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Objectives: To investigate the in vitro activity of antibiotic combinations against 
Stenotrophomonas maltophilia isolates and their associated biofilms.

Methods: Thirty-two S. maltophilia clinical isolates with at least twenty-five 
different pulsotypes were tested. The antibacterial activity of various antibiotic 
combinations against seven randomly selected planktonic and biofilm-embedded 
S. maltophilia strains with strong biofilm formation was assessed using broth 
methods. Extraction of bacterial genomic DNA and PCR detection of antibiotic 
resistance and biofilm-related genes were also performed.

Results: The susceptibility rates of levofloxacin (LVX), fosfomycin (FOS), tigecycline 
(TGC) and sulfamethoxazole-trimethoprim (SXT) against 32 S. maltophilia isolates 
were 56.3, 71.9, 71.9 and 90.6%, respectively. Twenty-eight isolates were detected 
with strong biofilm formation. Antibiotic combinations, including aztreonam-
clavulanic (ATM-CLA) with LVX, ceftazidime-avibactam (CZA) with LVX and SXT 
with TGC, exhibited potent inhibitory activity against these isolates with strong 
biofilm formation. The antibiotic resistance phenotype might not be fully caused 
by the common antibiotic-resistance or biofilm-formation gene.

Conclusion: S. maltophilia remained resistant to most antibiotics, including LVX 
and β-lactam/β-lactamases; however, TGC, FOS and SXT still exhibited potent 
activity. Although all tested S. maltophilia isolates exhibited moderate-to-strong 
biofilm formation, combination therapies, especially ATM-CLA with LVX, CZA with 
LVX and SXT with TGC, exhibited a higher inhibitory activity for these isolates.
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Introduction

Stenotrophomonas maltophilia is a glucose-nonfermenting gram-
negative obligate aerobic bacillus found in aquatic environments 
(Brooke, 2012, 2021). In hospitals, S. maltophilia has been identified 
in tap water systems, sink drains, showerheads, and even central 
venous catheters, endoscopes and dialysate (Nyc and Matejková, 
2010). Previous studies also demonstrated that contaminated hospital 
water could be  the source of nosocomial S. maltophilia outbreaks 
(Cervia et al., 2008; Guyot et al., 2013). Clinically, S. maltophilia causes 
various infections, including pneumonia, bloodstream infection, 
endocarditis, urinary tract infection and soft tissue infection. Among 
them, pneumonia and bloodstream are the most common nosocomial 
infections (Singhal et al., 2017; Flores-Treviño et al., 2019; Trifonova 
and Strateva, 2019; Majumdar et al., 2022; Mojica et al., 2022; Tamma 
et al., 2022; Umar et al., 2022). Although the virulence of S. maltophilia 
might be low, its associated infections can cause high morbidity and 
mortality (Falagas et al., 2009; Brooke, 2012; De Mauri et al., 2014; 
Mori et al., 2014; Trifonova and Strateva, 2019). One of the reasons for 
the high mortality rate is the limited treatment options due to multiple 
antibiotic resistance (Brooke, 2012; Majumdar et al., 2022).

S. maltophilia produces β-lactamases L1 and L2, which generate 
β-lactams, cephalosporins, and carbapenems resistant (Avison et al., 
2001; Hu et al., 2008). Resistance to aminoglycosides is related to the 
presence of an aminoglycoside acetyl-transferase (Li et  al., 2003). 
Other resistance mechanisms include efflux pumps, low outer 
membrane permeability and antibiotic-inactivating enzymes (Singhal 
et  al., 2017). All these mechanisms contributed to the antibiotic 
resistance of S. maltophilia. The current recommended regimens for 
the treatment of S. maltophilia infections are based on previous 
evidence. Although trimethoprim/sulfamethoxazole and levofloxacin 
were recommended for treating S. maltophilia infection (Singhal et al., 
2017; Gibb and Wong, 2021), the resistance to these agents had 
increased gradually (Wu et  al., 2012). The presence of biofilm 
produced by S. maltophilia also causes the treatment to become 
ineffective (Flores-Treviño et al., 2019; Bostanghadiri et al., 2021). A 
multicenter prospective study showed that 91.7% of strains could form 
biofilms, especially bloodborne strains (Pompilio et al., 2020). In this 
study, more resistance to trimethoprim/sulfamethoxazole and 
levofloxacin was observed for the biofilm form than the planktonic 
form (Pompilio et al., 2020). Therefore, there is an urgent need to 
develop an effective antibiotic regimen to treat S. maltophilia infection 
with resistance and biofilm formation.

The aim of this study was to investigate the in vitro activity of 
antibiotics against S. maltophilia isolates and to find a suitable 
antibiotic combination with synergistic effects to combat antibiotic-
resistant S. maltophilia and its associated biofilm.

Materials and methods

Thirty-two S. maltophilia clinical isolates were collected from the 
Chi-Mei Medical Center. Species confirmations were performed using 
matrix-assisted laser desorption ionization time of flight 
(MALDI-TOF) mass spectrometry (microflex LT, Bruker Daltonics, 
Bremen, Germany). The isolates were stored at −80°C in Protect 
Bacterial Preservers (Technical Service Consultants Limited, 
Heywood, United  Kingdom) before use (Chang et  al., 2018). 

The S. maltophilia isolates were characterized by PFGE using a CHEF 
DR II apparatus (Bio-Rad Laboratories, Hercules, CA, United States) 
with the restriction endonuclease XbaI as described previously (Jumaa 
et al., 2006). Briefly, bacterial chromosomal DNAs were digested using 
XbaI (New England Biolabs, Beverly, MA, United  States). 
Electrophoresis was carried out for 22 h at 14°C, with pulse times 
ranging from 5 to 35 s at 6 V/cm, using a Bio-Rad CHEF MAPPER 
apparatus (Bio-Rad Laboratories, Richmond, CA, United States). The 
PFGE patterns were visually examined and interpreted according to 
the criteria of Tenover et al. (1995). The Dice similarity coefficients 
were calculated, and PFGE profiles with <80% similarity were 
considered different pulsotypes. In addition to four strains that were 
untypable, twenty-five different pulsotypes among 28 isolates were 
selected for further studies (Figure 1).

Antibiotics and MIC determination

The antibiotics tested were amoxicillin (AMX), amoxicillin-
clavulanate (AMC), aztreonam (ATM), aztreonam-clavulanic (ATM-
CLA), chloramphenicol (CHL), ceftazidime-avibactam (CZA), 
doripenem (DOR), ertapenem, (ETP), fosfomycin (FOS), levofloxacin 
(LVX), piperacillin (PIP), rifampicin (RIF), sulfamethoxazole-
trimethoprim (SXT), tigecycline (TGC), ticarcillin (TIC), ticarcillin-
clavulanate (T/C) and piperacillin-tazobactam (TZP). Except 
avibactam (MedKoo Biosciences, Inc., Morrisville, NC, United States), 
all drugs were purchased from Sigma (Sigma, St Louis, MO 
United States). Antibiotic MICs were determined by the agar dilution 
method and interpretation criteria and were based on the 
recommendations of the Clinical and Laboratory Standards Institutes 
(CLSI, 2022) or US Food and Drug Administration (FDA). 
Specifically, the MIC criteria for CHL, LVX, MIN, SXT, and T/C were 
based on the guidelines of CLSI for S. maltophilia. For AMX, AMC, 
ATM-CLA, CZA, DOR, ETP, and FOS, the criteria were based on 
Enterobacteriaceae but for ATM, PIP, TIC, and TZP, the criteria were 
based on other non-Enterobacterale. For RIF, the criteria were based 
on Staphylococcus. Finally, The criteria for TGC were based on the 
recommendation of FDA. Briefly, Mueller–Hinton agar (Oxoid, 
Basingstoke, United Kingdom) was employed to determine the MICs 
for S. maltophilia. Inocula were prepared by suspending overnight 
cultures in saline to a turbidity equivalent to that of a 0.5 McFarland 
standard. Inoculated plates were then incubated in ambient air at 37°C 
for 24 h. Quality control testing was performed using Escherichia coli 
ATCC 25922, Klebsiella pneumoniae ATCC 700603 and Pseudomonas 
aeruginosa ATCC 27853 (Shields et al., 2018).

Minimum concentration for biofilm 
eradication

The antibacterial activity of each drug in the biofilm was measured 
using the minimum biofilm eradication concentration (MBEC) assay 
(Ceri et al., 1999). MBEC indicates the lowest concentrations of the 
antibiotics added to clear wells in the 96-well ELISA plate. The assay 
involved biofilm formation on the plastic pegs of the lid of the MBEC 
device. These biofilms were exposed to antibiotics for 24 h at 37°C, 
placed in a second 96-well plate containing fresh Mueller–Hinton 
broth and incubated overnight. The MBEC was the lowest dilution 
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that prevented bacterial regrowth after antibiotic treatment. The 
MBEC was the lowest dilution that prevented bacterial regrowth after 
antibiotic treatment. All tests were performed in triplicate. All MBECs 
of the test drugs were over 1,024 μg/mL (data not shown).

Biofilm formation

The biofilm formation ability test was performed according to 
a previous study with modifications (Tang et al., 2012) Briefly, all 
bacteria were cultured for 1 day at 37°C in 5 mL of tryptic soy broth 
(Difco Laboratories) with 1% glucose (TSBGlc). The cultures were 
diluted 1:1000 in TSBGlc, and 200 μL of the solution was added to 
a 96-well plate. After 24 h of growth at 37°C, the plates were 
washed three times with PBS to remove unattached bacteria and 
stained with 100 μL 1% crystal violet (Sigma, St Louis, MO 
United  States). The plate was incubated for 15 min at room 
temperature; the staining solution was removed, and the plate was 
washed three times with PBS. After the washing solution was 
removed, 100 μL of DMSO was added to each well to dissolve the 
biofilm-bound crystal violet and incubated for 5 min. The OD570 
was obtained as an index of adherent bacteria and biofilm 
formation. To compensate for background absorbance, the OD of 
a sterile medium with fixative and dye was recorded and subtracted 
from the results. All strains were classified as follows: OD ≤ ODc 
nonbiofilm formation; ODc < OD ≤ 2 x ODc weak biofilm 

formation; 2 x ODc < OD ≤ 4 x ODc moderate biofilm formation; 
4 x ODc < OD strong biofilm formation (Stepanovic et al., 2000). 
The experiments were performed in triplicate, and the results are 
presented as the mean ± SD.

Killing effects of antimicrobial agents on 
biofilms after 5 days of treatment

Seven strong biofilm-formation isolates were randomly selected 
and prepared in 24-well culture plates. These antibiotics (ATM-CLA, 
CZA, FOS, LVX, SXT, TGC) were used to treat biofilms alone or in 
combination. Antibiotic concentrations were adjusted to the 
susceptible breakpoint concentration (SBC) for all tests. The 
concentrations of antibiotics were adjusted to the SBC for all tests. The 
SBC was defined according to the CLSI guidelines as 8/4, 2, and 
2/38 μg/mL for CZA, LVX, and SXT, respectively, for S. maltophilia, 
and 4/2 and 64 μg/mL for ATM-CLA and FOS, respectively, for 
Enterobacterales. The SBC for TGC for Enterobacterales was 
determined to be 2 μg/mL according to recommendation of FDA. The 
antibiotic-containing medium was gently aspirated after 24 h, and the 
biofilm was washed with PBS three times. Fresh antibiotic-containing 
medium was added to the wells continuously for 5 days. To quantify 
the degree of inhibition of biofilm-embedded bacteria by the tested 
antibiotics, the biofilms were collected on Day 5. The wells containing 
biofilms were sonicated using a water-table sonicator for 5 min. The 

FIGURE 1

PFGE patterns of 28 Stenotrophomonas maltophilia isolates. The number on the scale is the percentage of genetic similarity. PFGE profiles with <80% 
similarity were considered different. Four strains were untypable.
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disrupted biofilm was serially diluted, plated and cultured overnight 
at 37°C, and viable cells were counted. The limitation of detection in 
this study was 2 log10 CFU/mL. All tests were performed in triplicate 
(Stepanovic et al., 2000).

Time-killing effect of biofilms and 
planktonic bacteria

The biofilms of each isolate were prepared in 24-well culture 
plates. Antibiotic concentrations were adjusted to the SBC for all tests. 
The medium in the wells was removed by aspiration, and the biofilm 
in each plate was treated with sulfamethoxazole-trimethoprim 
(38/2 μg/mL) or tigecycline (2 μg/mL) at the SBC or sulfamethoxazole-
trimethoprim in combination with tigecycline. The other two 
combinations also received the same experimental treatment. The 
antibiotic-containing medium was gently aspirated after 24 h, and the 
biofilm was washed with PBS three times. Fresh antibiotic-containing 
medium was added to the wells continuously for 5 days. To quantify 
the degree of inhibition of biofilm-released (planktonic) and biofilm-
embedded bacteria by the tested antibiotics, the cell suspension and 
biofilm were collected on Days 0 (before antibiotic treatment), 1, 3 and 
5. The planktonic bacteria were detected using the broth method 
described above. The wells containing biofilms were sonicated for 
5 min. The disrupted biofilm was serially diluted, plated and cultured 
overnight at 37°C, and viable cells were counted. All tests were 
performed in triplicate (Shields et al., 2018).

Antibiotic combination activity assessed by 
the broth method

The in vitro inhibitory effect of combination regimens 
following the broth killing method was defined in accordance with 
the CLSI. In brief, the 7 bacterial (as described above) suspensions 
were diluted to concentrations of 5 × 105 in fresh Mueller–Hinton 
broth. Three different antibiotic combinations (SXT with TGC, 
ATM-CLA with LVX, CZA with LVX) were also used in this 
experiment. Drug concentrations of ATM-CLA, LVX, SXT and 
TGC were adjusted to 1x MIC, 1/2 x MIC and 1/4x MIC and the 
SBC for CZA. Bacterial counts were measured at 24 and 48 h; 
colonies were serially diluted 10-fold in 100 μL aliquots, plated on 
nutrient agar (Difco Laboratories, Sparks, MD, United States) at 
37°C and enumerated (Tang et al., 2021).

Bacterial genomic DNA extraction and PCR 
detection of antibiotic resistance genes 
and biofilm-related genes

The bacterial genomic DNA was extracted using the Bacteria 
Genomic DNA Kit (Geneaid, Taiwan). The antibiotic resistance 
determinants and biofilm-related genes were detected by PCR using 
specific primers. PCR assays were performed using Phusion™ Plus 
PCR Master Mix (Thermo Scientific), and PCR amplicons were 
analyzed by 1.5% agarose gel electrophoresis, visualized by health 
view nucleic acid stain and photographed under UV light (Tang 
et al., 2021).

Results

MIC results

Table 1 shows the MIC results of the tested antibiotics against 
32 S. maltophilia isolates. No isolates were susceptible to AMX, DOR, 
ETP, PIP, TIC, and TZP, and less than 20% were susceptible to AMC, 
ATM, CHL, CZA, RIF, and T/C. A total of 56.3% of isolates remained 
susceptible to LVX. Additionally, FOS and TGC showed potent 
activity against 71.88 and 71.88% of isolates, respectively. Finally, SXT 
was the most active agent, and the overall susceptibility rate 
was 90.60%.

Ability of the isolates to form biofilms

All tested isolates showed moderate-to-strong biofilm formation 
(Figure 2). Among the 32 isolates, four achieved moderate biofilm 
formation (SM19, SM33, SM42, and SM63), and the others achieved 
strong biofilm formation.

Furthermore, seven randomly selected isolates (SM8, SM9, SM20, 
SM21, SM56, SM60 and SM64) with strong biofilm formation were 
tested against various antibiotics (ATM-CLA, SXT, LVX, TGC, FOS, 
and CZA) alone or in combination treatment (Figure 3). Compared 
to monotherapy, combination therapy (ATM-CLA plus SXT, 
ATM-CLA plus TGC, CZA plus SXT, FOS plus LVX) exhibited 

TABLE 1 MIC results of tested antibiotics for 32 Stenotrophomonas 
maltophilia isolates.

32 isolates

MIC 
50

MIC 
90

MIC range Susceptible 
%

AMX >128 >128 64 ~ >128 0.00%

AMC 64/32 64/32 4/2 ~ 128/64 6.25%

ATM >128 >128 4 ~ >128 3.13%

ATM-CLA 8/4 32/16 2/1 ~ 128/64 31.25%

CHL 16 128 4 ~ 128 9.40%

CZA 32/4 >128/4 2/4 ~ >128/4 18.75%

DOR >16 >16 16 ~ >16 0.00%

ETP >16 >16 8 ~ >16 0.00%

FOS 64 128 32 ~ >1,024 71.88%

LVX 2 8 0.5 ~ 32 56.30%

PIP >128 >128 64 ~ >128 0.00%

RIF 8 16 1 ~ 32 6.25%

SXT 0.25/4.75 0.25/4.75 0.25/4.75~ > 16/304 90.60%

TGC 2 8 1 ~ 16 71.88%

TIC >128 >128 64 ~ >128 0.00%

T/C 128/2 >128/2 2/2 ~ >128/2 12.50%

TZP >128/4 >128/4 32/4 ~ >128/4 0.00%

AMX, amoxicillin; AMC, amoxicillin-clavulanate; ATM, aztreonam; ATM-CLA, aztreonam-
clavulanate; CHL, chloramphenicol; CZA, ceftazidime-avibactam; DOR, doripenem; ETP, 
ertapenem; FOS, fosfomycin; LVX, levofloxacin; PIP, piperacillin; RIF, rifampin; SXT, 
trimethoprim-sulfamethoxazole; TGC, tigecycline; TIC, ticarcillin; T/C, ticarcillin-
clavulanate; TZP, piperacillin-tazobactam.
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significantly higher activity (all p < 0.05). Moreover, the combination 
with three following regimens -ATM-CLA plus LVX, CZA plus LVX 
and SXT plus TGC – exhibited more potent activity than that of 
monotherapy against strong-biofilm formation isolates (all p < 0.01).

Using time-killing methods, these three regimens were further 
tested for their activity on the planktonic and biofilm-embedded 
S. maltophilia with strong biofilm formation (Figure  4). After 
72–120 h, ATM-CLA plus LVX exhibited better activity against both 
the planktonic and biofilm-embedded isolates than that of ATM-CLA 
or LVX (Figure  4A). Similarly, CZA plus LVX displayed more 
inhibitory activity than that of CZA or LVX alone after 72 and 120 h 
(Figures 4A–D). However, the combination with SXT plus TGC only 
showed better inhibitory against biofilm-embedded isolates than that 
of SXT or TGC alone, but there was no significant difference between 
this combination and each component in the inhibitory effect against 
planktonic isolates at 120 h (Figures 4E,F).

Using broth methods, these three regimens were further tested for 
their activity on biofilm-embedded S. maltophilia with strong biofilm 
formation (Table 2). After coculture with 1/2x MIC LVX plus 1/2x 
MIC ATM-CLA at 24 h, they exhibited better activity against biofilm-
embedded isolates with a significant decrease in colony compared to 
that of each drug alone. However, the effect did not persist for 48 h. 
With 1x MIC LVX plus 1x MIC ATM-CLA, the inhibitory effect 
persisted for 48 h (p < 0.001; Table 2A). With the combination of 1/2x 
MIC LVX plus 1/2x SBC CZA, the inhibitory effect persisted for 48 h, 
which was statistically significant compared with each drug alone 
(p < 0.01). With the combination of 1x MIC LVX plus 1x SBC CZA, 
the inhibitory effect at 48 h persisted more significantly (p < 0.001) 
(Table 2B). After coculture with 1/2x MIC TGC plus 1/2x MIC SXT 

at 24 h, they exhibited better activity against biofilm-embedded 
isolates than that of each drug alone. However, the effect did not 
persist for 48 h. With 1x MIC TGC plus 1x MIC SXT, the inhibitory 
effect persisted for 48 h (p < 0.01; Table 2C).

Antibiotic resistance mechanisms

Table 3 summarizes the association between antibiotic resistance 
genes and the MIC value of the corresponding antibiotics. L1 and L2 
β-lactamases were found in 43.8 and 50% of isolates by PCR with L1. 
L2 full-length primer. Among these isolates, the MICs for 
carbapenems and β-lactams were especially high. The quinolone-
related resistance gene Smqnr was found among 78% (n = 25) of the 
isolates, in which the nonsusceptibility rates to LVX and MOX were 
only 48.0% (n = 12) and 40% (n = 10), respectively. Among 
TMP-SMX-related resistance sul1, sul2, and/or dfrA resistance genes, 
only three isolates exhibited the sul1 gene, and two of them were 
resistant to TMP-SMX. Finally, biofilm-related genes spgM, rpfF, and 
rmlA were detected in 90.6, 53.1 and 81.3% of the studied isolates, 
respectively (Table 4).

Discussion

In this study, the antibiotic resistance, biofilm formation and 
associated mechanisms among S. maltophilia were investigated, and 
several significant findings were obtained. First, S. maltophilia 
remained highly resistant to most antibiotics, including AMX, DOR, 

FIGURE 2

The biofilm formation ability of S. maltophilia. The black bars are seven randomly selected biofilm-forming strains for this study. Biofilm formation 
results of the S. maltophilia isolates using the following criteria: OD ≤ ODc nonbiofilm formation; ODc < OD ≤ 2 x ODc weak biofilm formation; 2 x 
ODc < OD ≤ 4 x ODc moderate biofilm formation; 4 x ODc < OD strong biofilm formation.
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ETP, PIP, TIC, TZP, AMC, ATM, CHL, RIF, T/C and even the 
β-lactam/β-lactamase combination ceftazidime-avibactam (CZA). 
Although LVX monotherapy was among the recommended antibiotics 
for treating mild S. maltophilia infection (Tamma et al., 2022), the 
MIC level of LVX was high, and the associated susceptibility rate was 
only 56.3%. These findings were in line with previous surveillance in 
Taiwan (Jean et  al., 2022), in which the susceptibility of 
42 S. maltophilia isolates was only 58.1, 46.5 and 41.9% for LVX, CZA, 
and another novel β-lactam/β-lactamase combination – ceftolozane/
tazobactam (C/T), respectively. Another study in Taiwan also showed 
that the MIC90 values of both CZA and C/T were greater than 64 mg/L 
for 100 S. maltophilia isolates (Hsueh et al., 2019). In contrast, the 
SENTRY Antimicrobial Surveillance Program in the US and Europe 
reported that 82.5% of 338 S. maltophilia isolates remained susceptible 
to LVX (Shortridge et al., 2022), and another global survey showed 
that 76.4% of 1,210 S. maltophilia isolates were susceptible to LVX 
(Morrissey et al., 2020). All these findings indicated that the in vitro 
activity of LVX against S. maltophilia could differ in different regions/
sites and emphasized the importance of continually monitoring and 
surveilling antibiotic resistance. In Taiwan, the in vitro activity of the 
abovementioned antibiotics, including LVX and β-lactam/β-lactamase 
combinations, was not potent enough to treat S. maltophilia infections.

In addition, we  found the potent activity of TGC against 
S. maltophilia. Our findings regarding TGC were consistent with the 

global surveillance by Morrissey et  al., in which the MIC50 and 
MIC90 of TGC were 0.5 and 4 mg/L, respectively (Morrissey et al., 
2020). In Taiwan, Hsueh et al. obtained similar findings in that the 
MIC50 and MIC90 of TGC were as low as ≤0.25 and 2 mg/L, 
respectively (Hsueh et al., 2019). All these findings indicated the 
potent in vitro activity of TGC; however, further research is needed 
to assess the clinical efficacy of TCG in the treatment of 
S. maltophilia infection.

In this study, we found that SXT exhibited the most potent in 
vitro activity, with a more than 90% susceptibility rate. This finding 
was consistent with previous studies (Morrissey et  al., 2020; 
Shortridge et  al., 2022), in which the SXT-susceptible rate of 
S. maltophilia isolates ranged from 84.3 to 97.9%. In contrast, the 
percentage of S. maltophilia isolates resistant to SXT significantly 
increased from 29.7% in 2005–2009 to 47.1% in 2010–2014 (Hu et al., 
2018). Overall, SXT remains a good therapeutic option for the 
treatment of S. maltophilia infection in Taiwan and other regions 
except China.

The in vitro activity of the old drug FOS against S. maltophilia has 
rarely been investigated (Lu et al., 2011; Khan et al., 2014). Khan et al. 
reported that one of two S. maltophilia strains causing urinary tract 
infection was susceptible to FOS (Khan et al., 2014). Lu et al. showed 
that 59% of 100  S. maltophilia isolates were susceptible to FOS, 
according to the CLSI criteria (Lu et al., 2011). In this study, we found 

FIGURE 3

Antimicrobial activities of the six antibiotics used (either alone or in combination) to treat 7 S. maltophilia isolates on biofilms. These isolates were 
exposed to susceptibility breakpoint concentrations of the following drugs for 5 days: 4/2 μg/mL aztreonam-clavulanate (ATM-CLA), 8/4 μg/ml 
ceftazidime-avibactam (CZA), 64 μg/mL fosfomycin (FOS), 2 μg/ml levofloxacin (LVX), 2/38 μg/mL trimethoprim-sulfamethoxazole (SXT), and 2 μg/ml 
tigecycline (TGC). Colony counts are shown as the means ± standard deviations. * p < 0.05, ** p < 0.01.
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FIGURE 4

Effect of antibiotic combination on the seven planktonic (A,C,E) and (B,D,F) biofilm-embedded S. maltophilia with strong biofilm formation using 
time–killing methods with the SBC. *Compared with control. #Compared with the first drug of each figure. &Compared with second drug of each 
figure. *, # and &: p < 0.05. **, ## and &&: p < 0.01. ***, ### and &&&: p < 0.001.
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that FOS exhibited potent in vitro activity against S. maltophilia. All 
these findings may suggest the potential role of FOS in treating 
S. maltophilia infections.

In line with previous reports (Brooke, 2012, 2021; Santos 
Carvalhais et al., 2021; Strateva et al., 2023), we observed that all of 
the tested S. maltophilia isolates exhibited moderate-to-strong 
biofilm formation, which could further increase their resistance to 
antimicrobial challenge. To overcome this complicated situation, 
we assessed the activity of various antibiotic combination regimens 
against seven S. maltophilia isolates with strong biofilm formation 
to find possible solutions. In this study, we tested the inhibitory 
effect of different combination regimens using time-killing and 

broth methods and found that compared to monotherapy, 
combination therapies, especially ATM-CLA plus LVX, CZA plus 
LVX and SXT plus TGC, exhibited higher inhibitory activity against 
these isolates. However, the synergistic effect of combination 
therapy was no consistently observed. Wang et al. reported that 
compared to azithromycin or fluoroquinolone (FQ) alone, a 
combination of azithromycin and FQs significantly reduced the 
biofilm-inhibiting effect against S. maltophilia preformed biofilms 
(Wang et al., 2016). Furthermore, the present finding based on in 
vitro study cannot be directly translated to clinical responses. A 
retrospective study of 255 patients with S. maltophilia pneumonia 
showed that there was no significant difference in terms of clinical 

TABLE 2 The 24- and 48-h killing effect of the antibiotic combination on the seven S. maltophilia strains with strong biofilm formation using broth 
methods with 1x, 1/2x, and 1/4 SBC in ceftazidime-avibactam (CZA) and 1x, 1/2x, and 1/4x MIC in aztreonam-clavulanate (ATM-CLA), levofloxacin (LVX), 
tigecycline (TGC), and trimethoprim-sulfamethoxazole (SXT).

(A)

24 h 1x MIC 
ATM-CLA

1/2x MIC 
ATM-CLA

1/4x MIC 
ATM-CLA

Without 
ATM-CLA

48 h 1x MIC 
ATM-CLA

1/2x MIC 
ATM-CLA

1/4x MIC 
ATM-CLA

Without 
ATM-
CLA

1x MIC 

LVX
0.77 ± 1.32*** 3.59 ± 2.13** 5.74 ± 1.22 7.06 ± 1.19 1x MIC LVX 1.65 ± 2.26*** 6.07 ± 2.22** 8.24 ± 0.58 8.79 ± 0.56

1/2x MIC 

LVX
2.54 ± 2.56** 6.16 ± 0.98*** 7.22 ± 0.39*** 8.44 ± 0.37

1/2x MIC 

LVX
4.03 ± 3.96* 8.58 ± 0.89 8.96 ± 0.10 8.95 ± 0.13

1/4x MIC 

LVX
5.24 ± 1.79 7.13 ± 0.78 7.82 ± 0.65*** 8.94 ± 0.11

1/4x MIC 

LVX
6.13 ± 3.28 8.69 ± 0.81 9.00 ± 0.10 8.98 ± 0.11

Without 

LVX
6.67 ± 0.84 8.55 ± 0.46 8.89 ± 0.12 9.00 ± 0.14 Without LVX 8.18 ± 0.96 8.98 ± 0.08 9.04 ± 0.12 9.08 ± 0.08

(B)

24 h
4 ug/mL 

CZA
2 ug/mL 

CZA
1 ug/mL 

CZA
Without 

CZA
48 h

4 ug/mL 
CZA

2 ug/mL 
CZA

1 ug/mL 
CZA

Without 
CZA

1x MIC 

LVX
2.65 ± 2.96* 4.78 ± 1.90** 5.65 ± 1.35* 7.29 ± 1.00

1x MIC 

LVX
2.51 ± 3.35*** 5.26 ± 2.69** 7.05 ± 1.74* 8.62 ± 0.40

1/2x MIC 

LVX
3.60 ± 3.00* 5.83 ± 1.95* 6.87 ± 0.98* 8.18 ± 0.61

1/2x MIC 

LVX
5.66 ± 2.92* 7.36 ± 1.12** 7.93 ± 1.60 8.96 ± 0.10

1/4x MIC 

LVX
5.22 ± 3.06 6.61 ± 1.79 7.49 ± 0.80* 8.84 ± 0.15

1/4x MIC 

LVX
6.74 ± 3.13 8.85 ± 0.20 8.44 ± 1.20 9.09 ± 0.10

Without 

LVX
7.18 ± 1.55 8.06 ± 0.65 8.44 ± 0.57 9.02 ± 0.10

Without 

LVX
8.47 ± 0.59 8.90 ± 0.18 9.10 ± 0.08 9.12 ± 0.09

(C)

24 h
1x MIC 

SXT
1/2x MIC 

SXT
1/4x MIC 

SXT
Without 

SXT
48 h

1x MIC 
SXT

1/2x MIC 
SXT

1/4x MIC 
SXT

Without 
SXT

1x MIC 

TGC
4.81 ± 0.79** 5.14 ± 0.75** 5.21 ± 0.76** 6.95 ± 1.04

1x MIC 

TGC
3.89 ± 1.84** 5.18 ± 1.30*** 5.98 ± 1.89 8.45 ± 1.33

1/2x MIC 

TGC
6.01 ± 1.00 6.02 ± 1.02** 6.35 ± 1.38** 8.39 ± 0.46

1/2x MIC 

TGC
5.85 ± 1.30 6.88 ± 1.36 7.91 ± 1.46 9.12 ± 0.16

1/4x MIC 

TGC
6.49 ± 0.92 7.19 ± 1.20 7.64 ± 1.06 8.81 ± 0.13

1/4x MIC 

TGC
6.74 ± 1.50 7.91 ± 1.24 8.88 ± 0.23 8.90 ± 0.21

Without 

TGC
6.28 ± 0.81 7.64 ± 0.72 8.67 ± 0.43 9.08 ± 0.05

Without 

TGC
6.44 ± 1.11 8.70 ± 0.55 8.97 ± 0.12 9.10 ± 0.21

Colony counts are shown as the log means ± standard deviations. * p < 0.05; ** p < 0.01; *** p < 0.001.
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efficacy and resistance development between combination therapy 
and monotherapy (Shah et  al., 2019). Further clinical study 
is warranted.

Although the common antibiotic-resistant mechanisms were 
assessed in this study, we found that the prevalence of the antibiotic 
resistance gene was lower than Bostanghadiri’s et al. (2019) study 
in Iran. In addition, we observed that the resistant gene cannot 
be totally translated to antibiotic resistance in the in vitro study. 
Like previous study (Yinsai et al., 2023), we found that the L1/L2 
β-lactamase, which were associated the resistance to clavulanic acid 

and hydrolyses carbapenems, cephalosporins, penicillin and 
aztreonam (Chang et al., 2015; Bostanghadiri et al., 2019) and sul1 
genes were correlated with resistance to β-lactam and TMP-SMX. In 
contrast, less than half of the isolates with Smqnr, which was 
encoding the pentapeptide repeat protein that protects both 
topoisomerase IV and gyrase from the quinolones (Sanchez et al., 
2009; Chang et al., 2015; Kanamori et al., 2015; Bostanghadiri et al., 
2019) were found to be susceptible to LVX and MOX, which was 
consistent with the findings of previous studies (Bostanghadiri 
et  al., 2019; Ebrahim-Saraie et  al., 2019). Similarly, the 

TABLE 3 The association between antibiotic resistance genes and MIC values of corresponding antibiotics.

Isolate Metallo-β-
lactamase

Clavulanic acid-
sensitive 

cephalosporinase

Quinolones TMP-SMX TMP

L1 DOR ETP L2 CAZ Smqnr LVX MOX Sul1 Sul2 Sul3 dfrA12 dfrA17 TMP-
SMX

SM 1 + >16 >16 − >128 + 1 0.25 − − − − − ≤0.25/4.75

SM 7 − >16 >16 − 64 + 1 0.5 − − − − − ≤0.25/4.75

SM 8 − >16 >16 + 128 + 0.5 0.25 − − − − − ≤0.25/4.75

SM 9 − >16 >16 + 32 + 2 0.5 − − − − − ≤0.25/4.75

SM 14 − >16 >16 + 64 + 4 2 − − − − − ≤0.25/4.75

SM 15 − >16 >16 + >128 + 2 1 − − − − − ≤0.25/4.75

SM 19 − >16 >16 + >128 + 64 8 − − − − − >16/304

SM 20 + >16 >16 + >128 − 1 0.5 − − − − − ≤0.25/4.75

SM 21 + >16 >16 + >128 + 0.5 0.25 − − − − − ≤0.25/4.75

SM 22 + >16 >16 + >128 − 2 2 − − − − − ≤0.25/4.75

SM 23 − >16 >16 + >128 + 8 4 − − − − − ≤0.25/4.75

SM 24 + >16 >16 + >128 + 2 1 − − − − − ≤0.25/4.75

SM 25 − >16 >16 + >128 − 1 1 − − − − − ≤0.25/4.75

SM 27 + >16 >16 + >128 + 8 4 + − − − − ≤0.25/4.75

SM 32 + >16 >16 + >128 + 2 0.5 − − − − − ≤0.25/4.75

SM 33 − >16 >16 − >128 − 32 16 − − − − − ≤0.25/4.75

SM 34 − >16 >16 + >128 + 8 4 − − − − − ≤0.25/4.75

SM 35 + >16 >16 − >128 + 4 1 − − − − − ≤0.25/4.75

SM 37 − >16 >16 + 32 + 1 0.25 − − − − − ≤0.25/4.75

SM 40 + >16 >16 + >128 + 8 8 − − − − − ≤0.25/4.75

SM 42 − >16 >16 − >128 + 8 4 − − − − − ≤0.25/4.75

SM 50 − >16 >16 − 8 − 1 0.25 − − − − − ≤0.25/4.75

SM 54 + >16 >16 − >128 + 4 2 − − − − − ≤0.25/4.75

SM 56 − >16 >16 − 32 + 1 0.25 − − − − − ≤0.25/4.75

SM 58 − >16 >16 − 32 + 1 0.25 − − − − − ≤0.25/4.75

SM 59 + >16 >16 − >128 + 2 0.5 − − − − − ≤0.25/4.75

SM 60 − >16 >16 − 16 − 1 0.5 − − − − − ≤0.25/4.75

SM 61 + >16 >16 − >128 + 8 8 + − − − − >16/304

SM 62 + >16 >16 − >128 + 2 1 − − − − − ≤0.25/4.75

SM 63 − >16 >16 − 32 − 32 32 + − − − − >16/304

SM 64 + 16 8 − 32 + 4 1 − − − − − ≤0.25/4.75

SM 65 − >16 >16 − 128 + 32 32 − − − − − ≤0.25/4.75
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biofilm-related genes spgM, rpfF, and rmlA (Bostanghadiri et al., 
2021) were not related to biofilm formation ability, which was also 
compatible with previous reports (Pompilio et al., 2011). Although 
some target genes might be missing in this study due to mutations 
in the primer-binding sites associated with new sequences (Mojica 
et al., 2019), our findings indicated that the antibiotic resistance 
phenotype might not be fully caused by these antibiotic-resistance 

or biofilm-formation genes, suggesting that further research 
is warranted.

In conclusion, S. maltophilia remained resistant to most 
antibiotics, including LVX and β-lactam/β-lactamases; however, the 
activity of TGC, FOS and SXT remained potent. Although all of the 
tested S. maltophilia isolates exhibited moderate-to-strong biofilm 
formation, combination therapies, especially ATM-CLA plus LVX, 

TABLE 4 The association between the biofilm-forming gene and ability (OD ≤ ODc nonbiofilm formation: –; ODc < OD ≤ 2 x ODc weak biofilm formation: 
+; 2 x ODc < OD ≤ 4 x ODc moderate biofilm formation: ++; 4 x ODc < OD strong biofilm formation: +++).

Isolate Gene Ability

spgM rpfF rmlA

SM 1 + + + +++

SM 7 + − + +++

SM 8 + − + +++

SM 9 − + + +++

SM 14 + − + +++

SM 15 + + + ++

SM 19 + + + +++

SM 20 + + + +++

SM 21 + + + +++

SM 22 + + + +++

SM 23 + − + +++

SM 24 + + + +++

SM 25 + − − +++

SM 27 + − + +++

SM 32 + + − +++

SM 33 − − − ++

SM 34 + − + +++

SM 35 + + + +++

SM 37 + − − +++

SM 40 + + + +++

SM 42 + + + ++

SM 50 − − − +++

SM 54 + + + +++

SM 56 − − + +++

SM 58 + − + +++

SM 59 + + + +++

SM 60 + − + +++

SM 61 + − + +++

SM 62 + + + +++

SM 63 + − + ++

SM 64 + + − +++

SM 65 + + + +++
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CZA plus LVX and SXT plus TGC, exhibited a higher inhibitory 
activity for these isolates. Finally, the antibiotic resistance phenotype 
might not be fully caused by the common antibiotic-resistance or 
biofilm-formation gene.
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