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The aeromicrobiome: the 
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The atmosphere is an integral component of the Earth’s microbiome. 
Abundance, viability, and diversity of microorganisms circulating in the air are 
determined by various factors including environmental physical variables and 
intrinsic and biological properties of microbes, all ranging over large scales. The 
aeromicrobiome is thus poorly understood and difficult to predict due to the 
high heterogeneity of the airborne microorganisms and their properties, spatially 
and temporally. The atmosphere acts as a highly selective dispersion means on 
large scales for microbial cells, exposing them to a multitude of physical and 
chemical atmospheric processes. We provide here a brief critical review of the 
current knowledge and propose future research directions aiming at improving 
our comprehension of the atmosphere as a biome.
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1. Introduction

Airborne microbial cell concentrations range from <10 to ~107 cells m−3 depending on 
altitude, location, time of day, and season (Bowers et al., 2011; Tignat-Perrier et al., 2020). The 
global atmosphere contains ~1020 bacteria cells (Whitman et al., 1998), which is approximately 
10 orders of magnitude less than in soil and in the oceans, respectively (Šantl-Temkiv et al., 
2022). At first sight, such biomass thus seems insignificant, but it is renewed with high turnover 
(typical particle residence time of a few days) and selectivity (high mortality rates), while 
providing efficient dispersion at large scale.

Since pioneering visionary scientists investigated the microbes transported in the air [the 
most prominent of which include (Pasteur, 1862; Molisch, 1922; Meier and Lindbergh, 1935; 
Moulton, 1942; Lacey, 1986)], aeromicrobiology has emerged as a full-fledged field of 
environmental microbiology. Over time, it benefited from general technological and knowledge 
advances in microbiology, and from interactions between disciplines including microbiology, 
ecology, meteorology, atmospheric physics, and chemistry.

The aeromicrobiome demonstrates some level of organization at different scales of space 
and time, through physical and biological processes as depicted in Figure 1. This contributes to 
the many aspects of the Earth system, via the regulation of ecosystems and populations, 
hydrological and biochemical cycles, atmospheric composition, climate, biogeography, and 
microbial evolution. However, despite apparent proximity, the atmospheric biotic system is one 
of the least studied on the planet and its implications remain still poorly characterized. The 
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selective pressures exerted by atmospheric conditions toward 
microorganisms depend on physical and biological parameters, and 
is heterogeneous among the great biodiversity potentially exposed. 
Some microorganisms remain viable longer than others and, thus, 
have larger dispersal ranges, while maintaining different degrees of 
metabolic activity and interaction with their environment. 
Independently from viability, genetic material is also dispersed and 
can contribute to large-scale horizontal gene transfer. Microbial cells 
and biological material also undergo and can affect atmospheric 
processes, such as cloud formation, precipitation, and chemical 
reactivity. In this mini-review, we  summarize some of the latest 
developments and key findings related to the atmospheric 
microbiome, and emphasize major directions for future research.

2. Structuration of the 
aeromicrobiome

2.1. Interactions with Earth surfaces

It is largely accepted that anywhere on the planet, the airborne 
microbial abundance and diversity result exclusively from exchanges 
with the surface, i.e., emission and deposition processes. At first 
approximation, emissions and deposition are globally balanced 
(Burrows et al., 2009b; Fröhlich-Nowoisky et al., 2016), which implies 
that all aerosolized microorganisms are finally deposited back, without 
significant production or loss of microbial biomass in the atmosphere, 
resulting in atmospheric transport as a neutral process. The simplified 

assumption could be discussed, but it forms the basis of our current 
view on microbial aerial dispersion. Thus, studying the 
aeromicrobiome starts by characterizing inputs and losses from and 
to surfaces.

Aerosolization, i.e., the detachment from surfaces, depends in 
complex ways on factors such as surface roughness, humidity, and 
electrical charges, which act against drag forces. Once detached from 
the surface, particles are lifted by turbulent fluxes (Carotenuto et al., 
2017), and their residence time largely depends on particle size and 
hygroscopicity; these are described in aerosol dispersion models of 
different resolutions and scales (local to global). However, emission 
fluxes and dispersion of microorganisms are currently poorly 
constrained in atmospheric models.

Globally, ~1024 bacteria cells are emitted each year from surfaces 
to the atmosphere (Burrows et al., 2009a), i.e., on average ~ 60 cells/
m2/s. The aeromicrobiome is highly variable over short spatial and 
temporal scales (Fierer et al., 2008; Bowers et al., 2011). It has a large 
species-time relationship compared to, for example, soil or marine 
environments (Shade et al., 2013), which is directly related to the high 
turnover (replacement) of taxa (Baselga, 2010; Péguilhan et al., 2021) 
and the large proportions of rare species (Shade et  al., 2014). Its 
composition and dynamics reflect underlying ecosystem patterns, 
their spatial extension, and seasonal variations (Bowers et al., 2011; 
Tignat-Perrier et al., 2020; Archer et al., 2023). The aerial parts of 
plants notably host a large number of diverse microorganisms that can 
be  readily aerosolized (Vorholt, 2012; Schlechter et  al., 2019). 
Therefore, vegetation acts as a major source of airborne 
microorganisms with emissions fluxes of up to ~500 viable bacteria 

FIGURE 1

The aeromicrobiome and its identified biological and physical drivers, in red and blue, respectively (arrows and text). Its main intrinsic characteristics 
are italicized and framed, and major biological and physical factors of regulation are in blue and red italics. Wider hypothesized or proven outcomes, 
through the processes framed in black, are mentioned in black italics. For example: (i) the survival rate of emitted microorganisms determines the 
composition of the living aeromicrobiome; it depends on both microorganism’s biological traits, which rely on genetic material, and particle size, and 
is under pressure from atmospheric conditions (oxidants, UV light, etc.); (ii) microbial cells interact with their atmospheric environment as aerosol 
particles, with impacts on their residence time (e.g., precipitation), and through metabolic activity, depending on survival and biological traits, which 
influences chemical processes. More largely, atmospheric composition, hydrogeochemical and hydrological cycles and climate are affected. Aged 
aeromicrobiome is depicted on the right; it includes a fraction of the emitted cells, and selected viable and active fractions. Once deposited, genetic 
material and living organisms interact with surface ecosystems, including hosts in the case of pathogens, and contribute to biogeographical and 
pathogeographical patterns.
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cells/m2/s measured (Lindemann et al., 1982; Lindemann and Upper, 
1985). However, on average, these fluxes rarely exceed ~10 cells/m2/s 
(Carotenuto et al., 2017) and are hence extremely difficult to quantify 
with accuracy.

Technical and analytical limitations certainly contribute to the 
current inability to account for microbial emission fluxes. In their 
current development, these can be experimentally assessed through 
the Bowen ratio method, approximating that microorganisms’ fluxes 
above surfaces follow that of sensible heat (Lighthart and Shaffer, 
1994). This method involves micrometeorological measurements at 
high frequency to characterize turbulent fluxes, efficient and accurate 
sampling devices positioned at 2 heights above ground, e.g., typically 
~1 m and 2 m a.g.l. to assess the gradient of microbial abundance 
(Carotenuto et al., 2017), and the characterization of the surface area 
“seen” by the samplers and probes, referred to as “footprint” 
(Schmid, 2002).

In the absence of actual data, emission fluxes are thus to 
be inferred a posteriori based on airborne concentrations measured 
near the ground, and assuming that removal processes can 
be appropriately represented. This way, bacteria emission fluxes from 
major ecosystems were constrained on a global scale by a multivariate 
approach (Burrows et  al., 2009a,b). The underlying assumptions 
implied underestimated (or ignored) emissions from poorly 
characterized surfaces, such as oceans, and no temporal variations. 
The uplift of microorganisms from surfaces is nevertheless highly 
variable in space and time, in relation for instance with solar irradiance 
imposing diurnal and seasonal cycles on turbulent fluxes (Lighthart, 
1999; Gusareva et al., 2019). Mechanical disturbance of surfaces by 
wind, rainfall, animals and human activities, and wildland fire can 
cause efficient aerosolization of microorganisms (Evans et al., 2006; 
Huffman et al., 2013; Joung et al., 2017; Kobziar et al., 2022). High 
productivity ecosystems, such as vegetated areas tend to act as long-
term net sources (Burrows et  al., 2009a), alike the organic-rich 
microlayer at the ocean–atmosphere interface (sea-surface microlayer) 
(Aller et al., 2005; Cunliffe and Murrell, 2009; Malfatti et al., 2019; 
Alsante et al., 2021).

Not all microorganisms have equal chances to enter the 
aeromicrobiome: those located at the surface-air-interface are 
inherently more prone to aerosolization than those embedded in 
complex matrices or deep layers. Therefore, it is conceivable for 
instance that aerobic organisms are more prone to aerosolization than 
anaerobes. Some microorganisms have structures designed for aerial 
dispersion, such as spores in certain fungi, for which emissions can 
be active processes predictable from meteorological variables (Burns 
et al., 2022). For other microorganisms, differential aerosolization may 
occur depending on taxa and their physiological characteristics, some 
of which can lead to increased buoyancy and flotation (pigmentation 
linked with cell’ surface hydrophobicity, allometry, …), as shown from 
aquatic environments using controlled bubble-bursting (Burger and 
Bennett, 1985; Gauthier-Levesque et al., 2016; Michaud et al., 2018). 
Microbial biofilms covering Earth surfaces are designed to break up 
under specific conditions and release free cells, including genetic 
variants, to colonize distant environments or hosts (McDougald et al., 
2012). Aerial dispersion could be integral parts of their life cycle.

Airborne microbial cells finally exit the aeromicrobiome by dry or 
wet deposition processes, including scavenging by precipitation 
(Slinn, 1982; Triadó-Margarit et al., 2019; Moore et al., 2020; Péguilhan 
et al., 2021). Deposition fluxes are much more accessible than those of 

emission, as deposits can be easily collected and analyzed and directly 
expressed as per surface area and time. For bacteria, wet deposition is 
associated with highest fluxes, reaching up to ~107–108 cells/m2/h 
(Reche et al., 2018; Woo and Yamamoto, 2020; Péguilhan et al., 2021). 
The microbial mixture permanently deposited from air on surfaces 
brings invaders and competitors to surface environments (Hervas and 
Casamayor, 2009; Morris and Sands, 2017; Noirmain et al., 2022). The 
continuous flow of foreign genetic material from atmospheric 
deposition is hypothesized to contribute to ecosystems stability and 
microbial evolution (Jalasvuori, 2020).

2.2. Microscale distribution

Microorganisms are distributed among aerosol particles in the 
atmosphere. Size determines the velocity at which particles are 
removed from the atmosphere by dry deposition, and so their 
transport range. Settling rates are on the order of ~7 to 750 μm s−1 for 
typical sizes of microbial aerosol particles (0.5 and 5 μm of 
aerodynamic diameter, respectively, i.e., the equivalent diameter of a 
perfect sphere of unit density) (Scheuch, 2020); these vary with 
temperature and pressure. Single bacteria cells with aerodynamic 
diameter of ~1 μm are estimated to remain airborne for 3–4 days 
(Burrows et al., 2009a), about twice as short as the residence time of 
water molecules (van der Ent and Tuinenburg, 2017). This still allows 
long distance travel over transcontinental scales, as attested for 
instance by tracers such as Saharan desert dust carrying specific 
bioaerosols deposited with snow in the Alps, or reaching North 
America (Creamean et al., 2013; Smith et al., 2013; Barberán et al., 
2015; Weil et al., 2017). Such large-scale spread of microorganisms 
connects distant ecosystems and affects global biogeographical 
patterns (Morris et  al., 2010; Barberán et  al., 2014; Leyronas 
et al., 2018).

The range of sizes of microorganism-carrying particles leads to 
their zonal separation, horizontally with the distance from emission 
sources (Gat et al., 2021) and vertically along the altitude (Prass et al., 
2021). Very few data exist about the size distribution of microbe-
containing particles, that associated with living organisms in 
particular, or the number of cells and taxa carried together on 
individual aerosol particles, i.e., the biological mixing state of 
microbial aerosols, which may affect gene transfer while airborne.

3. Aerial fate of microorganisms

3.1. Survival of microorganisms during 
aerial transport

The proportion of living cells, their level of metabolic activity, and 
the functions expressed are key parameters in the characterization of 
the aeromicrobiome. A fraction of the emitted microorganisms could 
already be dead at the time of aerosolization. Moreover, microbial 
survival is greatly impaired during atmospheric transport due direct 
exposure to extremely harsh and variable conditions including water 
availability, temperature, oxidants, and UV radiation (Smith et al., 
2011; Joly et al., 2015; Šantl-Temkiv et al., 2022). Most living microbial 
cells occur as agglomerates larger than 2 μm (Lighthart and Shaffer, 
1995b; Lighthart, 1997; Monier and Lindow, 2003). While cell clusters 
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and cells agglomerated to other material have higher survival capacity 
than single cells, they have a shorter atmospheric residence time; both 
aspects (particle size and sheltering effect) contribute to the dispersal 
range of microorganisms. The few available studies assessing the size 
distribution of microbial particles do not discriminate between viable 
and total organisms.

Experiments on Pseudomonas syringae aerosolized in a cloud 
chamber determined a half-life time of ~4 h (Amato et al., 2015), 
indicating that statistically only ~1 individual out of one million 
survives atmospheric transport from emission to deposition. This is 
much higher than the mortality rates of bacteria in aquatic ecosystems, 
on the order of ~10−3 h−1, mostly driven by predators (Menon et al., 
2003). During their atmospheric transport, cells undergo highly 
selective processes, and the living fraction of microbial aerosols may 
sharply decrease with time airborne, i.e., increasing horizontal and 
vertical distance from the emission source. As differential survival 
capacity exists among the enormous microbial diversity transiting 
through the atmosphere, aeromicrobiome’s richness and structure 
may be altered during atmospheric aging.

The proportion of viable organisms is not frequently reported; 
quantitative data can be difficult to obtain reliably from atmospheric 
samples due to the necessity to preserve cell integrity and the complex 
microbial assemblages. Viability is not accounted for by DNA-based 
techniques, which most current studies rely on. Data derived from 
cultures represent a conservative underestimate of viability; they 
typically indicate ~1% viable bacteria, and ~ 50% viable fungal cells 
(Vaïtilingom et  al., 2012). Differential staining (e.g., live/dead 
staining), a more reliable method, indicated proportions of viable 
bacteria varying from 2.8 to 6.6% in air sampled from a high mountain 
site, with higher proportions during the night (Šantl-Temkiv 
et al., 2017).

Microbial survival rates in relation with environmental variables 
such as humidity, temperature, particle size distribution, sun radiation, 
or chemical composition were explored in numerous studies (Ehrlich 
et  al., 1970; Lighthart et  al., 1971; Lighthart and Frisch, 1976; 
Lighthart, 1989; Lighthart and Shaffer, 1997; Tong and Lighthart, 
1998; Amato et  al., 2015). The survival of bacteria upon water 
evaporation depends on environmental parameters such as 
temperature and salinity, and is favored at higher evaporation rates 
(Marthi et al., 1990; Alsved et al., 2018). In addition, physiological 
characteristics of taxa are linked with their capacity to maintain 
viability, including forming resistance spores, pigments, efficient 
oxidative stress responses and repair systems (Tong and Lighthart, 
1998; Ochsner et al., 2000; Fredrickson et al., 2008; Joly et al., 2015). 
In E. coli, series of genes differentially expressed after aerosolization 
were found to contribute to higher survival, including proteins 
involved in stress response and DNA protection (Ng et al., 2018). In 
addition, multiple resistance genes, such as efflux pumps involved in 
the resistance to quinolones, could provide selective advantage to 
microorganisms in stressful environments like the atmosphere, even 
in the absence of such compound, and enhance their capacity to aerial 
dispersion (Rossi et al., 2022; Smith and King, 2022). Sphingomonas, 
one of the most frequent bacteria taxa in continental atmosphere, 
often carries multiple resistance genes (Vaz-Moreira et al., 2011).

Overall, some biological traits favoring microbial survival in the 
atmosphere have been identified. Their selective advantage may vary with 
atmospheric conditions, i.e., water availability, light radiation, temperature, 
presence of toxic chemical, etc, and this needs to be better characterized.

3.2. Metabolic activity, biological 
functioning, and potential niche effects in 
clouds

Biomarkers such as ATP and ribosomal RNA in air and cloud 
samples indicate the presence of metabolically active bacteria, such 
as Alpha-Proteobacteria (Rhodospirillales, Sphingomonadales, and 
Rhizobiales) and Gamma-Proteobacteria (Pseudomonadales) 
(Klein et al., 2016; Amato et al., 2017; Wirgot et al., 2017; Šantl-
Temkiv et al., 2018). This was corroborated by experiments under 
controlled conditions, in which airborne Alpha-Proteobacteria 
(Sphingomonas aerolata) responded to the presence of volatile 
compounds by elevating ribosome content (Krumins et al., 2014). 
Such responses suggest some extent of acclimation to 
environmental conditions.

The metabolic functioning of airborne microorganisms is 
expected to vary widely in space and time and with environmental 
conditions, with potential niche effects in particular in clouds where 
condensed water could promote biological processes. Only a single 
study so far demonstrated a general microbial functioning in natural 
clouds oriented toward the response to stress factors (temperature, 
oxidants, etc.); metatranscriptomics data indicated series of defense 
mechanisms associated with central metabolic functions known to 
participate to stress management (Amato et  al., 2019). Microbial 
multiplication in fog and cloud was suggested based on observations 
(Fuzzi et  al., 1997; Sattler et  al., 2001). Further modeling work 
suggested that significant microbial proliferation is not likely given the 
short life time of clouds (Ervens and Amato, 2020), but the whole 
aeromicrobiome functioning could be affected, which still needs to 
be evaluated.

In situ observations of microbial activity in clouds is not possible 
yet. Enzymatic assays (Vaïtilingom et al., 2010; Qi et al., 2015) as well 
as chemical fingerprinting of the impacts of microbial activity (Bianco 
et  al., 2019), including isotope-based assays (Sattler et  al., 2001), 
require laboratory incubation. More direct approaches, such as 
transcriptomics combined with powerful sampling solutions are, thus, 
preferred. Controlled experiments in simulation chambers might 
provide further insight into quantitative aspects of microbial activity 
and its modulations by environmental factors.

Microorganisms are considered specialists or generalists 
depending on the range of conditions (temperature, salinity, 
substrates, etc.) compatible with their development. Their assembly 
can be  described by niche-driven or neutral (i.e., random) 
processes, respectively (Liao et  al., 2016). Generalists are 
metabolically more flexible than specialists, resulting in selective 
advantage in frequently disturbed ecosystems (Chen et al., 2021); 
these might thus be  favored in the atmosphere. The relative 
abundance of Proteobacteria and Actinobacteria, which include 
higher proportions of generalists than other phyla, increases with 
altitude in soils (Luo et al., 2019); these are also frequent in viable 
airborne assemblages (Vaïtilingom et al., 2012).

The capacity to utilize various sources of nutrients and energy 
thus seems advantageous for survival and maintenance in the 
atmosphere. This may contribute to the high abundance of 
Pseudomonas species that are known for their versatility and 
opportunism (Rojo, 2010). While chemoheterotrophic and 
photoautotrophic modes are regularly investigated (Amato et al., 2007; 
Vaïtilingom et  al., 2010; Tesson et  al., 2016; Dillon et  al., 2020), 
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photoheterotrophy, by which cells can harvest additional biochemical 
energy from light through bacteriochlorophylls and rhodopsins is 
barely studied. This function may however provide strong selective 
advantage during atmospheric transport, as suggested by the 
occurrence of Sphingomonas, whose certain species contain 
anoxygenic phototrophy pigments (Kopejtka et  al., 2020). 
Comparative analyses between the aeromicrobiome and other 
ecosystems can help deciphering biological functions that provide 
selective advantage or intimate relation with atmospheric transport, 
by identifying anomalies in their occurrence.

3.3. Impact of microorganisms on the 
atmosphere

While the previous sections addressed the role of atmospheric 
conditions for the microbial viability and activity, microbiological 
processes might, in turn, also affect the atmospheric composition. The 
role of biological ice nuclei, their distribution in the atmosphere, and 
their impact on clouds and precipitation have been investigated over 
the last decade (Hoose and Möhler, 2012; Joly et al., 2014; Pouzet et al., 
2017; Patade et  al., 2021; Hartmann et  al., 2022). Certain plant 
pathogen bacteria can initiate ice nucleation at higher temperatures 
than other atmospheric particles. Ice-nucleation active strains of 
Pseudomonas syringae were found at a particularly high frequency in 
snowfall compared to other environments, and they were identified in 
feedback processes called “bioprecipitation,” linking vegetation, 
epiphytic microorganisms, and precipitation (Morris et al., 2008; Bigg 
et al., 2015). However, to date, the conclusions are not totally clear on 
the role of ice nucleating bacteria for precipitation (DeMott et al., 
2010; Hoose et al., 2010; Burrows et al., 2013; Sahyoun et al., 2017). In 
addition, chemical, physical, and biological aging processes can 
modify the ice nucleation ability of biological particles during 
atmospheric residence time, which makes it difficult to represent them 
in atmospheric models (Attard et al., 2012; Worthy et al., 2021; Zhang 
et al., 2021).

Microorganisms have also been suggested to influence the 
chemical composition of the atmosphere. The biodegradation rates of 
common cloud-water constituents (e.g., small carboxylic acids) by 
bacteria were determined in laboratory bulk studies (Vaïtilingom 
et al., 2013; Bianco et al., 2019; Jaber et al., 2021). Such approaches 
omitted the fact that cloud droplets are distinct, small environments 
(~10−12 liters), physically spread and exposed to gas uptake, and that 
biological processes only occur in the small fraction of cloud droplets 
containing bacteria (statistically <1 out of ~1,000 droplets). 
Atmospheric model studies found that biodegradation in cloud water 
may represent a significant sink for water-soluble organic carbon (8 to 
11 Tg yr.−1), comparable to chemical losses in cloud droplets (Ervens 
and Amato, 2020; Khaled et al., 2021). The multiple potential impacts 
of biological activity on the complex atmospheric chemical reactivity 
should thus be better evaluated and specified.

4. Concluding remarks—synthesis of 
research needs

The atmosphere is a biotic environment. While the need seems 
obvious to characterize the transport and residence of pathogens for 

Human, animal, and plant health-related issues, the present review 
highlights much broader implications of the aeromicrobiome for the 
planetary health. It is coupled by numerous transport and exchange 
processes to the Earth surface, the extent of which needs to be better 
characterized to predict not only the evolution of the aeromicrobiome 
but also its implications upon deposition.

Future research directions for better characterization of the 
aeromicrobiome’ organization and its impacts include:

 − Characterizing emissions from surfaces: data of airborne 
microbial concentrations and emission fluxes from surfaces 
should be  collected in particular over vast and poorly 
characterized areas such as oceans (Burrows et  al., 2009b; 
Hasenecz et al., 2020; Alsante et al., 2021) and forests (Huffman 
et  al., 2012; Crawford et  al., 2014), and over sources with 
potentially important socio-economic impacts, such as 
agricultural fields and crops (Lindemann et al., 1982; Lighthart 
and Shaffer, 1995a; Morris et  al., 2000; Brunet et  al., 2013; 
Carotenuto et  al., 2017). The mass and diversity of 
microorganisms susceptible to aerosolization has to 
be  constrained for each defined surface category, as well as 
temporal variations linked with microclimatic and meteorological 
parameters (turbulence, precipitation, and wind) (Evans et al., 
2006), and disturbances such as animal and human activities and 
wildfires (Kobziar et al., 2022).

 − Assessing the dependence of microbial survival, metabolic 
functioning and activity on atmospheric conditions and 
biological traits. This includes potential niche effects such as 
clouds, nutritive conditions, the dependence on particle size, 
and altitude above ground, along with biological drivers 
related with trophic modes and biological traits. Size-resolved 
data of microbial concentration, biodiversity, viability, and 
functioning should be  acquired at defined altitudes from 
ground, i.e., using towers (Prass et  al., 2021), unmanned 
vehicles (Powers et al., 2018), tethered balloons, or aircraft 
(DeLeon-Rodriguez et al., 2013), preferably to mountain sites 
that can be  affected by local emissions. Experiments in 
atmospheric simulation chambers or microcosms can help 
testing hypotheses. Current basic models of microbial 
survival rates in aerosol, in relation with environmental 
variables, should be  improved to account for differences 
between taxa and functions, for implementation in dispersion 
models (Ehrlich et al., 1970; Lighthart et al., 1971; Lighthart 
and Frisch, 1976; Lighthart, 1989; Lighthart and Shaffer, 
1997; Tong and Lighthart, 1998; Amato et al., 2015).

 − Specifying the importance of biological particles for 
atmospheric processes, and their dependence on atmospheric 
conditions, e.g., presence of liquid water, temperature, and 
oxidant levels, which may affect the utilization of nutritive 
resources as well as cell properties (aging, i.e., destructuration, 
oxidation of the surface, release of intracellular compounds, 
etc.) (Ballesteros et al., 2001; Bianco et al., 2019). Due to the 
lack of data, atmospheric model studies are currently limited 
to the investigation of the biodegradation of a few organic 
compounds in clouds (Jaber et al., 2020, 2021; Khaled et al., 
2021). However, there are indications that similar processes 
might also occur in the aqueous phase of deliquescent aerosol 
particles outside clouds. Finally, the aeromicrobiome clearly 
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harbors living organisms interacting with their environment, 
but the possibility of interactions between airborne microbes 
(predation, symbiosis, exchange of genetic material, 
communication, etc.) needs to be elucidated as well.

Such studies will require interdisciplinary efforts by multiple 
science communities including atmospheric chemistry and physics, 
meteorology, ecology, microbiology, and also concerted efforts in 
the development of new measurement and analysis techniques and 
concepts. 

Whether or not the aeromicrobiome can be  considered an 
ecosystem, a mosaic of adjacent ecosystems, or simply a major ecotone 
extending the boundaries of surface ecosystems and pressuring their 
microbiomes remains an open question. This environment is still 
poorly characterized while it may be affected by the rapidly changing 
conditions on various scales on the planet, with eventual feedbacks 
stabilizing or aggravating global change trends.
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