor patients receiving OV treatment may have 
already undergone multiple conventional tumor treatments, which may 
have damaged their immune systems. One of the mechanisms 
underlying the efficacy of oncolytic viruses is their ability to trigger 
immune responses in cancer patients (Chaurasiya et  al., 2021). 
Therefore, future research can focus on how to assess the immune 
system function of tumor patients and determine whether they should 
receive oncolytic virus therapy based on these evaluations. And selecting 
appropriate biomarkers may effectively improve the treatment of OVs.

As a live virus, OV can activate the immune system of the body. 
How to inhibit antiviral immunity and enhance anti-tumor immunity 
is a new challenge in the treatment process. Moreover, current 

research shows that OV needs to be  combined with some tumor 
therapies to achieve the maximum therapeutic effect. In the future, the 
application value of monotherapy remains to be explored.

5. Conclusion and prospects

Although OVs therapy has made great progress, there are many 
obstacles in the process of treatment. With the continuous development 
of science and technology, as well as people’s in-depth research on the 
mechanism of action of oncolytic virus, the mode of administration, 
and the pathogenesis of tumors, the use of an oncolytic virus, combined 
with other therapies to treat tumors and other methods provide a new 
direction for targeted treatment of tumors. Oncolytic viruses will 
become the main force in the treatment of tumors in the future.
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