AUTHOR=Gao Lan , Wang Weihan , Liao Xingyu , Tan Xing , Yue Jiaxing , Zhang Wen , Wu Jiaojiao , Willison J. H. Martin , Tian Qiuling , Liu Yun TITLE=Soil nutrients, enzyme activities, and bacterial communities in varied plant communities in karst rocky desertification regions in Wushan County, Southwest China JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1180562 DOI=10.3389/fmicb.2023.1180562 ISSN=1664-302X ABSTRACT=

Vegetation restoration has become a common practice in karst rocky desertification (KRD) areas of southwestern China. The bacteria, which have made a connection between soil and plants, have been an important role in regulating the succession and restoration of karst vegetation. However, it is still unclear how soil bacterial communities and soil properties respond to natural vegetation restoration processes in karst areas. To address this gap, we investigated the soil nutrients, enzyme activity, and soil bacterial community among various plant communities, including farmland (FL), land with herbs only (SSI), herb-and-shrub land (SSII), woody thickets (SSIII), coniferous forest (SSIV), coniferous and broad-leaved mixed forest (SSV), and evergreen broad-leaved forest (SSVI). Our results found that SSII had the highest levels of soil organic matter, total nitrogen, available phosphorus, available nitrogen, sucrase, and β-glucosidase among all the plant communities. These results indicated that herb-and-shrub land have contributed to the rapid restoration of vegetation in KRD regions. FL exhibited the lowest levels of soil nutrients and enzyme activities, while showing the highest bacterial richness and diversity among all the plant communities. This suggested that appropriate human intervention can increase bacterial diversity and richness in the area. The predominant bacterial phylum also varied among the different plant communities, with Actinobacteria being the most abundant in SSI, SSII, SSIII, and SSIV, while Proteobacteria were the most abundant in SSV and SSVI. Furthermore, PCoA analysis demonstrated significant changes in the soil bacterial community structure, with SSI, SSII, SSIII, and SSIV had shared similar structures, while SSV and SSVI had comparable structures. As for soil characteristics, total phosphorus (TP) and total potassium (TK) were the primary factors affecting the soil bacterial community. SSV and SSVI had the most complex bacterial networks and were more stable than other groups. The genera Ktedonobacter, norank_f_Anaerolineaceae, and Vicinamibacter had the highest betweenness centrality scores and were identified as keystone genera in the co-occurrence network in KRD areas. In summary, our results have demonstrated that herb-and-shrub can promote community succession and increase soil nutrient levels in KRD regions.