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Archaea play a significant role in the biogeochemical cycling of nutrients in 
estuaries. However, comprehensive researches about their assembly processes 
remain notably insufficient. In this study, we  systematically examined archaeal 
community dynamics distinguished between low-salinity and high-salinity groups 
in water and surface sediments over a 600-kilometer range from the upper Pearl 
River (PR) to the northern South China Sea (NSCS). Neutral community model 
analysis together with null model analysis showed that their C-score values 
were greater than 2, suggesting that deterministic processes could dominate 
the assembly of those planktonic or benthic archaeal communities at both the 
low-salinity and high-salinity sites. And deterministic processes contributed more 
in the low-salinity than high-salinity environments from the PR to the NSCS. 
Furthermore, through the co-occurrence network analysis, we  found that the 
archaeal communities in the low-salinity groups possessed closer interactions 
and higher proportions of negative interactions than those in the high-salinity 
groups, which might be due to the larger environmental heterogeneities reflected 
by the nutrient concentrations of those low-salinity samples. Collectively, our 
work systematically investigated the composition and co-occurrence networks 
of archaeal communities in water as well as sediments from the PR to the 
NSCS, yielding new insights into the estuary’s archaeal community assembly 
mechanisms.
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1. Introduction

Estuaries account for just 0.4 percent of the worldwide ocean area, but are among the most 
productive ecosystems (Longhurst et al., 1995; Cloern et al., 2014). They are also a buffer zone 
for transporting terrestrial silicon, phosphorus, and nitrogen into the ocean, allowing coastal 
zones to have high primary production (Harrison et al., 2008). Continental freshwater runoff 
and coastal seawater mix in estuaries, creating physicochemical gradients (Vieira et al., 2007; 
Bernhard and Bollmann, 2010). These physicochemical gradients, such as a decrease in the 
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organic compounds and nitrogen nutrients levels or an increase in 
salinity, sulfate, and chloride levels, can have profound effects on 
microbial community structure (Ait Alla et al., 2006; Webster et al., 
2015). Additionally, the continuous accumulation of terrigenous 
nutrients and microorganisms transported to the estuary increases 
biodiversity and microbial activity, affecting the biogeochemical and 
ecological processes of the estuarine ecosystem (Baird et al., 2004; 
Canfield and Thamdrup, 2009; Webster et al., 2015; Zhou et al., 2017; 
Liu et al., 2018). The industrialization and urbanization along the river 
caused severe pollution, eutrophication, and hypoxia in the estuary 
due to inflows from many different continents.

The Pearl River (PR) is in southern China. Approximately 8.5 × 107 
tons of sediment are discharged annually into the northern South 
China Sea (NSCS), accounting for more than 80% of the total 
suspended particulate matter into the Pearl River estuary (PRE) (Zhou 
et  al., 2004). Due to the industrialization and urbanization 
development of the Pearl River Delta, large quantities of terrestrial 
waste have been dumped into the estuary, causing severe pollution to 
aquatic and benthic habitats (Huang et  al., 2003). Even though 
microbes play an essential role in the degradation of pollutants, 
research on the ecological functions of aquatic and benthic microbes 
in the eutrophic PRE is limited.

In estuaries, archaea make up a large proportion of the microbial 
community. They have high diversity, and have profound influence on 
the biogeochemical cycling of estuarine ecosystems. Currently, it has 
been found that archaea have a variety of functions, such as ammonia 
oxidation (Könneke et al., 2005), methane metabolism (Orphan et al., 
2002), organic matter degradation (Lloyd et al., 2013), and sulfate 
reduction (Zhou et  al., 2019). Recent studies have found that the 
community structure of estuarine archaea is influenced by salinity, 
dissolved oxygen, and nutrient levels (Xie et al., 2014; Webster et al., 
2015; Liu et al., 2018; Zou et al., 2020a). Along a salinity gradient, the 
structure of archaeal communities and their potential ecological 
functions in surface sediments in the PRE have been explored before 
(Xie et al., 2014; Zou et al., 2020b). Xie et al. (2018) investigated the 
localized high abundance and potential niche adaptation of Marine 
Group II archaea in the PRE. Ma et al. (2021) explored the distribution 
and activity of AOA in the PRE. Previous studies have shown that 
AOA are dominant archaeal taxa in both estuarine water and 
sediments (Zou et al., 2020a), however, the distribution of specific 
subgroups in the estuarine region lacks detailed description. Most 
previous reports on estuarine archaea have only focused on archaeal 
community composition and their distribution patterns. Currently, 
studies on the assembly of archaeal communities are far from enough, 
especially in estuarine areas.

In aquatic microbial ecology, microbial community assembly, the 
possible mechanisms that regulate microbial community diversity, is still 
a poorly understood topic despite its importance (Hanson et al., 2012; 
Zhou and Ning, 2017; Logares et al., 2018; Chen et al., 2019; Mo et al., 
2021). There are two significant and complementary mechanisms for 
describing and comprehending microbial community assembly, namely 
niche-based theory and neutral-based theory (Sloan et al., 2006; Bahram 
et  al., 2016). Specifically, niche-based theory argues that microbial 
communities are formed as a result of both deterministic biotic factors 
(species interactions, e.g., predation and competition) caused by varying 
habitat partiality and the fitness of microorganisms, as well as abiotic 
factors, i.e., environmental factors including salinity, pH, nutrients, etc. 
(Lima-Mendez et al., 2015; Liu et al., 2015). The neutral theory, on the 

contrary, claims that it is stochastic processes including birth and death, 
migration, speciation, and dispersal limitation that determine microbial 
community structures (Bahram et al., 2016; Chen et al., 2017; Zhou and 
Ning, 2017), in which a stochastic balance is observed between losses 
and gains of taxa (Sloan et al., 2006; Östman et al., 2010).

Previous studies have found that deterministic processes played a 
relatively more important role in entire prokaryotic and archaeal 
community assembly in mangroves than stochastic processes (Zhang 
et al., 2019, 2021). Gao et al. (2021) reported that stochastic processes 
dominated the assembly of the archaeal communities on coastal 
wetlands, and that stochastic processes became more pronounced 
with increasing frequency of inundation. Chen and Wen (2021) 
reported that while subtropical mangrove sediments were invaded by 
Spartina alterniflora, stochastic processes dominated the overall 
archaeal and bacterial community assembly, with the stochastic effect 
of bacteria stronger than that of archaea. Estuaries, as land-sea 
connection points, have unique characteristics different from 
terrestrial and oceanic environments (McLusky and Elliott, 2004), 
providing a unique environment for testing the theories of community 
assembly. Although several research have explored the estuarine 
archaeal community composition and their influencing factors, few 
attempts have been made to analyze the relative influence of stochastic 
verse deterministic processes in estuarine areas.

In this study, we  aimed to (1) systematically examine the 
heterogeneous distribution of total archaea and AOA from water and 
sediment over a 600-kilometer range from the PR to the NSCS; (2) 
explore the geographic patterns of archaeal communities; (3) explore 
co-occurrence relationships and keystone taxa in archaeal 
communities based on network topological properties; and (4) 
investigate archaeal community assembly in estuarine environments.

2. Materials and methods

2.1. Sampling and measurements of 
physicochemical parameters

Water and surface sediment samples from the PR to the NSCS 
region (18.501° to 23.791°N, and 112.164° to 115.501° E) were collected 
along a salinity gradient during three cruises in June 2011, January 2012, 
and October 2012 (Figure  1; Supplementary Table S1). 
Supplementary Table S1 provides additional information on eight 
sediment sample data from one of our previous studies (Xie et al., 2014). 
The uncontaminated seawater was taken from different depths and was 
sequentially filtered by glass-fiber filters (0.7 μm) to obtain 
microorganisms, stored on board in liquid nitrogen, and transferred to 
a laboratory freezer at −80°C for further analysis. Water samples for the 
determination of inorganic nutrients were collected, filtered through a 
0.45 μm cellulose acetate membrane and stored at −20°C until analysis. 
Immediately after waterbed sampling, a centrifuge tube of 50 mL was 
used to seal the sediments. Then these tubes were stored on board in 
liquid nitrogen and transferred to a laboratory freezer at −80°C for 
further analysis. Before sediment collection, in situ measurements of 
salinity, temperature, and water depth were conducted with a YSI 
instrument (model YSI 650 MDS, YSI Corporation, United States). 
Before pore water extraction, samples were stored under −20°C until 
centrifugating at 4,000 rpm for further analysis. The pore water treatment 
method was as described in our previous reports (Xie et al., 2014).
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2.2. DNA extraction, sequencing, and 
sequence data processing

DNA was extracted using the FastDNA SPIN Kit for Soil (MP 
Biomedicals, OH, USA) according to the manufacturer’s instructions 
and preserved at −80°C until further processing. Twenty-eight water 
samples and 17 sediment samples were selected for pyrosequencing 
targeting archaeal 16S rRNA (8 sediment data have been published in 
our previous article (Xie et  al., 2014); detailed in 
Supplementary Table S1), and 20 water samples and 11 sediment 
samples were selected for pyrosequencing targeting the archaeal amoA 
gene. The Arch_344F/Arch_915R (Gantner et al., 2011), and Arch_
amoAF/Arch_amoAR (Francis et al., 2005) primers were used for PCR 
of the archaeal 16S rRNA and AOA-amoA, respectively. Pyrosequencing 
was performed on the Roche GS FLX+ (454) system, raw data was 
extracted from 454 data formats by Mothur pipeline (version 1.29.2) 
(Schloss et al., 2009) and then analyzed using the QIIME2 standard 
pipeline (version 2020.6) (Bolyen et al., 2019). Specifically, the first step 
was to filter raw data to remove reads with low quality and ambiguity. 
The remaining high-quality sequences of 16S rRNA and amoA were 
clustered into operational taxonomic units (OTUs) with the command 
“qiime vsearch cluster-features-denovo” with 97 and 96% sequence 
identity thresholds, respectively. Taxonomic assignment for archaeal 
16S rRNA representative sequences was obtained by the SILVA database 
(release 138; Quast et  al., 2013). Phylogenetic clades of AOA were 
affiliated following past studies (Schleper et al., 2005; Alves et al., 2018).

2.3. Statistical analysis

Alpha and Beta diversity were calculated from the 16S rRNA and 
amoA datasets using uniform subsampled depths for 1732 and 1,283 

sequences, respectively. Rarefaction curves and alpha diversity index for 
each sample were calculated using the diversity function within R 
package “vegan” (version 3.6.1; Oksanen et al., 2020). Sample clustering 
was employed at the archaeal OTU level and the unweighted pair-group 
method with arithmetic means (UPGMA) based on the Bray–Curtis 
similarity algorithm. Analysis of similarities (ANOSIM) was 
implemented using PAleontological Statistics (PAST, version 3.16) to test 
the differences among groups. Principal component analysis (PCA) was 
conducted to identify the dissimilar relationships among samples in this 
study based on the total archaeal community, and AOA subcommunity 
composition at the OTU level in the STAMP program (Parks et al., 
2014). To determine the phylogenetic clades of amoA sequences, 
we obtained reference sequences and tree from a past study (Alves et al., 
2018), performed the multiple sequences alignment with MAFFT v7 
(Katoh and Standley, 2013), the phylogenetic placement of amoA 
sequences with EPA-ng (Barbera et al., 2019), and visualization with 
ITOL v5 (Letunic and Bork, 2021). Environmental heterogeneity was 
estimated by computing the average dissimilarity between sites (Huber 
et al., 2020) based on abiotic variables by using a Euclidean distance.

2.4. Neutral community model

The neutral community model was used to evaluate the effects of 
stochastic processes on archaeal community assembly (Sloan et al., 
2006), and nonlinear least-squares methods were used to determine 
the best fit between OTU occurrence frequencies and their relative 
abundance (Elzhov et  al., 2016). Östman’s method was used to 
calculate the R2 value, which indicates the goodness of fit of the model 
to datasets (Östman et al., 2010). As R2 approaches 1, the community 
composition follows a completely stochastic process. R2 can be ≤0 
when the model does not match the community composition.

FIGURE 1

Sampling stations from the Pearl River to the northern south China Sea. Inset, enlarged views of part of the studied areas; blue dots, sampling stations.
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2.5. Null model

To weigh the relative importance between deterministic verse 
stochastic processes to the archaeal communities, we evaluated the 
deviation of each observed metric from the average of the null 
model (checkerboard score (C-score)) to test the overdispersion or 
underdispersion of archaeal communities (Stone and Roberts, 
1990). The results were normalized so that they could be compared 
among groups using the standardized effect size (SES). SES was 
computed under the null model after converting the sequence table 
to a binary matrix with presence (1) and absence (0) (Gotelli and 
McCabe, 2002). The SES for the C-score was calculated by dividing 
the difference between the observed and the mean of the stimulated 
index by the standard deviation of the stimulated index (Crump 
et al., 2009). Overdispersion or underdispersion is defined as an 
SES value that is greater or lower than the expected null value. The 
strength of the influence of deterministic processes on communities 
is understood as the magnitude of SES (Swenson, 2014). The 
dominance of stochastic processes is indicated by SES values 
between −2 and 2, whereas SES values less than −2 or more than 2 
show that deterministic processes (i.e., aggregation and 
segregation) are more important in community assembly than 
stochastic processes (Stone and Roberts, 1990; Mo et al., 2021). 
We  calculated the C-score based on the sequential swap 
randomization algorithm and 30,000 simulations with a R-package 
named “EcoSimR” (R Core Team, 2013). In addition, to assess how 
stochastic and deterministic processes affect archaeal community 
assembly, build-in function “niche.width” of R package “spaa” was 
used to calculate Levins’ niche breadth (B) index as previous 
studies (Oksanen et al., 2013). OTUs with higher B values indicated 
a wider range of habitat niche breadth. Community-level B value 
(Bcom) was obtained by averaging the B values of all taxa occurring 
in this community (Wu et  al., 2018; Jiao et  al., 2020). At the 
community level, archaeal communities with wider niche breadths 
should exhibit greater metabolic flexibility than those with 
narrower niche breadths (Pandit et al., 2009; Wu et al., 2018; Jiao 
et al., 2020).

2.6. Network construction

The co-occurrence networks were constructed using the 
Molecular Ecological Network Analysis Pipeline (MENA). Only 
OTUs that were found in more than two samples and with a 
proportion above 0.2% were retained to reduce complexity. Spearman’s 
correlation coefficient between OTUs was calculated, and relationships 
were classified as valid when the correlation coefficient |r| was greater 
than 0.6 with a p value less than 0.05. The network was visualized in 
Gephi version 0.9.2 (Bastian et al., 2009). Moreover, 1,000 Erdös-
Réyni random networks, with the same number of nodes and edges 
as the real network, were calculated using the R package “igraph,” 
where each edge is assigned the same probability to each node (Erdos 
and Rényi, 1960). To further describe the topological parameters, the 
clustering coefficient, average path length, and modularity of both real 
and random networks were calculated and compared. Finally, 
we removed nodes in the static network with a random repetitive 
process to observe the changes in the natural connectivity of nodes to 
assess network robustness (Peng and Wu, 2016).

3. Results

3.1. Archaeal community composition and 
diversity

As indicated by the rarefaction curves for total archaeal 
communities and AOA subcommunities, all samples reached a plateau 
at the sequencing depth applied (Supplementary Figure S1). The 
number of reads were sufficient for a robust statistical analysis. 
According to the clustering results, all water samples were divided into 
two categories: the low-salinity-water group (salinity <14.58 ‰, 
nitrate ranged from 67.47 to 494.4 μM, silicate ranged from 1.13 to 
157.64 μM, and phosphate ranged from 4.155 to 26.885 μM) and the 
high-salinity-water group (salinity >21.08 ‰, nitrate ranged from 
0.139 to 149.223 μM, silicate ranged from 0.22 to 65.031 μM, and 
phosphate ranged from 0.016 to 6.481 μM; 
Supplementary Figure S2A, Supplementary Table S1). Similarly, 
the   sediment samples were categorized into the low-salinity-
sediment  group and the high-salinity-sediment group 
(Supplementary Figure S2B). The dramatic environmental 
heterogeneity may account for the differences in archaea community 
structure between groups.

The composition of the archaeal communities at the phylum level 
is shown in Figure 2A. Euryarchaeota was the major dominant phylum 
in almost all low-salinity-water and low-salinity-sediment groups 
samples. The following were Bathyarchaeota and Woesearchaeota. 
Thaumarchaeota were also significant components in these two groups 
of samples. In the high-salinity-water group samples, Euryarchaeota 
and Thaumarchaeota were the predominant archaeal phyla. 
Bathyarchaeota and Woesearchaeota also account for a certain fraction. 
Compared with the other three groups, the proportion of 
Lokiarchaeota and Hydrothermarchaeota increased in the high-
salinity-sediment group samples. Euryarchaeota, Thaumarchaeota, 
Bathyarchaeota, and Woesearchaeota were also dominant components 
in this group. The community composition of the low-salinity-water 
and low-salinity-sediment group samples was similar at the genus 
level (Figure 2B). The dominant Archaea genera were Bathyarchaeia, 
Woesearchaeales, Thermoprofundales, Methanosaeta, Methanoregula, 
Methanobacterium, Candidatus Methanoperedens, Methanolinea, and 
Methanosarcina. Marine Group II was dominant in most high-
salinity-water group samples, except for samples PR120103_2_14 m, 
PR110615A_17 m, PR110617B_2 m, PR110617B_9 m, SCS_0_20 m, 
and SCS_1_3  m. Bathyarchaeia was dominant in sample 
PR120103_2_14 m, and Candidatus Nitrosopumilus was dominant in 
the other five samples. Marine Group III had a high proportion in 
some high-salinity-water group samples. Bathyarchaeia, Candidatus 
Nitrosopumilus, Woesearchaeales, Thermoprofundales, 
Nitrosopumilaceae, Lokiarchaeia, and Hydrothermarchaeales were 
dominant genera in the high-salinity-sediment group samples.

After filtering out the AOA OTUs of less than 1% in all 
samples,  the others were mapped to a specific evolutionary tree (Alves 
et  al., 2018) to determine their phylogenetic clades 
(Supplementary Figure S3, Supplementary Table S2). A total of 
121  AOA OTUs were assigned to 20 subgroups, and sediments 
harbored greater clade diversity than water 
(Supplementary Figure S4, Supplementary Table S2). NP-α-1 was the 
dominant amoA type in almost all low-salinity-water group samples, 
except for sample PR110619C_1.5 m, whose community composition 
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was more similar to that of the low-salinity-sediment group samples. 
In the low-salinity-sediment group samples, NS − δ, NP-η, and 
NP-γ-2.2 were dominant subgroups, and NT-α had a high abundance 
in sample PR120112_21S. Sample PR110617B_9 m had a different 
community composition from the other samples in the high-salinity-
water group. In PR110617B_9 m, NP-γ-2.1 had the highest abundance, 
followed by NS − δ. NP-α-1 and NP-ε were dominant subgroups in the 
other samples. In the high-salinity-sediment group samples, NP-α-1, 
NP-α-2.2.4, NP-δ, NP-α-2.1, NP-α-2.2.3, and NP-θ were the 
predominant subgroups.

Principal component analysis showed that the community 
exhibited obvious group segregation characteristics. This is in line 
with the changes of the relative abundance of dominant archaeal 
clades in each group (Supplementary Figure S5A). This pattern is 
supported by ANOSIM analysis, where large differences between 
clusters were observed (Supplementary Table S3). It is worth noting 

that there was no significant separation between the low-salinity-
water and low-salinity-sediment group samples according to the 
ANOSIM analysis, which was consistent with the PCA. The AOA 
subcommunities differed significantly among the four groups 
(Supplementary Table S4). The AOA composition differed significantly 
between the low-salinity-water and low-salinity-sediment groups 
(Supplementary Table S4), indicating the specificity of AOA between 
water and sediments. The differences in AOA composition between 
the high-salinity-water and low-salinity-water groups were small 
(Supplementary Table S4), indicating a high tolerance of AOA 
to salinity.

For each sample, the diversity indices including the Shannon index 
and the Observed-species number, were shown in 
Supplementary Table S1. The Shannon and observed-species diversity 
indices of the high-salinity-water group samples were significantly 
lower than those of the other three groups, while these indices were not 

FIGURE 2

Archaeal community composition at the phylum level (A) and genus level (B) based on 16S rRNA gene.
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significantly different among the three groups 
(Supplementary Figure S6A). For AOA subcommunities, the Shannon 
and observed-species indices of the high-salinity-water and 
low-salinity-water groups were lower than those of the high-salinity-
sediment and low-salinity-sediment groups (Supplementary Figure S6B).

3.2. Geographic pattern of archaeal 
community

The archaeal community immigration rate was estimated to 
be  0.1796, 0.4475, 0.3886, and 0.5878  in the high-salinity-water, 
low-salinity-water, high-salinity-sediment, and low-salinity-sediment 
groups, respectively (Figure 3). In addition, the archaeal community 
immigration rates across all water and all sediment were smaller than 
the corresponding high-salinity and low-salinity groups (Figure 3), 
indicating that the species dispersal within groups was stronger than 
that among groups.

The high-salinity-water, low-salinity-water, high-salinity-sediment, 
and low-salinity-sediment groups contained 11, 75, 60, and 73 OTUs, 
respectively, which occurred in over 70% of their samples (Figure 3). 
However, only 9 and 9 OTUs occurred in more than 70% of all-water and 
all-sediment samples (Figure 3), indicating that most archaeal species 
can only be  found in specific groups and few generalists. To judge 
whether the high occurrence frequency of OTUs was due to differences 
in the number of samples between groups, we plotted bubble charts for 

OTUs that occurred in more than 70% of all-water and all-sediment 
samples. The results showed that only Ca. Nitrosopumilus (OTU7 and 
OTU37) were able to occur in both the high-salinity-water and 
low-salinity-water group samples (Supplementary Figure S7A), 
indicating the high tolerance of Ca. Nitrosopumilus to salinity. However, 
MGII and MGIII only appeared in the high-salinity-water group, 
indicating that they were only adapted to the high-salinity-water 
environment, and their high occurrence frequency was due to the larger 
number of samples in the high-salinity-water group. In all sediment 
samples, MBGD (OTU101) and Bathyarchaeia (OTU448 and OTU72) 
were present in both the high-salinity-sediment and low-salinity-
sediment samples (Supplementary Figure S7B). The high frequency of 
other OTUs was due to the larger number of samples in the high-salinity-
sediment group. We randomly selected the same number of high-salinity 
and low-salinity samples to draw the neutral community model, and the 
results were consistent with the bubble charts (Supplementary Figure S8), 
indicating that Ca. Nitrosopumilus in water, and MBGD and 
Bathyarchaeia in sediment were archaeal taxa that occurred with high 
frequency across drastic salinity gradients from the PR to NSCS.

3.3. Network analysis of archaeal 
communities

We constructed archaeal co-occurrence networks in water and 
sediments (Supplementary Figure S9), and analyzed the 

FIGURE 3

Fit of the neutral community model (NCM) of community assembly for all water, all sediment, the high-salinity-water, low-salinity-water, high-salinity-
sediment, and low-salinity-sediment groups samples from the Pearl River to the northern South China sea region. The solid blue lines indicate the best 
fit to the neutral community model (NCM), and the dashed blue lines represent 95% confidence intervals around the NCM prediction. OTUs that occur 
more or less frequently than predicted by the NCM are shown in green and red, respectively. m indicates the immigration rate, R2 indicates the fit to 
this model.
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high-salinity-water, low-salinity-water, high-salinity-sediment, and 
low-salinity-sediment subnetworks (Figure 4, Supplementary Table S5). 
The topological properties of these subnetworks varied significantly 
with salinity. The proportion of negative links in the low-salinity 
environments was higher than that in the high-salinity environments 
(Figure 4, Supplementary Table S5), which may indicate that more 
archaeal taxa in the low-salinity environments tend to adopt a 
competitive survival style. The eight largest modules accounted for 
64.91, 83.09, 55.44, and 91.64% of the high-salinity-water, low-salinity-
water, high-salinity-sediment, and low-salinity-sediment subnetworks, 
respectively (Figure 4). And the network diameter and average path 
length of the low-salinity groups were lower than those of the high-
salinity groups, while the density and average clustering coefficient 

were higher than those of the high-salinity groups 
(Supplementary Table S5), indicating that the archaeal community in 
the low-salinity groups had closer interactions than that in the high-
salinity groups. Furthermore, power-law distributions rather than 
Poisson distributions were observed for all network degrees 
(Supplementary Table S5). Accordingly, the network presented a 
structure of scale-free and non-random distribution. The observed 
network parameters (i.e., average path length, average clustering 
coefficient, and modularity index) were greater than the corresponding 
Erdös-Réyni random networks (Supplementary Table S5), indicating 
a “small world” nature and modular structure.

In the water network, archaeal communities were dominated by 
taxa that preferred high salinity within modules III and VII, and by 

FIGURE 4

Co-occurrence networks of the archaeal community in the high-salinity-water (A), low-salinity-water (B), high-salinity-sediment (C), and low-salinity-
sediment (D) groups based on pairwise Spearman’s correlations between OTUs. Each shown connection has a correlation coefficient|r| > 0.6 and a p 
value <0.05. The red edges represent significant positive correlations, and the blue edges represent significant negative correlations. The size of each 
node is proportional to the number of connections, and each node was colored by modularity.
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taxa that preferred low salinity within modules I, II, IV, V, VI, and VII 
(Supplementary Figures  9B,C). Furthermore, MGII, MGIII, and 
Candidatus Nitrosopumilus exhibited the highest degrees of centrality 
in the modules for high salinity levels. In the modules for low salinity 
levels, however, Woesearchaeales, Bathyarchaeia, Methanosaeta, and 
Methanobacterium exhibited the highest degrees of centrality 
(Supplementary Figure S9A, Supplementary Table S6). Similarly, in 
the sediment network, archaeal communities were dominated by taxa 
preferring high salinity in modules I, IV, V, and VII 
(Supplementary Figures S9E,F), with Bathyarchaeia, Woesearchaeales, 
and Nitrosopumilaceae exhibiting the highest degrees of centrality 
(Supplementary Figure S9D, Supplementary Table S7); while archaeal 
communities were dominated by taxa preferring low salinity in 
modules II, III, VI, and VII. Bathyarchaeia, Woesearchaeales, and 
Methanosaeta exhibited the highest degrees of centrality. Finally, 
we compared the network stability of different archaeal subnetworks. 
The low-salinity subnetworks had higher natural connectivity than the 
high-salinity subnetworks (Supplementary Figure S10), indicating 
that the low-salinity subnetworks had stronger robustness.

3.4. Ecological processes of archaeal 
community assembly

The standardized effect size (SES) was calculated based on OTU 
abundance to investigate the relative contributions of deterministic 
and stochastic processes to archaeal community assembly (Figure 5). 
The SES values in all four groups were greater than 2, the threshold for 
stochastic and deterministic processes, indicating that deterministic 
processes contributed more to archaeal community assembly than 
stochastic processes from the PR to the NSCS (Figure 5). Consistent 
with this, the relationship between OTU occurrence frequency and 
relative abundance can only be  characterized by the neutral 
community model to a small extent (Figure  3), indicating that 
stochastic processes accounted for a smaller proportion of archaeal 
community assembly. For the high-salinity-sediment, low-salinity-
sediment, high-salinity-water, and low-salinity-water groups, 

stochastic processes explained 39.8, 23.8, 42.5, and 14.3% of the 
community variation, respectively, showing a trend of decreasing 
gradually with the decrease in salinity. This indicated that stochastic 
processes contributed more in the high-salinity than low-salinity 
environments from the PR to the NSCS. Furthermore, stochastic 
processes showed lower contributions to archaeal community 
assembly in all-water and all-sediment samples (Figure  3). 
Additionally, in the neutral community model with the same number 
of high-salinity and low-salinity samples, the results suggested that 
stochastic processes contributed less to the assembly of archaeal 
community. In planktonic archaeal communities, the neutral 
community model (NCM) cannot even describe the archaeal 
community composition (Supplementary Figure S8). All archaeal 
communities had wider niche breadths at the high salinity than at the 
low salinity levels (Supplementary Table S8).

4. Discussion

4.1. Heterogeneity of archaeal community 
structure from the PR to the NSCS

This study revealed detailed archaeal community composition 
across four environments from the PR to the NSCS by high-
throughput sequencing analysis. Although the archaeal communities 
were sampled across time and seasons, ANOSIM analysis revealed 
that archaeal communities differed significantly among habitats in the 
current study (Supplementary Table S3). Because the archaeal 
community samples in the four groups were segregated in PCA 
(Supplementary Figure S5A), we surmised that seasonal differences 
within groups were unlikely to be more influential than differences 
among groups in this study. This result confirmed previous findings 
that benthic communities of bacterial (Böer et al., 2009) and microbial 
eukaryotes (Gong et al., 2015) varied with sediment depth or area 
rather than the season.

Archaeal community structure showed a distinct pattern of 
heterogeneity (Figure 2). Previous reports have indicated that the 
structure of microbial communities varies spatially from estuaries 
to the open ocean (Herlemann et al., 2011; Liu et al., 2014). It can 
also be seen here that the composition of planktonic and benthic 
archaeal communities differed considerably from the PR to the 
NSCS. We observed a high abundance of methanogenic archaea in 
the low-salinity environments (Figure 2B). Salinity is reportedly the 
most important abiotic factor governing the distribution of 
methanogenic communities worldwide and determines which 
lineages may survive to a large extent (Wen et al., 2017). Increasing 
salinity is reported to restrain hydrogenotrophic methanogens 
while promoting acetoclastic methanogenesis (Liu et  al., 2016). 
Additionally, the activity of methanogens that utilize acetate or H2 
was highly impacted by pH. Low pH, for example, makes 
acetoclastic methanogenesis difficult because it lowers acetate 
dissociation (Megonigal et al., 2004; Kotsyurbenko et al., 2007). 
MGII and MGIII were typically found in seawater and were almost 
absent in freshwater environments, suggesting that suitable salinity 
is necessary for their survival. Bathyarchaeota were widespread in 
the low-salinity environments and the high-salinity-sediment 
samples, and were the dominant taxa in these environments 
(Figure  2). As one of the most important and active microbial 

FIGURE 5

C-score metric using null models. The values of observed C-score 
(C-scoreobs) > simulated C-score (C-scoresim) indicate non-random 
co-occurrence patterns. Standardized effect size (SES) < −2 and > 2 
represents aggregation and segregation, respectively.
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groups in freshwater and marine sediments, the relative abundance 
of Bathyarchaeota accounted for 36 ± 22% of the total archaea 
abundance (Fillol et al., 2016). Previous studies have shown that 
different Bathyarchaeota subgroups are indicators for different 
environments: subgroups 1 and 8  in marine environments, and 
subgroups 5 and 11 in freshwater environments (Fillol et al., 2016; 
Wang et al., 2020).

Thaumarchaeota was suggested to be a salinity-tolerant species 
(Xie et al., 2014). Based on amoA genotypes suggested by Alves et al. 
(2018), we determined the AOA subcommunity composition from the 
PR to the NSCS in the current study (Supplementary Figure S4). NS-δ 
is abundant in the low-salinity sediment samples. Previous studies 
have indicated that clade NS-δ accounts for a significant proportion 
of AOA communities in salt lakes and freshwater habitats worldwide 
(Alves et al., 2018). Considering its global environmental distribution, 
NS-δ represents either versatile microorganisms or ubiquitous soil 
microorganisms that are frequently transferred to adjacent rivers. A 
systematic analysis of AOA on a global scale found that clades NP-α, 
NP-ε, NP-θ, and NP-ζ occur primarily in marine environments, NP-γ 
occurs primarily in freshwater and estuarine-coastal environments, 
and NP-η occurs more frequently in freshwater and soils-sediments 
(Alves et  al., 2018), consistent with the results in the low-salinity 
environments in the current study (Supplementary Figure S4). The 
composition of AOA clades in seawater and sediment is almost 
different: most AOA in seawater belong to clades NP-ε-2 and NP-α-
2.2.2.1, while sediment harbor greater clade diversity, including NP-δ, 
NP-γ, NP-θ, and NP-α (Durbin and Teske, 2010; Alves et al., 2018; 
Zou et al., 2020a), which is consistent with the results in the high-
salinity environments presented here (Supplementary Figure S4). 
Overall, our results showed that the change in environmental 
conditions from the PR to the NSCS controlled the distribution of 
archaeal communities.

4.2. Significant differences in the 
geographic pattern of archaeal 
communities from the PR to the NSCS

The archaeal community immigration rates in the low-salinity 
environments were significantly higher than those in the high-salinity 
environments (Figure 3), suggesting the higher dispersal ability of 
most archaeal taxa in the upper PR than in the NSCS. These results 
may be attributed to the faster flow in the upper PRE, which facilitated 
the dispersal of archaeal communities in the water and surface 
sediment. Additionally, the species dispersal of archaea among groups 
was smaller than that within groups, indicating that the majority of 
archaea had difficulty surviving across drastic salinity gradients. This 
is consistent with the results of the neutral community model, in 
which the majority of archaea only occurred in specific groups. Only 
Ca. Nitrosopumilus (OTU7 and OTU37) in water, and Bathyarchaeia 
(OTU448 and OTU72) in sediments were able to occur in both 
low-salinity and high-salinity environments. Previous studies have 
shown that salinity is an important environmental factor limiting the 
distribution of archaea (Webster et al., 2015), Thaumarchaeota was 
suggested to be  a salinity-tolerant species (Xie et  al., 2014), and 
Bathyarchaeia is widely present in various environments with high 
phylogenetic diversity and abundance (Fillol et  al., 2016; Wang 
et al., 2020).

4.3. Co-occurrence network patterns and 
keystone taxa in archaeal community from 
the PR to the NSCS

Rather than growing in isolation, microbes in natural ecosystems 
prioritize forming complex interaction networks (Banerjee et  al., 
2019). Both the composition and dynamics of microbial communities 
are strongly influenced by microbial interactions, and co-occurrence 
networks can reveal interactions between species, such as competition 
and cooperation (Berry and Widder, 2014; Lima-Mendez et al., 2015; 
Wei et al., 2016). The mostly positive correlations in the high-salinity 
subnetworks identified in this study (Figure 4, Supplementary Table S5) 
suggest that cooperation is more prevalent than competition in 
archaeal communities (Berry and Widder, 2014). While this 
phenomenon is common in natural ecosystems, it is perhaps not 
surprising since many microbes rely heavily on cross-feeding, 
co-aggregation, co-colonization, or niche overlap and construction 
(Faust and Raes, 2012; Faust et al., 2015; Shi et al., 2019). A previous 
study that focused on the co-occurrence networks under the influence 
of graphene oxide and different temperatures found that when facing 
the enhancement of heterogeneity selection, the strategy of the 
bacterial community was to enhance the positive correlation and 
shared niche, while the strategy of the archaeal community was to 
enhance the negative correlation and competition (Liao et al., 2022), 
which is consistent with more negative correlations in low-salinity 
environments with higher environmental heterogeneity (Figure 4).

Our results showed that network modules corresponded well to 
groups (Supplementary Figure S9). This suggested that the modular 
structure or properties of planktonic and benthic archaeal 
communities were sensitive to changes in environmental conditions. 
Studies have shown that salinity and other environmental factors (i.e., 
pH, temperature, and nutrients) could change bacterial and eukaryotic 
plankton co-occurrence networks (Ji et al., 2019; Liu et al., 2019). 
Environmental heterogeneity can induce microbial modularity 
(Röttjers and Faust, 2018), explaining why these modules 
predominated across different groups. Modularity could be used to 
indicate both niche differentiation and competitive/cooperative 
relationships, leading to non-random network structures that 
ultimately increase the ecological network complexity (Olesen 
et al., 2007).

For low-salinity subnetworks, the average clustering coefficient in 
the network topology parameters was higher, implying the higher 
complexity of these subnetworks. Highly complex networks tend to 
be more stable due to network buffering (Landi et al., 2018), so the 
low-salinity subnetworks may be more stable, while the high-salinity 
subnetworks may be  less stable, which was also supported by 
Supplementary Figure S10. This pattern may be closely related to 
archaeal community diversity and richness, as higher diversity and 
richness may lead to more complex network structures (Chen and 
Wen, 2021). Changes in environmental heterogeneity may be the most 
important factor responsible for different patterns of microbial 
interactions among groups, as the complexity and connectivity of 
networks often had positive correlations with environmental 
heterogeneity (Mougi and Kondoh, 2012). Along the upper reaches of 
the Pearl River to the estuary (low-salinity groups), fresh water with 
low salinity and high-concentration nutrients and organic matter 
characteristics meets seawater with high salinity and low-concentration 
nutrients and organic matter, to form a highly environmental 
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heterogeneity. And this heterogeneity decreased along the estuary to 
the shelf (high-salinity groups) (Supplementary Figure S12). Microbial 
communities were more likely to aggregate and form more connected 
networks in more heterogeneous environments (Morriën et al., 2017; 
Li et  al., 2019). Conversely, in more homogeneous environments, 
microbial communities tended to occupy similar biological niches, 
resulting in fewer interactions (Cherif and Loreau, 2007; Freilich et al., 
2011; Lu et al., 2022).

Since nodes with a higher degree of centrality are more likely to 
be  important to preserve taxa coexistence, MGII, MGIII, and 
Candidatus Nitrosopumilus may play a key role in maintaining taxa 
coexistence in the high-salinity-water subnetwork, while 
Woesearchaeales, Bathyarchaeia, Methanosaeta, and Methanobacterium 
are more important in maintaining coexistence in the low-salinity-
water subnetwork (Supplementary Table S6). Similarly, in the high-
salinity-sediment subnetwork, Bathyarchaeia, Woesearchaeales, and 
Nitrosopumilaceae may play a key role in maintaining taxa coexistence, 
while Bathyarchaeia, Woesearchaeales, and Methanosaeta are more 
important in maintaining coexistence in the low-salinity-sediment 
subnetwork (Supplementary Table S7).

4.4. Archaeal community assembly mainly 
shaped by deterministic processes from 
the PR to the NSCS

The C-score analysis supported that deterministic processes 
played a relatively more important role than stochastic processes, 
whether in the water or sediments from the PR to the NSCS (Figure 5). 
Previous studies have indicated that geographic scales and 
environmental gradients largely explain the balance between 
deterministic and stochastic processes (Hanson et  al., 2012). In 
general, at relatively large spatial scales (~12,000 km), deterministic 
(environmental) factors have been found to exert a greater impact on 
benthic microbial communities than stochastic (spatial) factors 
(Zhang et al., 2018), while at smaller spatial scales (~20 to 1,500 km), 
the contribution of stochastic processes was greater (Chen et al., 2017; 
Liu et al., 2020; Lu et al., 2022). However, in the current study with a 
small spatial scale (~600 km), drastic changes in environmental factors 
were found in both low-salinity and high-salinity environments, 
resulting in a greater contribution of deterministic processes than 
stochastic processes at these sites, which may imply the importance of 
environmental factors for the construction of archaeal communities 
from the PR to the NSCS (Xie et al., 2014, 2018; Zou et al., 2020b). 
Consistent with our results, a previous study found that deterministic 
processes had a stronger effect on soil bacterial communities in a 
1,092 km range, which was mainly driven by a large pH gradient (Shi 
et al., 2018). In a study about the prokaryote community assembly 
from three parallel ~100 km transition sections in the lower Pearl 
River Estuary, a greater role of stochasticity to the benthic prokaryote 
community assembly was observed (Lu et  al., 2022). However, it 
should be noted that the relative contribution of stochastic processes 
to the microbial community assembly was only 54.02%, which may 
be because the objects of this study were prokaryotes, and the smaller 
spatial scale led to less environmental heterogeneity compared with 
our study. Additionally, the C-score revealed that the SES values 
increased with decreasing salinity, implying the enhanced importance 
of deterministic processes in archaeal communities, showing the 

relative contribution of deterministic processes to low-salinity samples 
was higher than that of high-salinity samples, possibly due to more 
heterogeneous environment attributed to the steeper environmental 
gradients in the low-salinity environments (Supplementary Figure S12), 
as well as the more spatially inconsistent and complex hydrologic 
movement (Stegen et al., 2015).

The high-salinity environments had wider archaeal community 
niche breadths, while the low-salinity environments had narrower 
community niche breadths (Supplementary Table S8), indicating that 
the high-salinity environments had more generalists that can adapt to 
a wide range of environmental niches, while the low-salinity 
environments had more specialists. This result may be attributed to 
the higher nutrient and organic matter content in the low-salinity 
environments, which promoted the specialization of the archaeal 
niche, resulting in narrower habitat niche breadths. Conversely, in the 
high-salinity environments, the limited availability of resources 
induced the generalization of the archaeal niche, leading to wider 
habitat niche breadths (Pandit et  al., 2009). A balance between 
determinism and stochasticity is determined by the resistance of 
microorganisms to environmental changes, along with spatial scales 
and gradients in the environment (Liu et al., 2020). Microorganisms 
that adapt to high-salinity environments have evolved “salt in” and 
“salt out” strategies to regulate the cytoplasm to osmotic pressure 
(Oren, 2011). In high-salinity environments with less environmental 
heterogeneity or fewer competitive interactions among environmental 
generalists, the relative contribution of stochastic processes may 
increase (Jiao et  al., 2020). Seasonal changes in pollutant 
concentrations brought about by terrigenous input may put archaea 
under great selection pressure from the upper Pearl River to the 
estuary (Yin, 2002; Chen et al., 2009; Lu et al., 2018). The results of the 
neutral community models indicated that the stochastic processes had 
a low explanation for the archaeal community composition from the 
PR to the NSCS (Figure  3) or even could not explain it 
(Supplementary Figure S8). The difference in the explanation of the 
archaeal community between the two neutral community models may 
be due to more samples in the high-salinity groups, which increased 
the proportion of stochastic processes. Additionally, the archaeal 
communities exhibited narrower niches in the low-salinity 
environments than that in the high-salinity environments 
(Supplementary Table S8), implying that the assembly of archaeal 
communities under low-salinity conditions was more affected by 
deterministic processes, possibly because deterministic processes 
generally have greater effects on habitat specialists with narrow niche 
breadths than on generalists with wide niche breadths (Pandit et al., 
2009; Wu et al., 2018).

Although the C-score analysis and NCM well described the 
archaeal community assembly patterns in the current study, it is 
difficult to infer the specific effects of environmental and spatial 
variables on archaeal community structure (Chisholm and Pacala, 
2010). In addition, the impact of unmeasured environmental factors 
and species interactions on archaeal community structure needs to 
be considered (Vellend et al., 2014; Zhou and Ning, 2017). Because 
estuarine ecosystems are overly dynamic, some key environmental 
factors may change in a stochastic manner, and our sampling involved 
different seasons, which may mask the main ecological patterns. To 
fully understand the archaeal community assembly mechanisms in 
subtropical estuaries, we need further experimental programs that 
take space and time into consideration.
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5. Conclusion

Our work showed the majority of archaea had difficulty surviving 
across drastic salinity gradients, with only Thaumarchaeota in water 
and Bathyarchaeota in sediments able to occur in both low-salinity 
and high-salinity environments. The species dispersal of archaea was 
stronger in low-salinity than high-salinity environments. Low-salinity 
environments exhibited stronger environmental heterogeneity, which 
imposed intense selective pressure on archaeal communities, resulting 
in deterministic processes dominating the assembly of archaeal 
communities, while archaea enhanced community stability through 
competition, adapting to the severe environmental fluctuations.
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