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The land damaged by coal mining can be  recovered to healthy condition 
through various reclamation methods. Fertilization is one of the effective 
methods to improve soil fertility and microbial activity. However, the effects of 
coal-derived compound fertilizers (SH) on bacterial communities in coal mining 
subsidence areas still remain unclear. Here, we studied the effects on the nutrient 
characteristics and bacterial communities in fertilizer-reclaimed soil (CK, without 
fertilizer; CF, common compound fertilizers; SH, coal-derived compound 
fertilizers) in coal mining subsidence areas and we applied SH with four different 
nitrogen application rates (90, 135, 180, and 225 kg/hm2). The results showed that 
the application of SH significantly increased the contents of available nitrogen 
(AN), available phosphorus (AP), available potassium (AK), total phosphorus (TP) 
and soil organic matter (SOM) compared with CK, as well as the bacterial richness 
(Chao1) and diversity (Shannon) in reclaimed soil that increased first and then 
decreased with the increase of nitrogen application. Under the same nitrogen 
application rate (135 kg/hm2), the nutrient content, Chao1 and Shannon of SH2 
treatments were higher than those of CF treatment. Meanwhile, SH increased the 
relative abundance of Proteobacteria, Actinobacteria and Gemmatimonadetes. 
LEfSe analysis indicated that the taxa of Acidobacteria and Actinobacteria were 
significantly improved under SH treatments. Canonical correspondence analysis 
(CCA) and Variance partitioning analysis (VPA) showed that SOM was the most 
important factor affecting the change of bacterial community structure in 
reclaimed soil. In conclusion, application of SH can not only increase nutrient 
content and bacterial diversity of reclaimed soil, but also improve bacterial 
community structure by increasing bacterial abundance.
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1. Introduction

Coal is an important source of energy in the world, and China is the largest producer and 
consumer of coal in the world (Feng et al., 2019). Large-scale land subsidence due to coal mining 
occurs in many areas (Guo et al., 2018) and causes many environmental problems such as soil 
erosion, soil quality degradation, soil ecosystem imbalance, etc. (Kumar et al., 2015; Ahirwal 
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and Maiti, 2016; de Quadros et al., 2016; Ma et al., 2019). At the same 
time, a large number of solid wastes produced in mining area, which 
cannot be degraded in a short time, brings potential danger to the 
surrounding environment. Moreover, there are also some problems 
such as poor soil structure and low fertility in mining area (Heneghan 
et al., 2008). And land reclamation is an effective strategy to solve the 
conflict between coal mining and land resource protection (Hu 
Z. et al., 2014), soil reclamation aims to restore the nutrient properties 
and try to recover the soil from mining area to original condition 
through a series of reclamation methods (Upadhyay et  al., 2016). 
Based on engineering, chemical and other measures, the reclaimed 
soil can quickly evolve to mellow soil, at the same time contribute to 
the increase the content of soil nutrient and promote the growth of 
crops. Therefore, relatively high ecological and economic benefits can 
be achieved in a short period of time with proper management of 
conservation methods (Feng et  al., 2019). However, traditional 
fertilization method is presently a common method of soil reclamation 
in mining area. And due to excessive use of fertilizer and nitrogen 
addition, fertilizer nutrient use efficiency decreases so that it is not 
conducive to the sustainable development of agriculture (Carvalho, 
2017; Chen et al., 2018). Therefore, it is very important to restore the 
quality of reclaimed soil in mining area, and it has become the current 
direction of development to use compound fertilizer developed from 
industrial and mining wastes to restore the quality of reclaimed soil.

Actually, industrial and mining wastes are not friendly enough, 
which mainly cause the area of land resources decreased and 
environment pollution if the wastes without properly solution. 
However, it is of great significance to explore the utilization in 
agricultural production because of the special structure and good 
physical and chemical properties, as well as make more land resources 
available. More importantly, coal slime, weathered coal and other 
industrial and mining wastes can improve soil properties, which has 
been increasingly widely used as a fertilizer synergist in agriculture 
(Leita et al., 2009; DiDonato and Hatcher, 2017; Amoah-Antwi et al., 
2021). However, directly to apply the slime and weathered coal will 
not significantly stimulate microbial activity even with the supplement 
of nitrogen fertilizer (Tran et al., 2015), and slime is prone to cause 
secondary pollution due to water loss. A previous study showed that 
the combination of coal-derived compound fertilizer and microbial 
fertilizer produced from solid wastes (weathered coal, coal slime, fly 
ash and coal gangue) had significant effects on soil fertility, crop 
growth and utilization efficiency of water and fertilizers (Guo et al., 
2016). Liu et al. (2017) revealed that there were different effects on soil 
enzyme activity and crop yield between different amounts of coal-
derived compound fertilizers. The best effect was obtained when the 
amount of coal-derived compound fertilizer was 4,115 kg/hm2, and 
the yield of maize was increased by 6.96% ~ 218.90% and the urease 
activity was increased by 49.20% ~ 98.61% compared with the other 
two amounts. In addition, Fan et al. (2020) found that adding humic 
acid to the coal-derived compound fertilizers was more conducive to 
the improvement of soil carbon pool management index compared 
with ordinary coal-derived compound fertilizers. Besides, it was found 
that 135 kg/hm2 of nitrogen application had the best effect on the 
improvement of soil organic carbon and carbon pool management 
index in the treatment of different nitrogen application rates. Soil 
microorganisms are the most active part of soil, which are involved in 
the formation of soil structure (Sun et  al., 2016) and crucial to 
vegetation establishment, soil formation and nutrient transformation. 

Especially in the early stage of reclamation (Machulla et al., 2005; Li 
et  al., 2013), the composition and distribution of soil microbial 
community are highly sensitive to the changes in soil environment 
(Liu et  al., 2020), which may have a huge impact on ecosystem 
function (Wu et al., 2017). Microorganisms are positively related to 
the degradation and transformation of various pollutants (Gianfreda 
and Rao, 2004), playing an essential role in soil restoration of mining 
area. Soil microorganisms can be used as a standard to evaluate the 
success of reclamation (Feng et al., 2019). However, researches on 
coal-derived compound fertilizers mainly focus on the effects of soil 
fertility and physicochemical properties, and few researches have 
explored the effects of coal-derived compound fertilizers on reclaimed 
soil microorganisms. How coal-derived compound fertilizers affect 
reclaimed soil bacterial communities in mining areas is still 
poorly understood.

Humic acid has large inner surface, good adsorption, adhesion 
and colloid dispersion, which can effectively reduce water loss from 
slime. At the same time, the combination of humic acid and various 
inorganic fertilizers contributes to the improvement of soil 
physicochemical properties and bioactivity (Muhammad et al., 2019; 
De Corato, 2020), and can also improve soil quality and increase 
fertilizer utilization efficiency (Chen et al., 2017), promote crop yield 
and quality (Ahmad et al., 2018; Khan et al., 2018). Therefore, this 
research adopts the coal-derived compound fertilizer, which is made 
up of solid waste and humic acid from industrial and mining areas and 
common chemical fertilizer, and sets up four kinds of different 
nitrogen application rates at the same time, aiming to test the 
hypothesis that different nitrogen application rates of coal-derived 
compound fertilizers would affect soil nutrients, bacterial diversity 
and community composition. The purpose of this study was to 
determine (i) whether and how the coal-derived compound fertilizer 
affects soil properties and changes soil bacterial community structure; 
(ii) determine which bacterial groups will be significantly affected by 
coal-derived compound fertilizer; and (iii) which soil properties 
contribute to changes of soil bacterial diversity and community 
composition. It is expected to provide basis for reutilization of solid 
waste, rational fertilization and reclamation of soil, and effective 
guidance for ecological restoration of degraded soil in coal-mining 
subsidence areas.

2. Materials and methods

2.1. Study site and experimental design

The experimental area is located in Luojianggou Village, Wangqiao 
Town, Xiangyuan County, Shanxi Province (112°42′-113°14′E and 
36°23′-36°44′N). It has a warm temperate continental monsoon with 
an average temperature of 8°C – 9°C, the temperature from July to 
September is the highest, with an average of 23.4°C, and the annual 
average precipitation is 532.8 mm. The frost-free period is about 
166 days. Before the subsidence, the land was flat and the soil was 
fertile. It subsidenced and turned into poor dry land, and the 
productivity of the land decreased seriously. The soil type is calcareous 
cinnamon soil, the basic characters of which were as follows (Table 1).

The tested fertilizers include two kinds, common compound 
fertilizer (CF, N: urea (46%), P2O5: single superphosphate (16%), K2O: 
potassium sulfate (52%)): the mass ratio of N, P2O5 and K2O is 
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25:10:10, produced by Shanxi Yefeng Chemical Fertilizer Co., Ltd. 
Coal-derived compound fertilizer (SH) is made of coal slime, humic 
acid, urea, calcium superphosphate and potassium ore powder in a 
certain proportion. The mass ratio of N, P2O5 and K2O is 25:10:10, and 
the organic mass is 26.65%.

The field experiment included six treatments: CK (no fertilizer), 
conventional compound fertilizer (CF, N 135 kg/hm2) and four coal-
derived compound fertilizer treatments with nitrogen application rate 
of 90 kg/hm2 (SH1), 135 kg/hm2 (SH2), 180 kg/hm2 (SH3), 225 kg/hm2 
(SH4), the contents of the base fertilizer in treatments of CF was 
540 kg/hm2, SH1–SH4, respectively, were 360, 540, 720, 900 kg/hm2. 
All treatments had 3 replicates, 100 m2 (10 m × 10 m) per plot, 
randomly arranged, 18 plots in total. The maize variety planted is 
Dafeng 30, produced by Shanxi Dafeng Seed Industry Co., Ltd. Its 
growing period is 150 days, the planting density is 60,000 plants per 
hectare, and there is no irrigation during the whole growing period. 
Fertilizer is applied as a base fertilizer to the soil once a year 
before sowing.

2.2. Sampling and physicochemical analysis

Soil samples were collected after the maize harvest on September 
28th, 2021. A total of 18 soil samples (6 treatments × 3 replicates) were 
analyzed. Soil samples from each plot were collected at 5 sampling 
points at a depth of 0 ~ 20 cm and mixed to form a single sample. After 
the removal of visible plant residues and stones, each sample was 
divided into two parts: one was stored at −80°C for DNA extraction, 
the other part is air-dried, ground and sifted to remove debris for 
chemical property analysis. All the chemical properties were 
determined by routine methods (Bao, 2000). Soil organic matter 
(SOM) content was measured by the method of potassium dichromate 
oxidation (K2Cr2O7), and available nitrogen (AN) content was 
measured using the alkaline hydrolysis-diffusion method. The 
available phosphorus (AP) was extracted with 0.5 mol/L NaHCO3 
solution before being assayed using the colorimetric molybdenum 
blue method. The available potassium (AK) was extracted using 
1 mol/L NH4OAc solution before being assayed via flame photometry. 
Total phosphorus (TP) was digested with sulfuric acid-perchloric acid 
and then measured via molybdenum blue.

2.3. DNA extraction and PCR amplification

Total DNA was extracted from 0.25 g of each soil sample using the 
HiPure Soil DNA Kits (Magen, Guangzhou, China). DNA 
concentration and purity were determined using NanoDrop ND-2000 
photometer (Thermo Scientific, Wilmington, DE, United States). The 
V3-V4 region of the 16S rRNA gene was amplified using paired 
primers 341F (5′-CCTACGGGNBGCASCAG-3′) and 806R 

(5′-GGACTACHVGGGTATCTAAT-3′). The PCR reaction conditions 
were as follows: 95°C predenaturation for 5 min; 95°C denaturation 
for 1 min, 60°C annealing for 1 min, 72°C extension for 1 min, 
30 cycles; and final 7 min extension at 72°C. The gel-purified products 
were used to construct a library, and they were sequenced on an 
Illumina MiSeq platform (Gene Denovo Biotechnology Co., Ltd., 
Guangzhou, China).

2.4. Illumina MiSeq sequencing and 
sequence processing

After the 16S rRNA gene fragment was sequenced, the obtained 
reads were filtered to remove adaptor sequences, low-quality 
sequences, and sequences with more than 10% of unknown 
nucleotides (N). The chimeras were checked and removed using the 
UCHIME (Edgar et al., 2011). The clean reads were clustered into 
operational taxonomic units (OTUs) of  ≥   97% similarity using 
UPARSE (Edgar, 2013; version 9.2.64). The sequence with highest 
abundance was selected as representative sequence within each 
OTU. The representative OTU sequences were classified into 
organisms by a naive Bayesian model using RDP classifier (version 
2.2) based on SILVA database (version 132),1 with the confidence 
threshold value of 1. BioProject number: PRJNA944927.

2.5. Statistical analysis

One-way analysis of variance (ANOVA), and Tukey’s HSD test 
were used to compare the means for each environmental variable, 
with a significance level of p < 0.05. Non-metric multidimensional 
scaling plots (NMDS) were used to evaluate the overall differences 
in bacterial community composition, based on the Bray-Curtis 
distances. Alpha Diversity Indices, including Shannon and Chao1, 
were calculated using Mothur (Schloss et al., 2009). Adonis test was 
used to analyze the explanatory degree of the sample difference, 
and the permutation test was used to analyze the statistical 
significance of the groups. The correlation between soil bacterial 
community structure and environmental factors was tested using 
Mantel’s test. Canonical correspondence analysis (CCA) was 
performed using the R project “Vegan” package (version 2.5.3) and 
Variance partitioning analysis (VPA) was based on the species and 
environment factor abundances table, with the envfit test used to 
assess the significance of the impact of each factor in the CCA 
model, in order to clarify the influence of environmental factors on 
community composition. Pearson correlation coefficients between 
environmental factors and alpha diversity were calculated using the 
R project “psych” package. To identify taxa which were significantly 
affected by fertilization, we  carried out the linear discriminant 
analysis (LDA) effect size (LEfSe; Segata et al., 2011), biomarkers 
examined in this study are consistent with the following standards: 
(i) minimum LDA score (log10 value) for discriminative features 
are ≥3 and (ii) alpha value for the factorial Kruskal-Wallis test 
between groups ≤0.05.

1 https://www.arb-silva.de/

TABLE 1 Basic properties of reclaimed soil.

AN
(mg/kg)

AP
(mg/kg)

AK
(mg/kg)

TN
(g/kg)

TP
(g/kg)

SOM
(g/kg)

26.88 3.42 90.12 0.28 0.41 3.76

AN, available nitrogen; AP, available phosphorus; AK, available potassium; TN, total 
nitrogen; TP, total phosphorus; SOM, soil organic matter.
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3. Results

3.1. Changes of nutrient content in 
reclaimed soil

The results showed that the contents of AN, AP and TP were 
significantly increased after fertilization compared with CK (p < 0.05), 
and the overall order was SH > CF > CK (Table 2). While under SH2 
treatment with the same nitrogen application rate, the results indicated 
that the effect of coal-derived compound fertilizer on soil nutrient 
content was better than that of common compound fertilizer. In 
particular, the contents of AN, AP, AK, SOM and TP in SH2 treatment 
were significantly increased by 17.46, 43.62, 24.43, 26.51, and 19.58% 
compared with CF (p < 0.05), respectively. In addition, the contents of 
AN, AP, AK, SOM and TP in SH treatments increased first and then 
decreased with the increase of nitrogen application, and the contents 
in SH3 treatment were the highest, respectively, increased by 58.46, 
112.65, 35.00, 26.51, and 19.58%, which was significantly different 
from that in CF treatment (p < 0.05).

3.2. Bacterial alpha diversity under different 
fertilization

Bacterial diversity and richness (Figure 1). Compared with CK, 
fertilization could effectively improve bacterial richness (Chao1) and 
diversity (Shannon) in reclaimed soil. At the same nitrogen application 
rate, Chao1 in SH2 was significantly higher than that in CF (p < 0.05), 
and Shannon in SH2 was higher than that in CF though not 
significantly. In addition, Chao1 and Shannon in SH treatments 
increased initially and decreased afterwards with the increase of 
nitrogen application. Specifically, Chao1 was highest in SH2 treatment 
while Shannon in SH3 treatment.

3.3. Composition of soil bacterial 
communities

We evaluated the taxonomic composition of bacteria, with 
Proteobacteria, Actinobacteria, Gemmatimonadetes, Planctomycetes, 
and Acidobacteria being the dominant phyla in reclaimed soil 
(Figure  2). Compared with CK, the relative abundance of 
Proteobacteria, Actinobacteria and Gemmatimonadetes were 
increased in SH treatments, while the relative abundance of 

Planctomycetes was decreased in SH treatments. And the highest 
relative abundance of Proteobacteria was detected in SH4 treatment 
(Supplementary Table S1), which was significantly different from CK 
(p < 0.05). Besides, the relative abundance of Gemmatimonadetes and 
Acidobacteria were highest in SH2 treatment (p < 0.05) and the highest 
relative abundance of Actinobacteria was found in SH3 all significantly 
different from CK (p < 0.05). CF treatment increased the relative 
abundance of Proteobacteria, Actinobacteria and Planctomycetes, 
while decreased the abundance of Gemmatimonadetes 
and Acidobacteria.

To determine whether fertilization led to shifts in soil bacterial 
communities, we  profiled the structural changes in bacterial 
communities (Genus level) using NMDS based on Bray-Curtis 
dissimilarities (Figure 3). There were significant differences between 
bacterial communities and CK in different fertilization treatments, 
and the stress of 0.048 also indicated that NMDS fit well. There were 
also significant differences among the four SH nitrogen application 
rates. In addition, Adonis (Permanova) test confirmed that there was 
significant difference in soil microbial community among different 
treatments (R2 = 0.3925, p < 0.01).

We further identified high-dimensional biomarkers at each 
taxonomic level using LEfSe and explored the significantly changed 
taxa (Figure  4). The results showed that the taxa of RF32 (LDA 
score = 4.48) changed significantly in CK. However, Bradyrhizobiaceae 
(LDA score = 3.71) and Brevundimonas (LDA score = 3.06) were 
significantly altered in SH1, while Polyangiaceae (LDA score = 3.27) 
was significantly altered in SH2. In addition, we  found that the 
abundance of Firmicutes and Fusobacteria was the highest in CK and 
CF treatments, and only three taxa from Firmicutes were significantly 
decreased in SH1 and SH4 treatments including Streptococcaceae 
(LDA score = 3.12), Streptococcus (LDA score = 3.10), and 
Guilliermondii (LDA score = 3.09). Meanwhile, the Acidobacteria taxa 
and Actinobacteria taxa were only found in SH treatments.

3.4. Relationship between bacterial 
diversity and community composition with 
soil properties

The Mantel test for the association between bacterial community 
structure (Bray-Curtis distance) and soil properties indicated that AN, 
AP, TP, and SOM were significantly correlated with bacterial 
community structure (p < 0.05, Supplementary Table S2). The 
relationship among soil nutrients, bacterial diversity and bacterial 

TABLE 2 Basic nutrient content of reclaimed soil.

Treatment AN
(mg/kg)

AP
(mg/kg)

AK
(mg/kg)

SOM
(g/kg)

TP
(g/kg)

CK 26.36 ± 2.10d 5.38 ± 0.45d 175.35 ± 5.55d 8.52 ± 0.23c 0.475 ± 0.018d

CF 35.80 ± 1.26c 9.17 ± 0.76c 187.83 ± 2.66 cd 9.92 ± 0.38bc 0.526 ± 0.010c

SH1 40.02 ± 4.37b 12.33 ± 1.26b 197.57 ± 3.02c 11.33 ± 0.81ab 0.561 ± 0.040c

SH2 42.05 ± 3.41b 13.17 ± 0.76b 233.72 ± 3.36b 12.06 ± 0.82a 0.582 ± 0.016b

SH3 56.73 ± 4.35a 19.50 ± 0.50a 253.57 ± 3.24a 12.55 ± 0.65a 0.629 ± 0.021a

SH4 53.32 ± 2.34a 18.83 ± 1.26a 247.39 ± 4.82a 11.83 ± 0.25ab 0.611 ± 0.019a

Significance among treatments was tested using one-way ANOVA at p < 0.05. Different letters in a single row indicate a significant difference between treatments. AN, available nitrogen; AP, 
available phosphorus; AK, available potassium; SOM, soil organic matter; TP, total phosphorus.
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community structure was determined using the PLSPM (Figure 5). The 
results of the PLSPM revealed that soil nutrients had significant 
positive correlation with bacterial diversity (0.606) and bacterial 
community structure (0.494, p < 0.001). Bacterial diversity had 
significant positive relationships with bacterial community structure 
(0.532, p < 0.001). Meanwhile, soil nutrients can also affect the bacterial 
community structure indirectly through soil microbial diversity.

CCA results directly show the effect of environmental factors on 
soil bacterial communities (Figure 6). At the Genus level, the five soil 

parameters accounted for 79.82% of the total variation, with the first 
and second axes, respectively, accounting for 61.84 and 17.44%, 
respectively. The bacterial communities in soil from SH treatments 
were positively correlated with the concentrations of AN, AP, AK, TP 
and SOM. Among these, SOM (R2 = 0.6985, p = 0.001) was the most 
important environmental factor affecting the variation of bacterial 
community. Besides, variance partitioning analysis (VPA) showed that 
SOM accounted for 10.66% of the total Variance and followed by 
AP 9.92% (Figure 7), which was further verified that SOM was the 

FIGURE 1

Comparison of estimated alpha diversity indices of 16 s rRNA gene libraries for clustering at 97% similarity, obtained from high throughput sequencing 
analysis. Data are the means, n = 4, error bars represent standard error. Bars with the same letter are not significantly different at p ≤ 0.05.

FIGURE 2

Relative abundance of species at phylum level.
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most important factor affecting the variation of bacterial community 
structure in reclaimed soil. In addition, AN, AP, AK and TP were also 
significantly correlated with the variance of bacterial community 
(Supplementary Table S3).

4. Discussion

4.1. Effects of coal-derived compound 
fertilizers on soil properties and alpha 
diversity of bacteria

Fertilization can effectively improve the soil’s total and available 
nutrients, and accelerate soil maturity (Sun et al., 2016). Excessive 
use of chemical fertilizers hardens the soil, reduces soil fertility and 
pollutes the natural environment (Pahalvi et al., 2021). Low-rank 
coals and their derivatives are rich in micronutrients and are also 
valuable sources of organic matter containing large amounts of 
humus (Akimbekov et al., 2021), which can be used as an alternative 
source for the management of soil fertility. During our reclamation, 
coal-derived compound fertilizers significantly increased soil 
nutrients (AN, AP, AK, SOM, and TP; Table 2), especially in SH3 
treatment with 180 kg/hm2 nitrogen application, and the results were 
similar to those in this study (Li et al., 2019; Dehsheikh et al., 2020). 
In addition, SH2 had a better effect on soil nutrient content than CF 
under the same nitrogen application rate (135 kg/hm2), which may 
be due to the addition of humic acid to coal-derived compound 
fertilizer. The results indicated that the combination of humic acid 
and inorganic fertilizer can effectively improve the utilization rate of 
fertilizer (Chen et  al., 2017). It is worth noting that when the 
nitrogen application rate increased to 225 kg/hm2 (SH4), soil 
nutrient content decreased in different degrees, which indicated that 
the effect of combined application of coal-derived compound 
fertilizer and suitable nitrogen amount on soil nutrient was better, 
and excessive nitrogen application had a negative effect on SOM 
synthesis and decomposition (Galloway et  al., 2008), while soil 
acidification caused by excess nitrogen will prevent inorganic 
phosphorus from adsorbing to mineral surfaces (Cusack et  al., 
2016). Reducing the amount of chemical fertilizer combined 
application is more beneficial to the growth of soil nutrient level 
(Zhong et al., 2010; Zhao et al., 2016).

Soil microbial diversity is critical to the integrity, function and 
long-term sustainability of soil ecosystems (Kandeler et  al., 2006; 
Cheng et al., 2018), and restoration of microbial diversity is a key issue 
in regenerating soil systems. In this study, we  analyzed microbial 
diversity and richness using Shannon and Chao1, respectively. The 
results showed that SH could effectively increase the bacteria alpha 
diversity bacteria compared with CK treatment. At the same nitrogen 
rate (135 kg/hm2), the bacteria alpha diversity in SH2 treatment was 
higher than that in CF treatment, which indicated that the application 
of coal-derived compound fertilizer promoted the recovery of soil 
microorganisms (Figure 1). Interestingly, Chao1 and Shannon also 
showed a trend of first increasing and then decreasing with the 
increase of nitrogen application in SH, which is consistent with the 
trend of nutrient content change in reclaimed soil, there is ample 
evidence that an increase in nitrogen input leads to a decrease in 
bacterial diversity (Zhou et al., 2015), and that high mineral nitrogen 
content may create stress conditions that inhibit bacterial growth, 
resulting in a significant decrease in bacterial diversity (Shen et al., 
2016). Moreover, the subsidy-stress hypothesis states that higher levels 
of nitrogen addition results in reduced diversity, while moderate levels 
of amendment can promote microbial diversity (Odum et al., 1979; 
Odum, 1985). The application of exogenous organic matter is often 
crucial to improve soil fertility and nutrient management. The 

FIGURE 3

Effects of fertilization on bacterial communities composition (Genus 
level) in reclaimed soil. Non-metric multidimensional scaling (NMDS) 
of bacterial communities based on Bray-Curtis dissimilarities.

FIGURE 4

In reclaimed soils, key phylogenetic phenotypes of bacteria were 
significantly altered between treatments using linear discriminant 
analysis (LDA) effect sizes (LEfSe). Pro, Proteobacteria; Fir, Firmicutes; 
Fus, Fusobacteria; Bac, Bacteroidetes; Aci, Acidobacteria; Act, 
Actinobacteria; Ten, Tenericutes; Aci, Acidobacteria; Act, 
Actinobacteria; Ten, Tenericutes.
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addition of humic acids to inorganic fertilizers can change soil 
microbial community structure, improve soil microbial diversity and 
soil nutrient content (Li et al., 2019; Wang et al., 2022), which were 
similar to the results of this experiment. To sum up, coal-derived 
compound fertilizer can effectively improve soil nutrients and 
promote the recovery of soil microbial diversity, and SH3 (180 kg/hm2 
nitrogen application) is the most suitable.

4.2. Effect of coal-derived compound 
fertilizer on bacterial community structure

NMDS and Adonis (Permanova) test showed that fertilization 
resulted in significant differences in soil bacterial community 
composition, and there were also significant differences in SH among 
four nitrogen application rates (Figure 2). According to the analysis of 
the changes in taxa composition (Figure 3), the relative abundance of 
Proteobacteria in the reclaimed soil showed an overall increasing 
trend with the increase of SH nitrogen application, while Acidobacteria 
decreased with the increase of SH nitrogen application 
(Supplementary Table S1), which are consistent with previous studies 
(Ling et  al., 2017; Wang et  al., 2018). The changes in bacterial 
composition after the increase of nitrogen application can be explained 
by the eutrophication hypothesis (Fierer et  al., 2007). And 
Proteobacteria can adapt to resource-rich (carbon-rich) environments 
well. Moreover, as a co-trophic group, Proteobacteria has a rapid 
growth rate and is more likely to grow under nutrient-rich conditions 
(Fierer et  al., 2007, 2012), while nutrient-poor populations are 
conducive to growth under low-carbon conditions.

In the study, Proteobacteria, Actinobacteria and Acidobacteria were 
the main phylums from reclaimed soil in mining area, which was 
consistent with other researches about soil microbial community. 
Among these, Proteobacteria was the key phylums with the highest 
relative abundance in reclaimed soil, due to it could survive in extreme 
environment via carbon cycling and nitrogen fixing processes 
(Kasemodel et al., 2019). We found that soil nutrient contents (AN, AP, 
AK, TP, and SOM) were positively correlated with the abundance of 
Proteobacteria, Actinobacteria and Gemmatimonadetes, while 

FIGURE 5

Partial Least Squares Path Modeling (PLSPM). Each oval shape represents an observed variable (i.e., measured) and box represents latent variable (i.e., 
constructs). Red lines represent positive effects and blue lines represent negative effect. Dashed arrows show that coefficients did not differ 
significantly from 0 (p > 0.05). Numbers on the lines in the PLSPM model are the ‘total effects’ values, ***p < 0.001.

FIGURE 6

Canonical correspondence analysis indicated the potential 
relationship between soil environmental variables and soil bacterial 
community (Genus level).
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negatively correlated with the abundance of Firmicutes and Fusobacteria 
(Supplementary Figure S1). The LEfSe analysis also showed that 
Actinobacteria taxa were only found in the treatments with high soil 
nutrient content (SH1 – SH3; Figure 4), indicating that Nocardioides, 
Microbacteriaceae, EB1017, Nocardioidaceae were positively correlated 
with soil nutrient contents. Studies have shown that Actinobacteria plays 
an important role in improving agricultural soil quality (Francioli et al., 
2016), participates in organic matter turnover and carbon cycling, 
supplements the nutrient supply in soils and is an important component 
of humus formation (Anandan et al., 2016). In this study, Nocardioides, 
Microbacteriaceae, and Nocardioidaceae are all belong to 
Actinomycetales. Previous reports have shown that members of 
Actinomycetales have many ecological roles, such as the potential to 
inhibit the growth of a variety of plant pathogens (Sprusansky et al., 
2005; Jeffrey et al., 2007), to promote plant growth, and it also can help 
to solubilize phosphate, produce siderophore and fix nitrogen (Bhatti 
et al., 2017). In addition, Actinomycetes do not pollute the environment; 
on the contrary, they help maintain a biological balance between soil and 
nutrient cycling. However, the taxa of Firmicutes and Fusobacteria were 
only found in CK, CF and SH1 with low nitrogen application, indicating 
that the taxa of Firmicutes and Fusobacteria were negatively correlated 
with soil nutrient content. Our results suggest that Proteobacteria and 
Actinobacteria are the dominant phyla in reclaimed soils (Figure 3), 
which is consistent with previous studies (Lauber et al., 2009; Rastogi 
et al., 2010; Zhan and Sun, 2014). The consistency of dominant phyla in 
different mining areas shows that these bacteria play an important role 
in soil improvement and have extensive adaptability to soil environment 
in mining areas.

4.3. Relationship between soil properties 
versus bacterial diversity and community 
structure

The interactions between soil chemical properties, biological 
properties, and microbial communities have triggered debates about 

the mechanisms of nutrient cycling and ecosystem processes, and 
understanding these complex interactions is essential for the proper 
functioning of biomes. Numerous soil properties play critical roles in 
shaping bacterial community structure and diversity when the soil is 
subjected to fertilization (Dangi et al., 2012; Sun et al., 2016; Yu et al., 
2019), and improving soil fertility leads to higher bacterial abundance 
and diversity (Cui et al., 2012; Li et al., 2014). In this study, we found 
that Chao1 and Shannon were positively correlated with SOM, AP and 
TP (p < 0.001, p < 0.01, and p < 0.05), and the results showed that the 
accumulation of SOM and nutrients could well explain the higher 
bacterial richness and diversity index in reclaimed soil. We also found 
that most abundant phyla were significantly associated with one or 
more selected soil properties, underscoring the critical role of SOM 
and nutrients in shaping the abundance and diversity of soil bacterial 
communities (Supplementary Figure S1).

Previous studies have shown that SOM and AP are major 
factors influencing the composition of bacterial communities in 
soil (Fierer et al., 2012; Hu Y. et al., 2014; Liu et al., 2014; Yu et al., 
2019), which is consistent with our study. For one thing, the 
reclaimed soil is exposed to poor soil nutrients and low SOM 
content. While the content of SOM influence ecosystem function 
more, it would induce the change of bacterial community structure 
if increased SOM in a short time (Zhang et al., 2023). For another 
thing, SOM can effectively promote the growth and recovery of 
bacteria in reclaimed soil, while fertilization can apparently 
improve the content of SOM and apply energy for the activities of 
microorganisms, which contribute to the increase of soil microbial 
diversity and influence the composition of bacterial community. 
In this study, the results of CCA and Mantel test indicated that 
SOM was the main factor influencing bacterial community 
structure in reclaimed soil (Figure 6; Supplementary Table S2). 
Many biological factors directly affect carbon mineralization in 
soils, and carbon sources are one of the most important factors 
affecting microbial communities (Blagodatskaya and Kuzyakov, 
2008). VPA and correlation analysis further showed that SOM had 
a positive effect on soil microbial diversity (Figure 7). Studies have 
shown that the increase of SOM can promote soil agglomeration, 
improve soil physical properties and nutrients, thereby promoting 
the growth and recovery of bacteria in reclaimed soil (Li L. et al., 
2021). Meanwhile, SOM plays a key role in plant growth and 
directly affects soil bacterial diversity (Zeng et  al., 2016; Li 
W. et al., 2021; Xu et al., 2021). Moreover, as a reservoir of carbon 
and nitrogen sources, continuous decomposition of SOM can 
contribute to the improvement of bacterial community diversity 
by producing multiple substrates for the microbiota (Li 
et al., 2014).

The purpose of soil reclamation in coal mining subsidence 
area is to reconstruct productive, healthy and sustainable 
ecosystem of land use after mining. Increasing soil nutrients and 
enriching microbial population through fertilization is an 
effective method for ecological restoration in mining areas 
(Mummey et al., 2002; Cao et al., 2020; Li et al., 2020; Yan et al., 
2021). In our study, soil nutrient and bacterial community 
diversity increased significantly after 4 years of reclamation. 
However, the reconstruction of soil microbial community in coal 
mining subsidence area depends not only on the mode of 
reclamation, but also on the time of reclamation. The study on the 
reclamation of mining area shows that the most important 

FIGURE 7

VPA analysis of the contribution of environmental factors to the total 
variation of species.
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restoration stage of microbial community is 5 ~ 20 years after 
reclamation, and the difference is mainly related to fertilization, 
soil properties and vegetation (Dangi et al., 2012; Li et al., 2015; 
Cheng et al., 2018). Therefore, there is still a need for continuous 
monitoring of soil nutrients and microbial communities in 
selected sites, taking into account the effects of fertilization and 
the timing of reclamation.

5. Conclusion

In conclusion, the application of coal-deriver compound fertilizer 
can promote soil bacterial diversity and community composition by 
improving soil nutrients, and improve beneficial bacterial groups that 
play a significant role in ecosystem function. After 4 years of 
reclamation, the abundance and diversity of soil bacteria increased 
with the increase of soil nutrients. In addition, fertilization could 
effectively increase the abundance of soil bacteria, and it is more 
obvious that coal-derived compound fertilizer could positively affect 
bacterial diversity, especially SOM, which is critical for the formation 
of major bacterial populations.
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