AUTHOR=Batool Maliha , Galloway-Peña Jessica TITLE=Clinical metagenomics—challenges and future prospects JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1186424 DOI=10.3389/fmicb.2023.1186424 ISSN=1664-302X ABSTRACT=

Infections lacking precise diagnosis are often caused by a rare or uncharacterized pathogen, a combination of pathogens, or a known pathogen carrying undocumented or newly acquired genes. Despite medical advances in infectious disease diagnostics, many patients still experience mortality or long-term consequences due to undiagnosed or misdiagnosed infections. Thus, there is a need for an exhaustive and universal diagnostic strategy to reduce the fraction of undocumented infections. Compared to conventional diagnostics, metagenomic next-generation sequencing (mNGS) is a promising, culture-independent sequencing technology that is sensitive to detecting rare, novel, and unexpected pathogens with no preconception. Despite the fact that several studies and case reports have identified the effectiveness of mNGS in improving clinical diagnosis, there are obvious shortcomings in terms of sensitivity, specificity, costs, standardization of bioinformatic pipelines, and interpretation of findings that limit the integration of mNGS into clinical practice. Therefore, physicians must understand the potential benefits and drawbacks of mNGS when applying it to clinical practice. In this review, we will examine the current accomplishments, efficacy, and restrictions of mNGS in relation to conventional diagnostic methods. Furthermore, we will suggest potential approaches to enhance mNGS to its maximum capacity as a clinical diagnostic tool for identifying severe infections.