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16S rRNA is the universal gene of microbes, and it is often used as a target gene to

obtain profiles of microbial communities via next-generation sequencing (NGS)

technology. Traditionally, sequences are clustered into operational taxonomic

units (OTUs) at a 97% threshold based on the taxonomic standard using 16S rRNA,

andmethods for the reduction of sequencing errors are bypassed, whichmay lead

to false classification units. Several denoising algorithms have been published to

solve this problem, such as DADA2 and Deblur, which can correct sequencing

errors at single-nucleotide resolution by generating amplicon sequence variants

(ASVs). As high-resolution ASVs are becoming more popular than OTUs and

only one analysis method is usually selected in a particular study, there is a

need for a thorough comparison of OTU clustering and denoising pipelines. In

this study, three of the most widely used 16S rRNA methods (two denoising

algorithms, DADA2 and Deblur, along with de novo OTU clustering) were

thoroughly compared using 16S rRNA amplification sequencing data generated

from 358 clinical stool samples from the Colorectal Cancer (CRC) Screening

Cohort. Our findings indicated that all approaches led to similar taxonomic profiles

(with P > 0.05 in PERMNAOVA and P <0.001 in the Mantel test), although

the number of ASVs/OTUs and the alpha-diversity indices varied considerably.

Despite considerable di�erences in disease-related markers identified, disease-

related analysis showed that all methods could result in similar conclusions.

Fusobacterium, Streptococcus, Peptostreptococcus, Parvimonas, Gemella, and

Haemophilus were identified by all three methods as enriched in the CRC group,

while Roseburia, Faecalibacterium, Butyricicoccus, and Blautia were identified by

all three methods as enriched in the healthy group. In addition, disease-diagnostic

models generated using machine learning algorithms based on the data from

these di�erent methods all achieved good diagnostic e�ciency (AUC: 0.87–0.89),

with the model based on DADA2 producing the highest AUC (0.8944 and 0.8907

in the training set and test set, respectively). However, there was no significant

di�erence in performance between themodels (P> 0.05). In conclusion, this study

demonstrates that DADA2, Deblur, and de novo OTU clustering display similar

power levels in taxa assignment and can produce similar conclusions in the case

of the CRC cohort.
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Introduction

Colorectal cancer (CRC) is the third most common cancer

globally, causing more than one million deaths annually (Brenner

et al., 2014; Stoffel and Murphy, 2020). The occurrence and

development of colorectal cancer often involve an adenoma-

carcinoma process, which often occurs over many years and

involves a variety of mechanisms and gene mutations (Fearon and

Vogelstein, 1990; Jones et al., 2008). The early symptoms of CRC

are not obvious: they consist of body discomfort, dyspepsia, occult

blood in the stool, and other symptoms (Brenner et al., 2014).

As the disease progresses, clearer symptoms gradually appear,

including changes in defecation habits, blood in the stool, diarrhea,

alternating diarrhea and constipation, and local abdominal pain,

among others (Brenner et al., 2014). Not only does CRC inflict

mental and physical distress on patients, but it also imposes a heavy

economic burden and places pressure on patients and their families.

Developed countries have now made significant advancements

in CRC screening, resulting in a gradual decline in incidence

(Brenner et al., 2014). Therefore, early cancer screening and timely

intervention are important for CRC patients (Díaz-Tasende, 2018;

Shaukat et al., 2021; Xi and Xu, 2021).

An increasing number of studies have shown a strong

correlation between health and the intestinal microbiota; the

microbiota can influence human health by regulating host

immunity, inflammation, and cognitive function (Ashktorab et al.,

2017; Zhang et al., 2017; Dalal et al., 2021). Studies have confirmed

that the intestinal microbiota is a key environmental factor in the

occurrence and development of CRC, as the composition of the

intestinal microbiota is significantly different in CRC compared

to that of healthy people (Zhang et al., 2017; Park et al., 2021).

For example, an increase in Fusobacterium nucleatum has been

confirmed to be closely related to CRC (Castellarin et al., 2012;

Bullman et al., 2017). Therefore, fecal metagenomics may play

a beneficial role in early screening and clinical diagnosis of

colorectal cancer.

16S rRNA has a unique structure that contains both conserved

and variable regions, and it is present in all known bacteria

and archaea, so it is commonly used as a marker gene for

bacterial community research using next-generation sequencing

(NGS) technology (Coenye and Vandamme, 2003; Sanschagrin

and Yergeau, 2014; Yarza et al., 2014; Muthappa et al., 2022).

Not only can the 16S rRNA sequencing approach decrease the

high cost of metagenomic sequencing, but it can also mitigate

the problem of host contamination (Boers et al., 2019). However,

sequencing errors can also introduce some non-real nucleotide

differences (Kunin et al., 2010; Aird et al., 2011; Schloss et al., 2011).

Traditionally, sequences are clustered into operational taxonomic

units (OTUs) with a particular identity threshold (usually 97%)

to reduce the interference of sequencing errors using the OTU

clustering method (Edgar, 2013; Patin et al., 2013), and de novo

clustering methods have been regarded as the optimal method of

assigning the 16S rRNA gene toOTUs (Westcott and Schloss, 2015).

In recent years, several denoising algorithms have been created to

solve this problem, such as DADA2 (Callahan et al., 2016) and

Deblur (Amir et al., 2017), which can correct sequencing errors by

generating amplicon sequence variants (ASVs). DADA2 has been

reported to be more accurate than the OTU clustering method in

mock communities, as it can accurately resolve sequence variants

differing by a single nucleotide and present in as few as two reads,

identify more real variants, and output fewer spurious sequences;

this provides alternative methods to explore strain-level variation

(Callahan et al., 2016). In another study, it has been reported

that both Deblur and DADA2 have high consistency, and both

of them achieve outputs close to the ground truth in simulated

communities (Amir et al., 2017). Deblur also exhibited higher

performance stability than DADA2, with a higher frequency cutoff,

when samples from the American Gut Project (http://americangut.

org) underwent two sequencing runs, as a larger fraction of ASVs

could be recalled in the second sequencing run (Amir et al., 2017).

Along with the widespread use of 16S rRNA sequencing, high-

resolution ASVs have become more popular than OTUs. As only

a single analysis method is usually selected in a particular study,

there is a need for a thorough comparison of OTU clustering and

denoising pipelines, as different methods may lead to different

conclusions in some cases. However, there are not many studies

on this topic. OTU clustering approaches have been compared

using samples from chicken cecum (Allali et al., 2017) and preterm

infants (Plummer and Twin, 2015), and a comparison of denoising

algorithms using environmental samples was reported in 2018

(Nearing et al., 2018). However, a thorough comparison between

denoising algorithms and OTU clustering approaches has yet

to be conducted using clinical samples, and no comparison has

been conducted specifically in colorectal cancer patients. In this

study, based on 358 16S rRNA sequencing samples, including 184

CRC samples and 174 healthy human samples, a comparison was

conducted between two selected denoising methods (DADA2 and

Deblur), as well as de novo OTU clustering; additionally, disease-

related markers were identified and the potential efficiency of a

disease-diagnostic model based on machine learning algorithms

was evaluated. The aim of this study was to assess whether similar

biological conclusions regardingmicrobiome composition could be

obtained using different methods.

Methods

Data acquisition and study design

A total of 358 samples from a Chinese cohort were selected

for inclusion in this study; these consisted of 184 CRC samples

and 174 healthy control samples. For each of these samples,

the V3-V4 region of the 16S rRNA gene was amplified using

319F/806R primer, and an Illumina MiSeq was used to generate

2×300bp reads. Reads were downloaded from the SRA database

with the accession number PRJNA763023 (Yang et al., 2021).

We selected samples from the older adult population (late-onset

CRC patients and age-matched healthy controls) within the Fudan

cohort, and selected samples with > 20,000 sequences in order to

reduce the effect of lower numbers of sequences. The taxonomic

composition of bacteria as established using multiple approaches

(OTU clustering, DADA2, and Deblur) was first compared, and

disease-related markers obtained based on the aforementioned

methods were subsequently also compared (Figure 1). Next, the

samples were randomly divided into a training set (70% of the data)

for construction of a CRC classifier and a random forest model test
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FIGURE 1

Study design and flow chart. A total of 358 stool samples from China were included in this study (184 samples from CRC patients and 174 from

healthy controls). The fecal microbiota was assessed using 16S rRNA gene sequencing. Samples were randomly divided into a training set (70%) and a

test set (30%). CRC, colorectal cancer; OTU clustering, de novo OTU-clustering-based analysis; DADA2,: DADA2 algorithm-based analysis; Deblur,

Deblur algorithm-based analysis.

set (30% of the data), which was used in a testing phase to verify the

potential of the model.

Data analysis

The 16S rRNA gene sequencing data were analyzed using the

QIIME2 platform (v2020.2) (Hall and Beiko, 2018), which includes

the VSEARCH software (Rognes et al., 2016) and software tools for

DADA2 (Callahan et al., 2016) and Deblur (Amir et al., 2017). For

the OTU clustering method: in brief, primers were removed using

the Cutadapt plugin, and paired reads were merged using the “join-

pairs” function of the VSEARCH plugin. The merged reads were

then dereplicated (using the “dereplicate-sequences” function),

singletons were filtered (using the “feature-table filter-features”

function), chimeras were filtered (using the “uchime-ref” function,

with the Greengenes13_8 97% OTU database as a reference),

and the results were clustered at 97% identity using the de novo

clustering method (the “cluster-features-de-novo” function) via the

QIIME2VSEARCHplugin with default settings. ForDADA2-based

methods, reads were truncated to lengths of 290 bp and 220 bp

for the forward and reverse reads, respectively, to remove low-

quality bases at the end of the reads, and the DADA2 plugin was

run with default settings to construct the ASV feature table. For

Deblur-based methods, the joined reads from VSEARCH were

input into the Deblur plugin to construct the ASV feature table with

default settings, and singletons were filtered. The OTUs and ASVs

were then compared against the Silva Database (v138.1, https://

www.arb-silva.de, download code: qiime2 rescript get-silva-data–

pversion “138.1”–p-target “SSURef_NR99”) (Pruesse et al., 2007)

using the “classify-sklearn” algorithm via the feature-classifier

plugin (Bokulich et al., 2018). Data on read numbers are listed

in Supplementary Table S1, and rarefaction plots are presented

in Supplementary Figure S1. We also conducted alpha and beta

diversity analyses using the diversity plugin in QIIME2.

Bacterial taxonomic analysis

Typically, 16S rRNA data are examined at the genus level in

further analysis, so genus profiles were entered into the following

analyses. Bacterial taxonomic analyses were carried out, and

comparisons between the three methods were conducted using

the Wilcoxon rank sum test (Bauer, 1972). Linear discriminant

analysis effect size (LEfSe, http://huttenhower.sph.harvard.edu/

lefse/) (Segata et al., 2011) was used to identify disease-associated

taxonomic features that could be used to explain differences

between controls and cases. These features were selected via LEfSe

analysis using the Kruskal–Wallis rank sum test (P < 0.05), and

linear discriminant analysis (LDA score > 2) was used to assess the

effect size associated with each feature.

Analysis of diagnostic models

In order to differentiate CRC samples from healthy samples,

a random forest (RF) model (Liu and Zhao, 2017; Yachida et al.,

2019) was built using the random Forest package (v4.6) in R.

Receiver operating characteristic (ROC) curves were constructed,

and the area under the curve (AUC) was calculated to evaluate
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the diagnostic performance of these RF models using the pROC

package (v1.17.0.1) in R. Subsequently, differences between the

three models (constructed based on each of the three methods)

in terms of diagnostic model efficiency were evaluated using the

roc.test() function in the pROC package.

Statistical analysis

The Mann–Whitney U test was employed to evaluate

differences between groups. Permutational multivariate analysis of

variance (PERMANOVA) was conducted to analyze the variance

of the data generated using different methods, and the Mantel test

was used to analyze the associations between these data. Spearman

correlation analysis was performed to analyze the correlations

between microbiota features. Plots were constructed using the

ggplot2 package (v3.3.3) in R.

Results

Variation in taxonomic community
composition across di�erent methods

The number of OTUs/ASVs obtained using the three methods

varied considerably, with DADA2 obtaining the most variants,

followed by Deblur and OTU clustering (Figure 2A). At the

taxonomic levels of genus and species, there was little difference

between DADA2 and Deblur. However, OTU clustering obtained

the largest number at the genus level and Deblur the smallest.

In terms of alpha diversity, we found that all indices differed

significantly between methods, as DADA2 produced the highest

Shannon index, while OTU clustering produced the highest

observed OTUs index and the highest Chao1 index (Figure 2B,

Supplementary Figures S2A, B).

For exploration of the difference among the three methods

in terms of taxonomic profiles generated, the genus level was

selected for analysis. First, the Venn analysis indicated that a total

of 429 genera could be detected by all three of the methods,

accounting for 58.9% of the total number (the total number of

detected genera was 729), and only 71 genera showed significant

differences (Kruskal–Wallis, Pfdr< 0.05) in abundance among the

three methods (Figure 2C, Supplementary Tables S2, S3). There

were 163 genera that were identified by both OTU clustering and

DADA2, but not Deblur, and there were significant difference

between these two groups for 4 genera (Mann–Whitney test,

Pfdr< 0.05) (Figure 2C, Supplementary Tables S2, S4). The genera

obtained by OTU clustering and DADA2 mostly overlapped, with

592 shared genera, accounting for 81.2% of the total number.

Regarding the 14 genera shared only by DADA2 and Deblur (and

not OTU clustering), there was no difference between the two

groups (Figure 2C, Supplementary Table S2). Finally, an interesting

finding was that OTU clustering and Deblur did not identify

any genera in common beyond the 429 identified by all methods

(Figure 2C), indicating that the genera detected by Deblur were also

detected by DADA2.

In most studies, taxa with higher abundance are more easily

identified. Therefore, we also focused on comparison of the

top 25 genera in terms of abundance; all these genera were

detected by all three methods, with only four genera showing

inter-method differences (Kruskal–Wallis, Pfdr< 0.05) (Figure 2D,

Supplementary Table S6).

PCoA analysis based on Bray–Curtis dissimilarity was used

to examine the sample clustering based on different methods;

the results showed that the three methods could not be clearly

distinguished, as most samples were clustered together, with a

P > 0.05 for PERMANOVA (Figure 2E). In addition, a Mantel test

was performed to evaluate the correlations among the taxonomic

profiles obtained by the three methods; the results showed that

there were significant correlations among the three profiles (r

= 0.99, P < 0.001) (Figure 2F). These results indicated that,

although there were some differences in the number of taxa

obtained by the three methods, the taxonomic profiles obtained

using the different methods were strongly correlated, and the

relative abundances of the expected taxa under each method were

strikingly similar.

Analysis of case–control di�erences

We analyzed the differences between cases and controls to

evaluate whether the different algorithms produced different

disease-related outcomes. First, we found that although the

Shannon index was lower for CRC patient samples than

for healthy samples across all three methods, only DADA2

identified a significant difference between the groups (Figure 3A).

In contrast, inter-group differences on the Chao1 index and

the observed OTUs index were observed under all methods

(Supplementary Figures S2C, D).

According to the results of PCoA analysis based on Bray–Curtis

dissimilarity (Figures 3B–D), the samples from the CRC patients

and healthy controls could be clearly distinguished into two groups;

the P-values of PERMANOVA were also significant, indicating that

the different methods could produce the same conclusion.

Subsequently, LEfSe analysis was conducted to identify disease-

related markers that distinguished the CRC group and the healthy

group. Under this analysis, OTU clustering produced the largest

number of markers (47markers), followed by DADA2 (40markers)

and Deblur (39 markers) (Figures 3E, F, Supplementary Table S7,

Supplementary Figures S3A–C). A total of 49 markers were

obtained, among which 37 could be detected using all three

methods (Figures 3E, F). All three methods indicated enrichment

of 13 genera in the CRC group; these included Fusobacterium,

Gemella, Peptostreptococcus, and Streptococcus, which have been

reported on widely in CRC research (Kwong et al., 2018; Brennan

and Garrett, 2019; Wong et al., 2019). In contrast, the different

methods identified 23 genera as enriched in the healthy group; these

includedRoseburia, Faecalibacterium, and Blautia, which have been

proven to have a positive effect on human health. However, the

results for Lachnoclostridium, Escherichia-Shigella, andMegamonas

differed between the three methods. This indicates that, though

there were a small number of differences in disease-relatedmarkers,

identification of most of the markers could be reproduced using

different methods.

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1178744
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2023.1178744

FIGURE 2

Comparison of bacterial diversity and taxonomic analyses under each of the three methods. (A) Number of taxa assessed at di�erent taxonomic

levels. (B) Shannon index across all samples calculated under each method. P-values for comparisons between two methods were calculated using

the Mann–Whitney U test; all three methods were compared via the Kruskal–Wallis test. (C) Venn diagram showing analysis at the genus level. (D)

Relative abundance of the top 25 genera across all samples; * indicates Kruskal–Wallis Pfdr< 0.05. (E) PCoA analysis among the three methods, with

P-values as calculated by PERMANOVA. (F) Mantel test comparing the taxonomic profiles obtained using each of the three methods. The number in

the lower cell represents the Spearman correlation coe�cient; the circle in the upper cell represents the P-value of the correlation. *P < 0.05, **P <

0.01, ***P < 0.001.

Di�erences between disease-diagnostic
models

One of the scenarios for application of an understanding of the

gut microbiome in CRC is early screening and auxiliary diagnosis;

this is also the most valuable application of studies of this type.

Therefore, we used the random forest algorithm to construct

disease diagnosis models based on the disease-related markers

identified through LEfSe analysis (Supplementary Table S7), and

evaluated the diagnostic efficiency of these models on the basis

of the AUC according to the associated ROC curves. All models

could distinguish between CRC and healthy samples well, as the

AUC values were >86%. The results indicated that the model

based on DADA2 analysis exhibited the best performance (training

set: AUC = 89.4%, CI 85.72–93.16%; test set: AUC = 89.7%, CI

82.71–95.44%), followed by the OTU clustering model (training

set: AUC = 88.9%, CI 84.83–92.93%; test set: AUC = 88.3%, CI

81.72–94.87%) and finally the Deblur model (training set: AUC =
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FIGURE 3

Bacterial diversity and taxonomic analysis of di�erences between cases and controls. (A) Comparison of Shannon index between cases and controls,

with P-values as calculated for the Mann–Whitney U test. (B–D) PCoA analysis comparing cases and controls under (B) the OTU clustering method,

(C) the DADA2 method, (D) the Deblur method, with P-values calculated by PERMANOVA. (E) Venn diagram showing analysis of disease-related

markers based on LEfSe analysis. (F) Heatmap of disease-related markers based on LEfSe analysis. #represents enriched groups.

86.8%, CI 82.45–91.15%; test set: AUC = 87.5%, CI 80.68–94.23%)

(Figures 4A, B, Supplementary Figures S4A–F). However, the only

significant difference in AUC was between the DADA2 and Deblur

models in the training set (P < 0.05) (Figure 4A). These results

indicated that there was no significant difference between the three

methods in terms of the efficiency of the resulting diagnostic model.
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FIGURE 4

Disease classification models based on disease-associated taxa. (A, B) The AUC value of disease classification models using the random forest in the

training set (A) and testing set (B) based on disease-associated taxa from LEfSe. The color of the lines means the data were obtained from di�erent

methods, and “*” suggested significant di�erences (P < 0.05) between models using the roc.test() function, while NS suggested that there was no

significant di�erence (P > 0.05).

Discussion

We compared the results obtained by using three methods

(DADA2, Deblur, and OTU clustering) to analyze data from a

clinical cohort. First, we found that DADA2 and Deblur could

identify more ASVs than OTUs in the community (Figure 2A).

The reason for this is that, during the error-correction process

of the denoising algorithms, the identity standard was 100%, and

the obtained ASVs were considered to represent real individuals.

In contrast, during the process of de novo OTU clustering, the

identity standard was 97%, without no reliance on any database,

and the number of OTUs was relatively low. The results under

the DADA2 and Deblur methods indicated higher alpha diversity

(Figure 2B, Supplementary Figures S2A, B). Comparing the two

denoising methods, the number of ASVs obtained using DADA2

was much higher than that obtained using Deblur (Figure 2A),

which may be because only singletons were removed from all

samples by default under DADA2; in contrast, under Deblur, not

only were singletons in a single sample removed, but sequences

below 10 in all samples were also removed. These results suggest

that DADA2 may be more sensitive to rare species. A report by

Nearing et al. has also claimed that DADA2 can obtain more ASVs

than Deblur in analysis of simulated and environmental microbial

communities (Nearing et al., 2018).

All three methods included a process for removal of singletons

with low frequencies, which not only removed some errors but

also discarded some rare taxa. This requires users to make a

reasonable selection of thresholds according to the purpose of

their analysis. OTU clustering has clear disadvantages in this

regard, as some sequences below the threshold cannot be accurately

distinguished. The classic de novo clustering algorithm is Uparse

(Edgar, 2013), whose developer, Robert Edgar, argued that the 97%

threshold for taxonomic classification was too low; he proposed

that the threshold for 16S sequences with full length should be

99% and that the threshold for the V4 region should be 100%

in order to improve accuracy (Edgar, 2018). However, use of a

higher threshold in OTU clustering may introduce identification

of spurious taxonomic units without correction of sequencing

errors, as employed under DADA2 and Deblur. In addition, data

from studies based on OTU clustering cannot be combined for

further analysis, which introduces major challenges in drawing

comparisons between different studies, while DADA2 and Deblur

do not have this problem.

After obtaining feature sequences (ASVs/OTUs), we compared

themwith the reference database containing known taxa in order to

obtain taxonomic information using the classify-sklearn algorithm,

which is a form of naive Bayes classifier (a classification method

based onmachine learning) (Bokulich et al., 2018). Previous studies

have shown that the classify-sklearn algorithm could provide

more accurate annotation information at the genus and species

levels (Kaehler et al., 2019; Ziemski et al., 2021). The results

showed that, as the annotation level increased, the gaps in the

number of taxa obtained using each of the three methods gradually

narrowed, especially the gap between DADA2 and OTU clustering

(Figure 2A). At the species level, the largest number of taxa was

obtained usingDADA2 (1,618), followed byOTU clustering (1,427)

and thenDeblur (1,084). At the genus level and higher, the numbers

obtained using DADA2 and OTU clustering were very similar,

whereas Deblur consistently identified the smallest number of

taxa, with a loss of approximately 30%−70%. The number of

taxa identified using Deblur was the lowest at the species level

and higher, which may be related to the process used under

Deblur for filtering sequences below 10 in all samples, resulting

in the removal of low-frequency taxa. DADA2 removed only

singletons in all samples, which not only increased the number

of ASVs but also made it easier to obtain more taxa, especially
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at the species level. However, DADA2 and OTU obtained similar

numbers of taxa at the genus level and higher, indicating that

DADA2 had this advantage only at the species level. Therefore,

DADA2 is recommended in cases where the researchers need more

information on specifically on ASVs and at the species level.

Usually, further analysis of 16S rRNA data is conducted

at the genus level, so the genera profiles were selected for

subsequent analyses. Venn diagram analysis showed that the three

methods obtained a total of 729 genera, of which 429 genera

(58.9%) could be identified using all three methods (Figure 2C).

Among these genera, 71 differed significantly among methods

(Kruskal–Wallis Pfdr< 0.05) (Figure 2C). OTU clustering and

DADA2 shared 81% of the detected genera, while DADA2 and

Deblur shared only 60%. Regarding the 71 genera with inter-

method differences, most of the genera were enriched under

OTU clustering (Supplementary Table S3), possibly because OTU

clustering retained more sequences. Although the number of

genera identified using DADA2 and OTU clustering was similar,

each also identified some unique genera that was not identified

by the other, and the relative abundance of these unique genera

was very low: the maximum abundance was 3.454e-06 among

the 69 genera identified only by OUT clustering and 4.18e-

06 among the 69 genera identified identified only by DADA2

(Figure 2C, Supplementary Table S5). Traditionally, genera with

higher abundance as regarded as playing an important role in

the community. These results showed that the top 25 genera

could be detected by all three methods, including four significant

taxa (Kruskal–Wallis, Pfdr< 0.05, Supplementary Table S6). This

indicates, although the three methods will lead to identification of

different genera, the differences are mainly reflected in genera with

low relative abundance, and researchers need to choose appropriate

methods according to their objectives.

PCoA analysis showed that the samples could not

be distinguished well through use of different methods.

PERMANOVA also indicated that the use of different methods had

no significant effect on the microbial profile obtained (P>0.05)

(Figure 2E). The microbial profiles were robustly correlated

across methods (Mantel test, n = 358, r = 0.99, P < 0.001)

(Figure 2F), confirming the strong similarity of the results across

the three methods.

In clinical research, disease-related bacteria are important for

researchers. Therefore, we compared the results of case–control

analyses based on each of the threemethods. First, in alpha diversity

analyses, inter-group differences in Shannon index were observed

only under DADA2, while inter-group differences on the Chao1

index and the observed OTUs index were observed under all

methods, with the CRC group showing significantly lower diversity

than the healthy group (Figure 3A, Supplementary Figures S2C, D).

This result was consistent with those of previous CRC studies,

which have shown that alpha diversity is reduced in the CRC

population (Yang et al., 2021); other studies have also observed

no significant difference in the Shannon index (Feng et al., 2015;

Wu et al., 2021). This finding suggests that researchers must

select the appropriate alpha index according to their methods.

PCoA analysis showed that all three methods could distinguish

successfully between the CRC group and the healthy group,

with P < 0.05 in PERMANOVA (Figures 3B–D), confirming the

difference between the cases and controls as compared using

different methods.

LEfSe analysis was used to explore disease-related microbial

markers. A total of 49 markers (OTU-clustering: 47; DADA2:

40; Deblur: 39) were obtained using the three methods,

of which 37 markers (75.5%) could be reproduced using a

different method; the enrichment trend was consistent for

most markers (Figure 3F, Supplementary Figures S3A–C). For

example, Haemophilus, Granulicatella, Eggerthella, Fusobacterium,

Parvimonas, Streptococcus, Gemella, Peptostreptococcus, and other

genera (for a total of 13) were found under all three methods

to be enriched in the CRC group. Fusobacterium, especially

Fusobacterium nucleatum, is an important marker of CRC (Kostic

et al., 2012; Yang et al., 2021) and an opportunistic pathogen in

many chronic oral and intestinal diseases, such as inflammatory

bowel disease (IBD) (Weng et al., 2019). Fusobacterium nucleatum

has been reported to promote glycolysis and oncogenesis in CRC

by upregulating the lncRNA ENO1-IT1 (Hong et al., 2021) and

promoting CRC cell migration by modulating the long non-

coding RNAs keratin7-antisense (KRT7-AS) and keratin7 (KRT7)

(Chen et al., 2020). Streptococcus is also a common pathogenic

genus that often causes inflammation and bacteremia, possibly

promoting CRC (Kwong et al., 2018; McAuliffe et al., 2019).

Peptostreptococcus is an anaerobic, gram-positive bacterium, and

Peptostreptococcus anaerobius has been reported to promote CRC

and modulate tumor immunity (Long et al., 2019). Haemophilus is

an opportunistic pathogen that may cause hemorrhagia and acute

meningitis. Finally, Parvimonas is a fastidious, anaerobic, gram-

positive coccus that is widely found among healthy human oral and

gastrointestinal flora, and previous studies have demonstrated that

Parvimonas micra is associated with CRC (Löwenmark et al., 2020;

Xu et al., 2020).

Roseburia, Faecalibacterium, [Eubacterium]_eligens_group,

Bilophila, Phascolarctobacterium, Butyricicoccus, Blautia, and

other genera (for a total of 23) were found to be enriched in

the healthy group. Butyricicoccus and Faecalibacterium are

butyric acid producers, which play an important role in intestinal

and host health and act as protectors against CRC (Miquel

et al., 2013; Zhou et al., 2018; Chang et al., 2020). Butyric

acid is the main energy source of colonic epithelial cells and

can reduce the pH in the colon, regulate human immunity,

and exert anti-inflammatory effects. Faecalibacterium has been

found in multiple studies to be significantly decreased in many

diseases (Lopez-Siles et al., 2017), including Crohn’s disease

(CD) (Martinez-Medina et al., 2006), ulcerative colitis (UC)

(Machiels et al., 2014), inflammatory bowel diseases (IBD)

(Frank et al., 2007), and CRC. Roseburia can ferment various

carbohydrates and may play a positive role in exerting anti-

inflammatory effects and preventing CRC (Machiels et al.,

2014). Phascolarctobacterium produces short-chain fatty acids

(SCFAs) and plays various important roles in maintaining human

health, such as enhancing gastrointestinal function, reducing

inflammation levels, and influencing metabolic state and mood

of the host (Wu et al., 2017). Finally, Blautia produces acetic acid,

which not only contributes to gas emissions in the intestine but

also exerts anti-inflammatory effects (Liu et al., 2021; Miyake et al.,

2021).
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Themarkers obtained using each of the three methods were not

always completely consistent. For example, Lachnoclostridium was

found to be enriched in the healthy group under OTU clustering,

enriched in the CRC group under DADA2, and not significantly

enriched in either group under Deblur. Lachnoclostridium has

been reported to be enriched in colorectal adenoma and cancer

(Li et al., 2020). Escherichia-Shigella was found to be enriched in

CRC under DADA2 and OTU clustering, which is consistent with

previous studies (Wang et al., 2012; Han et al., 2019). Intestinibacter

was found to be enriched in CRC under DADA2 and Deblur;

this genus has been reported to be associated with immune-

mediated inflammatory diseases (IMIDs) and to be found in greater

abundance in CD (Forbes et al., 2018). Megamonas was found

to be enriched in the healthy group only under OTU clustering.

Megamonas has previously been reported to be enriched in healthy

controls compared with cachectic cancer patients (Ubachs et al.,

2021). Megamonas can ferment many carbohydrates, producing

various intestinal epithelial cell nutrients, such as acetic acid,

propionic acid, and lactic acid (Tian et al., 2020; Ubachs et al.,

2021). Oscillibacter was found to be enriched in the healthy group

only under Deblur; this genus has previously been proven to be

enriched in normal tissue samples compared to their respective

tumor counterparts (Loke et al., 2018). These results indicate

that, even though a small number of markers differed between

the methods, most of the disease-related markers identified were

consistent across methods.

Finally, random forest (RF) models were constructed to

evaluate diagnostic efficiency based on each of the three methods.

For the training set, the highest AUC was obtained for the DADA2

model, at 89.4%, followed by 88.9% for the OTU clustering model

and 86.8% for the Deblur model; the only significant difference

in AUC was between DADA2 and Deblur (P < 0.05) (Figure 4A,

Supplementary Figures S4A, C, E). This trend was subsequently

verified in the test set (DADA2 > OTU clustering > Deblur), but

there were no significant differences among the AUCs for the three

models (P > 0.05) (Figure 4B, Supplementary Figures S4B, D, F).

These results indicate that each of the differentmethods can achieve

good diagnostic efficiency, with DADA2 being the best.

In conclusion, although there were differences in the number

of OTUs/ASVs obtained using the three methods, the differences

in the numbers of taxa were smaller, especially for the comparison

between DADA2 and OTU clustering at the genus level.

Moreover, the microbial profiles were strongly correlated. This

indicates that the results obtained using the three methods are

comparable. Case–control analysis also showed that the three

methods could yield similar results, with mostly consistent

identification of CRC-related markers. However, it should also

be noted that the three methods were performed with the

default parameters, and adjusting some of the parameters

in the selected method could help users to obtain their

desired results.
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SUPPLEMENTARY TABLE S1

The reads were obtained per sample.

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1178744
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1178744/full#supplementary-material
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2023.1178744

SUPPLEMENTARY TABLE S2

The number of genera from venn analysis among three methods.

SUPPLEMENTARY TABLE S3

Kruskal–Wallis analysis of genera detected by three methods.

SUPPLEMENTARY TABLE S4

Mann-Whitney test of genera detected by OTU-clustering and DADA2 alone

in venn analysis.

SUPPLEMENTARY TABLE S5

The averege relative abundance of genera only detected by OTU-clustering

or DADA2.

SUPPLEMENTARY TABLE S6

Kruskal–Wallis analysis of top25 genera detected by three methods.

SUPPLEMENTARY TABLE S7

LEfSe analysis between CRC and Control based on three methods.

References

Aird, D., Ross, M. G., Chen,W. S., Danielsson, M., Fennell, T., Russ, C., et al. (2011).
Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries.
Genome Biol. 12, 18. doi: 10.1186/gb-2011-12-2-r18

Allali, I., Arnold, J. W., Roach, J., Cadenas, M. B., Butz, N., Hassan, H.
M., et al. (2017). A comparison of sequencing platforms and bioinformatics
pipelines for compositional analysis of the gut microbiome. BMC Microbiol. 17
doi: 10.1186/s12866-017-1101-8

Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Zech
Xu, Z., et al. (2017). Deblur rapidly resolves single-nucleotide community sequence
patterns.mSystems. 2, 16. doi: 10.1128/mSystems.00191-16

Ashktorab, H., Kupfer, S. S., Brim, H., and Carethers, J. M. (2017).
Racial disparity in gastrointestinal cancer risk. Gastroenterology. 153, 910–23.
doi: 10.1053/j.gastro.2017.08.018

Bauer, D. F. (1972). Constructing confidence sets using rank statistics. J. Am. Stat.
Assoc. 67, 687–690. doi: 10.1080/01621459.1972.10481279

Boers, S. A., Jansen, R., and Hays, J. P. (2019). Understanding and overcoming the
pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine
clinical microbiological diagnostic laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 38,
1059–70. doi: 10.1007/s10096-019-03520-3

Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E.,
Knight, R., et al. (2018). Optimizing taxonomic classification of marker-gene
amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome. 6, 90.
doi: 10.1186/s40168-018-0470-z

Brennan, C. A., and Garrett, W. S. (2019). Fusobacterium nucleatum—
symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–66.
doi: 10.1038/s41579-018-0129-6

Brenner, H., Kloor, M., and Pox, C. P. (2014). Colorectal cancer. Lancet (London,
England). 383, 1490–502. doi: 10.1016/S0140-6736(13)61649-9

Bullman, S., Pedamallu, C. S., Sicinska, E., Clancy, T. E., Zhang, X., Cai, D., et al.
(2017). Analysis of Fusobacterium persistence and antibiotic response in colorectal
cancer. Science. 358, 1443–8. doi: 10.1126/science.aal5240

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., Holmes,
S. P., et al. (2016). DADA2: high-resolution sample inference from Illumina amplicon
data. Nat. Methods. 13, 581–3. doi: 10.1038/nmeth.3869

Castellarin, M., Warren, R. L., Freeman, J. D., Dreolini, L., Krzywinski, M., Strauss,
J., et al. (2012). Fusobacterium nucleatum infection is prevalent in human colorectal
carcinoma. Genome Res. 22, 299–306. doi: 10.1101/gr.126516.111

Chang, S. C., Shen, M. H., Liu, C. Y., Pu, C. M., Hu, J. M., Huang, C. J.
A., et al. (2020). gut butyrate-producing bacterium Butyricicoccus pullicaecorum
regulates short-chain fatty acid transporter and receptor to reduce the progression
of 1,2-dimethylhydrazine-associated colorectal cancer. Oncol. Lett. 20, 12190.
doi: 10.3892/ol.2020.12190

Chen, S., Su, T., Zhang, Y., Lee, A., He, J., Ge, Q., et al. (2020).
Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating
KRT7-AS/KRT7. Gut Microbes. 11, 511–25. doi: 10.1080/19490976.2019.16
95494

Coenye, T., and Vandamme, P. (2003). Intragenomic heterogeneity
between multiple 16S ribosomal RNA operons in sequenced bacterial
genomes. FEMS Microbiol. Lett. 228, 45–9. doi: 10.1016/S0378-1097(03)0
0717-1

Dalal, N., Jalandra, R., Bayal, N., Yadav, A., Harshulika, K., Sharma, M., et al. (2021).
Gut microbiota-derived metabolites in CRC progression and causation. J. Cancer Res.
Clin. Oncol. 147, 3141–55. doi: 10.1007/s00432-021-03729-w

Díaz-Tasende, J. (2018). Colorectal cancer screening and survival. Rev. Esp. Enferm.
Dig. 110, 681–3. doi: 10.17235/reed.2018.5870/2018

Edgar, R. C. (2018). Updating the 97% identity threshold for 16S ribosomal RNA
OTUs. Bioinformatics. 34, 2371–5. doi: 10.1093/bioinformatics/bty113

Edgar, R. C.. (2013). UPARSE: highly accurate OTU sequences from microbial
amplicon reads. Nat. Methods. 10, 996–8. doi: 10.1038/nmeth.2604

Fearon, E. R., and Vogelstein, B. A. (1990). genetic model for colorectal
tumorigenesis. Cell. 61, 759–67. doi: 10.1016/0092-8674(90)90186-I

Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L. et al. (2015). Gut microbiome
development along the colorectal adenoma-carcinoma sequence. Nature communica.
6, 6528. doi: 10.1038/ncomms7528

Forbes, J. D., Chen, C. Y., Knox, N. C., Marrie, R. A., El-Gabalawy, H., Kievit,
D. T., et al. (2018). A comparative study of the gut microbiota in immune-
mediated inflammatory diseases-does a common dysbiosis exist? Microbiome. 6, 1.
doi: 10.1186/s40168-018-0603-4

Frank, D. N., St. Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., Pace,
N. R., et al. (2007). Molecular-phylogenetic characterization of microbial community
imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA. 104,
13780–5. doi: 10.1073/pnas.0706625104

Hall, M., and Beiko, R. G. (2018). 16S rRNA gene analysis with QIIME2. Methods
Mol. Biol. 1849, 113–29. doi: 10.1007/978-1-4939-8728-3_8

Han, S., Pan, Y., Yang, X., Da, M., Wei, Q., Gao, Y., et al. (2019). Intestinal
microorganisms involved in colorectal cancer complicated with dyslipidosis. Cancer
Biol. Ther. 20, 81–9. doi: 10.1080/15384047.2018.1507255

Hong, J., Guo, F., Lu, S. Y., Shen, C., Ma, D., Zhang, X., et al. (2021). F. nucleatum
targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer.
Gut. 70, 2123–37. doi: 10.1136/gutjnl-2020-322780

Jones, S., Chen, W. D., Parmigiani, G., Diehl, F., Beerenwinkel, N., Antal, T., et al.
(2008). Comparative lesion sequencing provides insights into tumor evolution. Proc.
Natl. Acad. Sci. USA. 105, 4283–8. doi: 10.1073/pnas.0712345105

Kaehler, B. D., Bokulich, N. A., McDonald, D., Knight, R., Caporaso, J. G., Huttley,
G. A., et al. (2019). Species abundance information improves sequence taxonomy
classification accuracy. Nat. Commun. 10, 4643. doi: 10.1038/s41467-019-12669-6

Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M.,
et al. (2012). Genomic analysis identifies association of Fusobacterium with colorectal
carcinoma. Genome Res. 22, 292–8. doi: 10.1101/gr.126573.111

Kunin, V., Engelbrektson, A., Ochman, H., and Hugenholtz, P. (2010). Wrinkles
in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity
estimates. Environ. Microbiol. 12, 118–23. doi: 10.1111/j.1462-2920.2009.02051.x

Kwong, T. N. Y., Wang, X., Nakatsu, G., Chow, T. C., Tipoe, T., Dai, R.
Z. W., et al. (2018). Association between bacteremia from specific microbes
and subsequent diagnosis of colorectal cancer. Gastroenterology. 155, 383–390.e8.
doi: 10.1053/j.gastro.2018.04.028

Li, T., Nakatsu, G., Chen, Y. X., Yau, T. O., Chu, E., Wong, S., et al. (2020). A novel
faecal Lachnoclostridiummarker for the non-invasive diagnosis of colorectal adenoma
and cancer. Gut. 69, 1248–57. doi: 10.1136/gutjnl-2019-318532

Liu, X., Mao, B., Gu, J., Wu, J., Cui, S., Wang, G., et al. (2021). Blautia-a
new functional genus with potential probiotic properties? Gut Microbes. 13, 1–21.
doi: 10.1080/19490976.2021.1875796

Liu, Y., and Zhao, H. (2017). Variable importance-weighted random forests. Quant
Biol (Beijing, China). 5, 338–51. doi: 10.1007/s40484-017-0121-6

Loke, M. F., Chua, E. G., Gan, H. M., Thulasi, K., Wanyiri, J. W., Thevambiga, I.,
et al. (2018). Metabolomics and 16S rRNA sequencing of human colorectal cancers and
adjacent mucosa. PLoS ONE. 13, e0208584. doi: 10.1371/journal.pone.0208584

Long, X., Wong, C. C., Tong, L., Chu, E. S. H., Ho Szeto, C., Go,
M. Y. Y., et al. (2019). Peptostreptococcus anaerobius promotes colorectal
carcinogenesis and modulates tumour immunity. Nat Microbiol. 4, 2319–30.
doi: 10.1038/s41564-019-0541-3

Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J., and Martinez-Medina, M. (2017).
Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME
J. 11, 841–52. doi: 10.1038/ismej.2016.176

Frontiers inMicrobiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1178744
https://doi.org/10.1186/gb-2011-12-2-r18
https://doi.org/10.1186/s12866-017-1101-8
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.1053/j.gastro.2017.08.018
https://doi.org/10.1080/01621459.1972.10481279
https://doi.org/10.1007/s10096-019-03520-3
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1038/s41579-018-0129-6
https://doi.org/10.1016/S0140-6736(13)61649-9
https://doi.org/10.1126/science.aal5240
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1101/gr.126516.111
https://doi.org/10.3892/ol.2020.12190
https://doi.org/10.1080/19490976.2019.1695494
https://doi.org/10.1016/S0378-1097(03)00717-1
https://doi.org/10.1007/s00432-021-03729-w
https://doi.org/10.17235/reed.2018.5870/2018
https://doi.org/10.1093/bioinformatics/bty113
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1016/0092-8674(90)90186-I
https://doi.org/10.1038/ncomms7528
https://doi.org/10.1186/s40168-018-0603-4
https://doi.org/10.1073/pnas.0706625104
https://doi.org/10.1007/978-1-4939-8728-3_8
https://doi.org/10.1080/15384047.2018.1507255
https://doi.org/10.1136/gutjnl-2020-322780
https://doi.org/10.1073/pnas.0712345105
https://doi.org/10.1038/s41467-019-12669-6
https://doi.org/10.1101/gr.126573.111
https://doi.org/10.1111/j.1462-2920.2009.02051.x
https://doi.org/10.1053/j.gastro.2018.04.028
https://doi.org/10.1136/gutjnl-2019-318532
https://doi.org/10.1080/19490976.2021.1875796
https://doi.org/10.1007/s40484-017-0121-6
https://doi.org/10.1371/journal.pone.0208584
https://doi.org/10.1038/s41564-019-0541-3
https://doi.org/10.1038/ismej.2016.176
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2023.1178744

Löwenmark, T., Löfgren-Burström, A., Zingmark, C., Eklöf, V., Dahlberg, M., Wai,
S. N., et al. (2020). Parvimonas micra as a putative non-invasive faecal biomarker for
colorectal cancer. Sci. Rep. 10 doi: 10.1038/s41598-020-72132-1

Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V.,
et al. (2014). A decrease of the butyrate-producing species Roseburia hominis and
Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut.
63, 1275–83. doi: 10.1136/gutjnl-2013-304833

Martinez-Medina, M., Aldeguer, X., Gonzalez-Huix, F., Acero, D., and
Garcia-Gil, L. J. (2006). Abnormal microbiota composition in the ileocolonic
mucosa of Crohn’s disease patients as revealed by polymerase chain reaction-
denaturing gradient gel electrophoresis. Inflamm. Bowel Dis. 12, 1136–45.
doi: 10.1097/01.mib.0000235828.09305.0c

McAuliffe, A., Bhat, V., and Cox, J. (2019). Streptococcus gallolyticus Group
Bacteremia and Colonic Adenocarcinoma. J. Am. Osteopath. Assoc. 119, 65.
doi: 10.7556/jaoa.2019.011

Miquel, S., Martín, R., Rossi, O., Bermúdez-Humarán, L. G., Chatel, J. M., Sokol,
H., et al. (2013). Faecalibacterium prausnitzii and human intestinal health. Curr. Opin.
Microbiol. 16, 255–61. doi: 10.1016/j.mib.2013.06.003

Miyake, T., Mori, H., Yasukawa, D., Hexun, Z., Maehira, H., Ueki, T., et al. (2021).
The comparison of fecal microbiota in left-side and right-side human colorectal cancer.
Eur. Surg. Res. 62, 248–54. doi: 10.1159/000516922

Muthappa, D. M., Lamba, S., Sivasankaran, S. K., Naithani, A., Rogers, N.,
Srikumar, S., et al. (2022). 16S rRNA based profiling of bacterial communities
colonizing bakery-production environments. Foodborne Pathog. Dis. 19, 485–94.
doi: 10.1089/fpd.2022.0014

Nearing, J. T., Douglas, G. M., Comeau, A. M., and Langille, M. G. I. (2018).
Denoising the Denoisers: an independent evaluation of microbiome sequence error-
correction approaches. PeerJ. 6, 5364. doi: 10.7717/peerj.5364

Park, J., Kim, N. E., Yoon, H., Shin, C. M., Kim, N., Lee, D. H., et al. (2021). Fecal
microbiota and gut microbe-derived extracellular vesicles in colorectal cancer. Front.
Oncol. 11, 650026. doi: 10.3389/fonc.2021.650026

Patin, N. V., Kunin, V., Lidström, U., and Ashby, M. N. (2013). Effects of OTU
clustering and PCR artifacts on microbial diversity estimates.Microb. Ecol. 65, 709–19.
doi: 10.1007/s00248-012-0145-4

Plummer, E., and Twin, J. A. (2015). Comparison of three bioinformatics pipelines
for the analysis of preterm gut microbiota using 16S rRNA gene sequencing data. J.
Proteomics Bioinform. 8, 283–91. doi: 10.4172/jpb.1000381

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., et al.
(2007). SILVA: a comprehensive online resource for quality checked and aligned
ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–96.
doi: 10.1093/nar/gkm864

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. V. (2016). Search a
versatile open source tool for metagenomics. PeerJ. 4, 2584. doi: 10.7717/peerj.2584

Sanschagrin, S., and Yergeau, E. (2014). Next-generation sequencing of 16S
ribosomal RNA gene amplicons. J. Vis. Exp. doi: 10.3791/51709-v

Schloss, P. D., Gevers, D., and Westcott, S. L. (2011). Reducing the effects of PCR
amplification and sequencing artifacts on 16S rRNA-based studies. PLoSONE. 6, 27310.
doi: 10.1371/journal.pone.0027310

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.
doi: 10.1186/gb-2011-12-6-r60

Shaukat, A., Kahi, C. J., Burke, C. A., Rabeneck, L., Sauer, B. G., Rex, D. K. A. C. G.,
et al. (2021). Clinical guidelines: colorectal cancer screening 2021. Am. J. Gastroenterol.
116, 458–79. doi: 10.14309/ajg.0000000000001122

Stoffel, E. M., and Murphy, C. C. (2020). Epidemiology and mechanisms of the
increasing incidence of colon and rectal cancers in young adults.Gastroenterology. 158,
341–53. doi: 10.1053/j.gastro.2019.07.055

Tian, Y., Zuo, L., Guo, Q., Li, J., Hu, Z., Zhao, K., et al. (2020). Potential role
of fecal microbiota in patients with constipation. Therap. Adv. Gastroenterol. 13,
1756284820968423. doi: 10.1177/1756284820968423

Ubachs, J., Ziemons, J., Soons, Z., Aarnoutse, R., van Dijk, D. P. J., Penders, J.,
et al. (2021). Gut microbiota and short-chain fatty acid alterations in cachectic cancer
patients. J. Cachexia Sarcopenia Muscle. 12, 2007–21. doi: 10.1002/jcsm.12804

Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., et al. (2012). Structural
segregation of gut microbiota between colorectal cancer patients and healthy
volunteers. ISME J. 6, 320–9. doi: 10.1038/ismej.2011.109

Weng, Y. J., Gan, H. Y., Li, X., Huang, Y., Li, Z. C., Deng, H. M., et al. (2019).
Correlation of diet, microbiota and metabolite networks in inflammatory bowel
disease. J. Dig. Dis. 20, 447–59. doi: 10.1111/1751-2980.12795

Westcott, S. L., and Schloss, P. D. (2015). novo clustering methods outperform
reference-based methods for assigning 16S rRNA gene sequences to operational
taxonomic units. PeerJ. 3, 1487. doi: 10.7717/peerj.1487

Wong, H. K., Ho, P. L., and Lee, C. K. (2019). Streptococcus gallolyticus
bacteremia and colorectal carcinoma. Gastroenterology. 156, 291–2.
doi: 10.1053/j.gastro.2018.07.059

Wu Y, Jiao N, Zhu R, Zhang, Y, Wu, D. et al. (2021). Identification of microbial
markers across populations in early detection of colorectal cancer. Nat Commun.
12:3063. doi: 10.1038/s41467-021-23265-y

Wu, F., Guo, X., Zhang, J., Zhang, M., Ou, Z., Peng, Y., et al. (2017).
Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract.
Exp. Ther. Med. 14, 3122–6. doi: 10.3892/etm.2017.4878

Xi, Y., and Xu, P. (2021). Global colorectal cancer burden in 2020 and projections
to 2040. Transl. Oncol. 14, 101174. doi: 10.1016/j.tranon.2021.101174

Xu, J., Yang, M., Wang, D., Zhang, S., Yan, S., Zhu, Y., et al. (2020). Alteration of the
abundance of Parvimonas micra in the gut along the adenoma-carcinoma sequence.
Oncol. Lett. 20 doi: 10.3892/ol.2020.11967

Yachida, S., Mizutani, S., Shiroma, H., Shiba, S., Nakajima, T., Sakamoto, T.,
et al. (2019). Metagenomic and metabolomic analyses reveal distinct stage-specific
phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–76.
doi: 10.1038/s41591-019-0458-7

Yang, Y., Du, L., Shi, D., Kong, C., Liu, J., Liu, G., et al. (2021). Dysbiosis of
human gut microbiome in young-onset colorectal cancer. Nat. Commun. 12, 6757.
doi: 10.1038/s41467-021-27112-y

Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K. H.,
et al. (2014). Uniting the classification of cultured and uncultured bacteria and archaea
using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–45. doi: 10.1038/nrmicro
3330

Zhang, F., Zhang, Y., Zhao, W., Deng, K., Wang, Z., Yang, C., et al. (2017).
Metabolomics for biomarker discovery in the diagnosis, prognosis, survival and
recurrence of colorectal cancer: a systematic review. Oncotarget. 8, 35460–72.
doi: 10.18632/oncotarget.16727

Zhou, L., Zhang, M., Wang, Y., Dorfman, R. G., Liu, H., Yu, T., et al. (2018).
Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to
ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm. Bowel Dis. 24,
1926–40. doi: 10.1093/ibd/izy182

Ziemski, M., Wisanwanichthan, T., Bokulich, N. A., and Kaehler, B. D. (2021).
Beating naive bayes at taxonomic classification of 16S rRNA gene sequences. Front.
Microbiol. 12. doi: 10.3389/fmicb.2021.644487

Frontiers inMicrobiology 11 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1178744
https://doi.org/10.1038/s41598-020-72132-1
https://doi.org/10.1136/gutjnl-2013-304833
https://doi.org/10.1097/01.mib.0000235828.09305.0c
https://doi.org/10.7556/jaoa.2019.011
https://doi.org/10.1016/j.mib.2013.06.003
https://doi.org/10.1159/000516922
https://doi.org/10.1089/fpd.2022.0014
https://doi.org/10.7717/peerj.5364
https://doi.org/10.3389/fonc.2021.650026
https://doi.org/10.1007/s00248-012-0145-4
https://doi.org/10.4172/jpb.1000381
https://doi.org/10.1093/nar/gkm864
https://doi.org/10.7717/peerj.2584
https://doi.org/10.3791/51709-v
https://doi.org/10.1371/journal.pone.0027310
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.14309/ajg.0000000000001122
https://doi.org/10.1053/j.gastro.2019.07.055
https://doi.org/10.1177/1756284820968423
https://doi.org/10.1002/jcsm.12804
https://doi.org/10.1038/ismej.2011.109
https://doi.org/10.1111/1751-2980.12795
https://doi.org/10.7717/peerj.1487
https://doi.org/10.1053/j.gastro.2018.07.059
https://doi.org/10.1038/s41467-021-23265-y
https://doi.org/10.3892/etm.2017.4878
https://doi.org/10.1016/j.tranon.2021.101174
https://doi.org/10.3892/ol.2020.11967
https://doi.org/10.1038/s41591-019-0458-7
https://doi.org/10.1038/s41467-021-27112-y
https://doi.org/10.1038/nrmicro3330
https://doi.org/10.18632/oncotarget.16727
https://doi.org/10.1093/ibd/izy182
https://doi.org/10.3389/fmicb.2021.644487
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

	An independent evaluation in a CRC patient cohort of microbiome 16S rRNA sequence analysis methods: OTU clustering, DADA2, and Deblur
	Introduction
	Methods
	Data acquisition and study design
	Data analysis
	Bacterial taxonomic analysis
	Analysis of diagnostic models
	Statistical analysis

	Results
	Variation in taxonomic community composition across different methods
	Analysis of case–control differences
	Differences between disease-diagnostic models

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


