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Introduction: Change in the composition of intestinal microbiota is associated 
with metabolic disorders such as gestational diabetes mellitus (GDM).

Methods: To understand how the microbiota impacts the development of 
gestational diabetes mellitus, we profiled the intestinal microbiome of 54 pregnant 
women, including 27 GDM subjects, by employing 16S rRNA gene sequencing. 
Additionally, we conducted targeted metabolomics assays to validate the 
identified pathways with overrepresented metabolites.

Results: We evaluated the patterns of changing abundances of operational taxonomic 
units (OTU) between GDM and the healthy counterparts over three timepoints. Based 
on the significant OTUs, we inferred 132 significantly altered metabolic pathways 
in GDM. And identified two overrepresented metabolites of pregnancy hormone, 
butyrate and mevalonate, as potential intermediary metabolites of intestinal 
microbiota in GDM. Finally, we validated the impacts of the intestinal microbiota on 
GDM by demonstrating consistent changes of the serum levels of progesterone, 
estradiol, butyrate, and mevalonate in an independent cohort.

Discussion: Our findings confirm that alterations in the microbiota play a role in the 
development of GDM by impacting the metabolism of pregnancy hormones. This 
provides a novel perspective on the pathogenesis of GDM and introduces potential 
biomarkers that can be used for early diagnosis and prevention of the disease.
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1. Introduction

Gestational diabetes mellitus (GDM) is a common metabolic disorder responsible for numerous 
adverse maternal and neonatal outcomes(Beucher et al., 2010; Ismail et al., 2011; Catalano et al., 
2012). Primigravidae diagnosed with GDM are at a greater risk of GDM (38.19%) in the second 
pregnancy than their healthy counterparts (3.52%) (Gomez-Arango et al., 2016). The incidence rate 
of GDM worldwide is 17.8% (with a range of 9.3–25.5%) according to Sacks et al. (2012). However, 
controlling GDM is challenging due to lack of screening, difficulty in gestational weight 
management, and safety concerns over the use of long-term medications (Matt, 2020).
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Abnormalities in the reprogramming of metabolic processes cause 
GDM. The latter is characterized by insulin resistance displayed in the 
second or third trimester, attributed to increased levels of certain 
pregnancy and placental hormones and pro-inflammatory factors 
(Mor and Cardenas, 2010; Kampmann et al., 2019). While most of the 
GDM subjects’ blood glucose normalizes right after birth, about 
20–50% develop type II diabetes during the 5 years postpartum (Kim 
et al., 2002).

Pregnancy hormones block insulin sensitivity hence partially 
causing GDM (Root-Bernstein et  al., 2014). Notably, during 
pregnancy, hormones’ levels vary substantially among individuals 
(Kumar and Magon, 2012). Such variations are associated with 
decreased insulin sensitivity (Lain and Catalano, 2007). Interestingly, 
hormone levels in pregnancy can be  regulated by microbiota and 
profoundly impact the endocrine system resulting in metabolic 
disorders (Koren et al., 2012; Neuman et al., 2015; Liu et al., 2019). 
Furthermore, it has been observed that altered gut microbiota 
constructions, the host’s hormone levels, and physiological changes 
during pregnancy are strongly correlated (Neuman et al., 2015).

The hormonal changes during pregnancy are known to interact 
with the gut microbiota (Neuman et al., 2015; Qi et al., 2021). Recent 
studies have shown that these interactions resulting in altered 
hormone metabolism, which directly links to the development of 
GDM. Specifically, metabolites such as short-chain fatty acids (SCFAs) 
and lipopolysaccharides (LPS), are produced by gut bacteria during 
the fermentation of dietary fibers (Gomez-Arango et  al., 2016). 
Increased levels of SCFAs have been shown to reduce insulin resistance 
and improve glucose metabolism in pregnancy (Wong et al., 2006; 
Yang et al., 2015). However, high level of SCFAs is also controversially 
reported for association with increased risk of GDM (Hasain et al., 
2020). On the other hand, elevated levels of bacterial LPS have been 
associated with inflammation and insulin resistance, while butyrate 
has been shown to have an inhibitory effect on LPS production (Roy 
et al., 2020).

However, the intermediary metabolites mediating microbiota’s 
impact on pregnancy hormones and GDM remain unknown. 
Moreover, most prior studies on GDM’s microbiota are based on 
cross-sectional data with a case–control setting. Notably, changes in 
the gut microbiota of GDM subjects are often confounded with 
individual variation due to limited sample size.

In this study, we hypothesize a metabolic mediation between gut 
microbiota and pregnancy hormones’ activity, affecting insulin and 
glucose metabolism during pregnancy. We  profiled the gut 
microbiome at three different time points during pregnancy in both 
GDM subjects and healthy pregnant women. Our data suggest that gut 
microbiota is involved in GDM’s pathogenesis by influencing the 
biogenesis of steroid hormones through butanoate and mevalonate’s 
metabolic pathways.

2. Materials and methods

2.1. Subject recruitment and inclusion 
criteria

We selected 54 pregnant women admitted to the obstetrics 
department of the First Affiliated Hospital of Xiamen University 

between March 2018 and March 2019, who underwent regular 
prenatal check-ups, and gave birth in the hospital (Figure 1A). The 
clinical research protocols were approved by the Ethics Committee of 
the First Affiliated Hospital of Xiamen University (reference number 
KY2022-033). All volunteers signed an informed consent according 
to protocol. Enrollment and exclusion criteria are summarized in 
Figure 1 caption.

All enrolled subjects received an oral glucose tolerance test 
(OGTT) at 24–28 weeks. After 3 days of a regular diet with at least 
150 g daily carbohydrate intake, the subjects underwent 8-h fasting 
and were then examined. A standard 2-h OGTT was conducted and 
gestational diabetes mellitus (GDM) diagnosis was performed based 
on the International Association of Diabetes and Pregnancy Study 
Groups’ diagnostic criteria. Diagnostic cut-off values of fasting, 1-h, 
and 2-h plasma glucose levels were 5.1, 10.0, and 8.5 mmol/L. Women 
whose blood glucose values met or exceeded the above criteria at 
either time received a GDM diagnosis (GDM subjects). Age and body 
mass index (BMI)-matching pregnant women who tested negative 
were considered controls.

For further validation using a targeted metabolomics assay, 
peripheral blood samples were collected from an independent cohort 
of 28 GDM subjects and controls (Supplementary Table S1).

2.2. Microbiome sample collection

Nurses sampled stool specimens at three time-points during 
pregnancy: t1 (first trimester, 11.85 ± 1.05 weeks), t2 (third trimester, 
30.50 ± 2.59 weeks), and t3 (6–8 weeks postpartum, Figure 1B; Table 1). 
To ensure the sampling accurately reflected the human intestinal flora, 
we injected 5 mL of saline into the anus and repeated suction. We then 
extracted the fecal suspension from the flushed rectum. The 
suspension was then injected into 1.5 mL Eppendorf (EP) tubes. 
We collected 2–5 specimens per subject/time point, stored them on 
ice and quickly transferred them to −80°C. Dry ice transportation was 
used to reduce oxidation risk.

For all enrolled subjects, we  collected extensive clinical 
information, documented in Table 1.

2.3. Microbiome analysis

2.3.1. 16S rRNA gene sequencing and 
pre-processing

All specimens were sent to BGI Co. Ltd. for database construction 
and sequencing. Qualifying genomic DNA samples were selected, the 
variable region 4 (V4) of the 16S ribosomal RNA (rRNA) gene was 
used as an amplicon, and sequencing was conducted on the HiSeq 
platform. Genomic DNA samples of 30 ng were extracted and the 
corresponding fusion primers were configured for PCR amplification. 
The amplified products were purified using Agencourt AMPure XP 
magnetic beads and eluted in Elution Buffer. The resulting library was 
labeled and prepared for sequencing by using the Agilent 2,100 
Bioanalyzer to detect fragment size and concentration. Qualified 
libraries were sequenced on the HiSeq platform based on the size of 
the inserted fragments. First, the original sequencing data was filtered 
for reads that were adaptor-contaminated, those containing N and 
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FIGURE 1

Schematic view of the study design. (A) 27 healthy pregnant women and 27 GDM subjects are enrolled in the study. Subject enrolment criteria were as 
follows: natural conception and singleton pregnancy; age below forty years; BMI pre-pregnancy between 17–28 (kg/m2); and gestational age below 
14 weeks. Exclusion criteria were diabetes pre-pregnancy, history of GDM, polycystic ovary syndrome, hypertension, depression, pregnancy-related 
diseases, infectious diseases, blood system diseases, and immune system diseases. Additionally, included subjects had no recent serious intestinal 
diseases, antibiotics, hormones, or probiotic treatment within one month prior to fecal sampling. (B) Fecal samples were collected from enrolled 
subjects at three time points as shown in the green rectangles, including early (t1) and late (t2) stage of pregnancy, and postpartum(t3). After 16 s rRNA 
gene sequencing, the abundances of operational taxonomic units (OTU) are inferred using QIIME2. (C) The differences of microbial profiles between 
two time points for each subject were calculated by log-ratios of t2 vs. t1 and t3 vs. t2, respectively. The results were tested based on 1,000-fold 
permutation to obtain significant OTUs, namely Set1-OTUs, Set2-OTUs. Then we inferred the activities of metabolic pathways and performed 
permutation test in the same way to obtain Set1-pathways and Set2-pathways.

TABLE 1 The clinical characteristics of enrolled subjects, early pregnant test, and plasma measurements of the study cohort.

GDM (n = 27) Control (n = 27) p value FDR

Sample information Age (year) 30.96 ± 3.79 29.80 ± 4.10 0.2945 0.5890

Pre-BMI (kg/m2) 20.67 ± 1.91 20.49 ± 2.01 0.7577 0.9300

Total weight gain (kg) 11.05 ± 2.97 13.44 ± 3.88 0.0151 0.1208

Early preganacy test FGB (mmol/L) 4.84 ± 0.42 4.89 ± 0.33 0.598 0.9300

(t1) HB (g/L) 123.00 ± 9.64 129.11 ± 10.05 0.028 0.1493

ALT (U/L) 19.12 ± 14.65 17.38 ± 5.49 0.2528 0.5778

AST (U/L) 16.78 ± 3.84 18.96 ± 12.15 0.7547 0.9300

Urea (mmol/L) 3.18 ± 0.68 3.16 ± 0.78 0.93 0.9300

Creatine (μmol/L) 49.54 ± 10.74 50.26 ± 9.95 0.7997 0.9300

Plasma measurements HbA1c (%) 5.41 ± 0.43 5.01 ± 0.23 0.0012 0.0192

(t2) P (ng/mL) 35.99 ± 10.31 42.53 ± 13.31 0.0583 0.2332

TC (mmol/L) 5.87 ± 1.03 5.98 ± 1.51 0.8289 0.9300

TG (mmol/L) 2.73 ± 0.95 2.35 ± 0.76 0.2302 0.5778

HDL-C (mmol/L) 1.77 ± 0.31 1.80 ± 0.53 0.8739 0.9300

LDL-C (mmol/L) 2.66 ± 0.61 3.09 ± 0.65 0.0864 0.2765

TSH (mIU/mL) 1.57 ± 0.61 1.81 ± 1.69 0.7135 0.9300

p value adjusted by FDR.
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low-complexity ones. Barcodes were removed before downstream  
analysis.

2.3.2. 16S rRNA gene sequencing data analysis
Raw sequence data were demultiplexed and quality-controlled 

using Quantitative Insights into Microbial Ecology (QIIME2, 
RRID:SCR_021258). QIIME2 plugin DADA2 was used to denoise and 
produce operational taxonomic units (OTUs) at 100% similarity. 
We  employed the Greengenes database (RRID:SCR_002830) as a 
reference to annotate OTUs. Taxonomic classification of marker-gene 
amplicon sequence was done using the sklearn classifier (q2-feature-
classifier, https://github.com/qiime2/q2-feature-classifier). Alpha 
diversity was assessed based on observed species, Shannon index, and 
Simpson index using the phyloseq package in R-3.6.3. Beta diversity 
between GDM subjects and controls at different time-points was 
measured using principal component analysis (PCA) and linear 
discriminat analysis (LDA). The LDA analysis was done using ‘lda’ 
function in ‘MASS’ package, and visualized by‘ggord’ function in 
‘ggord’ package. We  also carried out LEfSe (Linear discriminant 
analysis Effect Size) analysis on Galaxy web application (Segata et al., 
2011) to reveal the differentially abundant OTUs. The data were split 
by timepoint (t1, t2, t3), grouped by condition (GDM or normal).

2.3.3. Significant OTUs between GDM and 
healthy controls

We used log-ratio to measure each OTU’s difference of abundance 
between two adjacent time-points (Figure 1C). Then, each OTU’s 
significance of the difference between GDM subjects and controls was 
evaluated by 1,000-round permutation test implemented using the 
“ez” package in R (R code is available on https://github.com/xmbd/
Gestational_diabetes_mellitus).

2.4. Metabolic pathway prediction and 
analysis

Activities of microbial metabolic pathways were predicted using 
the PICRUSt2 (Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States) plugin in QIIME21 based on the 
OTU table obtained from QIIME2. MetaCyc database (Caspi et al., 
2020) was used as a reference for the annotation and identification of 
related metabolites in these pathways. Significantly altered pathways 
in GDM were called similarly based on permutation testing. We then 
performed K-means clustering on Set1- and Set2- pathways based on 
activity changes between GDM subjects and controls. Subsequently, 
the outliers were filtered out in Set2 (Principal component 2 < −5 
or > 5). For each cluster of pathways, we retrieved all the compounds 
from the MetaCyc database (Caspi et al., 2020). Then we ranked all the 
metabolites based on occurrence frequency, maintaining the recurrent 
ones (n > 1). Next, we compared the most recurrent metabolites with 
those in known hormone-metabolic pathways (Holstein and Hohl, 
2004; Heuston et al., 2012; Vital et al., 2014). Finally, we defined each 
cluster’s representative pathways (Table 2) based on the enrichment of 
recurrent metabolites (Supplementary Table S4).

1 https://github.com/picrust/picrust2

2.5. Targeted metabolomics assay

2.5.1. Metabolic extraction
Blood metabolites were extracted from a 100 μL aliquot/subject 

and transferred to an Eppendorf tube. Subsequently, 300 μL of 
methanol were added, samples were vortexed for 5 min, and finally 
centrifugated at 12000 rpm at 4°C for 15 min.

2.5.2. Blood sample analysis by gas 
chromatography–mass spectrometry

Eighty μL of the supernatant were transferred to an auto-
sampler vial for gas chromatography–mass spectrometry (GC–MS) 
analysis. GC separation was conducted by Agilent 7890B GC 
System (Agilent Technologies, CA, United  States). Mass 
spectrometry was performed with an EI source with selected ion 
monitoring using an Agilent 5977A mass spectrometer (Agilent 
Technologies, CA, United States). Ion source capillary temperature 
was 230°C.

2.5.3. Ultra-high-performance liquid 
chromatography–mass spectrometry

The Ultra-high-performance liquid chromatography (UHPLC) 
analysis was conducted using an Agilent 1,290 Infinity II series 
UHPLC System (Agilent Technologies, CA, United States). Ion source 
parameters settings were as follows: capillary voltage = +3,000 V, 
Nozzle Voltage = +1,500 V, gas (N2) temperature = 250°C, gas (N2) 
flow = 11 L/min, sheath gas (N2) temperature = 400°C, sheath gas 
flow = 12 L/min, nebulizer = 35 psi.

For each of the targeted analytes, multiple-reaction monitoring 
(MRM) parameters were optimized by directly injecting individual 
analytes’ standard solutions into the mass spectrometer’s API source. 
Of the two MRM transitions per analyte, the Q1/Q3 showing the 
highest sensitivity and selectivity were used as the MRM transitions 
for quantitative monitoring.

Agilent MassHunter Workstation Software (B.10.00, Agilent 
Technologies) was used for MRM data acquisition and  
processing.

2.6. Hormone level test

Plasma estradiol and progesterone levels were tested by ADVIA 
Centaur® XP Immunoassay System. Estradiol was measured by double-
antibody sandwich chemiluminescene assay. Progesterone was 
measured by direct competitive chemiluminescene enzyme  
immunoassay.

2.7. Clinical data analysis

To evaluate the association between clinical characteristics and 
GDM, we performed a hypothesis test for each clinical feature in 
GDM subjects and controls. If a feature was normally distributed 
(Shapiro–Wilk test p > 0.05), a Student’s t-test was performed. 
Otherwise, a Wilcoxon test was used. Tests’ p values were adjusted 
using the Benjamini & Hochberg method, and the significance of the 
difference was determined by an false discovery rate (FDR) of 0.05.
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3. Results

3.1. Clinical characteristics of the study 
cohort

We established a prospective cohort to investigate the impacts of 
intestinal microbiota on GDM (Table 1). Of the 54 subjects investigated, 
27 were diagnosed with GDM by standard OGTT (GDM subjects), 
while the remaining 27 were healthy throughout their pregnancy 
(controls). GDM subjects and controls showed no significant difference 
in age and BMI. Interestingly, subjects who developed GDM showed a 
significantly lower weight gain (11.05 ± 2.9 kg) than the controls 
(13.44 ± 3.88 kg, p < 0.05). In early pregnancy, Hemoglobin (HB) levels 
in the controls (129.11 ± 10.05 g/L) were significantly higher than GDM 
subjects (123.00 ± 9.64 g/L, p < 0.05). Similarly to prior studies (Lain 
and Catalano, 2007), during the second trimester, GDM subjects 
manifested significantly higher levels of HbA1c (5.01 ± 0.23%) than the 
controls (5.41 ± 0.43%, p < 0.01).

3.2. Changes of gut microbiota in GDM 
subjects

The microbial composition of each subject at three time-points is 
presented in class level (Figure 2A). The top three most abundant 

phyla were Firmicutes, Bacteriodetes, and Actinobacteria 
(Supplementary Figure S1), with similar amounts at all three time 
points, in GDM subjects and controls (Figure 2B; Table 3).

We performed linear discriminant analysis (LDA) on the top 100 
OTUs with the highest mean absolute deviation (MAD>0) 
(Figure 2C). Based on the first two LDs (LD1 and LD2), the microbiota 
was separated according to the time-points and patient grouping 
(GDM subjects vs. controls). The deviation between GDM subjects 
and controls was more evident in t2 and t3, suggesting that the changes 
in the GDM’s gut microbiota were associated with pregnancy 
progression. We also conducted Linear discriminant analysis Effect 
Size (LEfSe) analysis (Segata et  al., 2011) for each of the three 
timepoints to visualize the difference taxa between GDM subjects and 
healthy control (Supplementary Figure S2).

During pregnancy’s early stages (t1), GDM subjects and controls 
showed no significant difference in gut microbiota diversity 
(Wilcoxon’s test, p > 0.05). However, during the same stage, the 
Shannon and Simpson index found the microbial community more 
diverse in the GDM group. In the third trimester (t2), GDM subjects 
showed a significantly higher number of OTUs in gut microbiota than 
the controls (Wilcoxon’s test, p = 0.03, Figures  2D–F). However, 
according to the Shannon and Simpson index the richness and 
evenness were not statistically significant. Finally, postpartum (t3), 
alpha-diversity showed no difference between GDM subjects 
and controls.

TABLE 2 The representative microbial metabolic pathways in each cluster corresponding to the highly recurrent metabolites (butanoate and 
mevalonate) in Set1- and Set2-pathways.

PWYID Cluster p value Pathway name Metabolites

Set1 Butanoate 

pathways

P163-PWY 2 0.0012 L-lysine fermentation to acetate and 

butanoate

acetate, acetoacetyl-CoA, butanoate, 

acetyl phosphate, butanoyl-CoA, 

crotonyl-CoA, acetoacetate

PWY-5676 2 0.0172 acetyl-CoA fermentation to butanoate 

II

acetate, acetoacetyl-CoA, butanoate, 

acetyl phosphate, butanoyl-CoA, 

crotonyl-CoA

P162-PWY 2 0.0424 L-glutamate degradation V (via 

hydroxyglutarate)

acetate, acetoacetyl-CoA, butanoate, 

butanoyl-CoA, crotonyl-CoA

Mevalonate 

pathways

NONMEVIPP-PWY 2 0.0335 methylerythritol phosphate pathway I DMAPP, MEP

PWY-7560 2 0.0335 methylerythritol phosphate pathway II DMAPP, MEP

PWY-5121 2 0.028 superpathway of geranylgeranyl 

diphosphate biosynthesis II (via MEP)

DMAPP, IPP, MEP, GPP, GGPP

PWY-7392 2 0.0305 Engineered Pathway: taxadiene 

biosynthesis (engineered)

DMAPP, MEP, GPP, GGPP

Set2 Butanoate 

pathways

PWY-6590 3 0.0372 superpathway of Clostridium 

acetobutylicum acidogenic 

fermentation

acetate, acetoacetyl-CoA, butanoate, 

acetyl phosphate, butanoyl-CoA, 

crotonyl-CoA

CENTFERM-PWY 3 0.0373 pyruvate fermentation to butanoate acetoacetyl-CoA, butanoate, 

butanoyl-CoA, butanoyl phosphate, 

crotonyl-CoA

Mevalonate 

pathways

PWY-922 3 0.0203 mevalonate pathway I (eukaryotes and 

bacteria)

acetyl-CoA, DMAPP, acetoacetyl-

CoA, (R)-mevalonate

PWY-5910 3 0.0212 superpathway of 

geranylgeranyldiphosphate 

biosynthesis I (via mevalonate)

acetyl-CoA, DMAPP, acetoacetyl-

CoA, (R)-mevalonate

The p values indicate the significance of difference in GDM and the healthy controls.
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3.3. Microbial taxa associated with 
gestational diabetes

We used a permutation test to evaluate the significance of 
microbial taxa’s changing abundance between two consecutive 
time points (t2 vs. t1, t3 vs. t2) in GDM subjects and controls. 
Notably, we  identified 32 OTUs differently regulated in GDM 
subjects (FDR < 0.1) (Table 4). Among the 32 OTUs, nine were 

significantly regulated between t1 and t2 (Set1-OTUs, Table 4), 
with different behaviors in GDM subjects vs. controls 
(Supplementary Figures S4A, S5A). Furthermore, 23 OTUs were 
significantly regulated in the controls during t2 and t3 (Set2-OTUs, 
Table 5). Eleven OTUs in Set2 were suppressed in GDM subjects, 
while drastically increased in the controls. The other 12 OTUs, 
increased in the GDM subjects and decreased in the controls 
(Supplementary Figures S4B, S5B).

FIGURE 2

Different abundances and richness of the intestinal microbiota in GDM and healthy controls (labelled as “Normal”) at three time points of pregnancy. 
(A) The top-five most abundant phyla presented at three time points between GDM subjects and healthy controls remain the same although the 
abundances vary between the two groups. (B) The composition ratios of microbial phyla at three time points between GDM subjects and healthy 
controls, the number of significant Set1- and Set2- OTUs in each phylum is listed in the parentheses. The asteroid indicates overall significance of the 
phylum. (C) Linear discriminant analysis (LDA) based on top-100 variable OTUs in the study cohort show the microbiota vary according to the stage of 
pregnancy and the onset of GDM. Mean absolute deviation (MAD) is calculated for each OTU to determine the variability. (D) Alpha diversity from early 
pregnancy to postpartum as represented by observed richness, Shannon (E) and Simpson indices (F) of the microbiome profiles between GDM and 
healthy controls. Significance was tested at each time points by the Wilcoxon test. “Normal” denotes healthy controls.

TABLE 3 The five most abundant phyla identified from gut-microbiota of GDM and Normal group in three timepoints of pregnancy.

Phylum
Early pregnancy Late pregnancy Postpartum

GDM Control GDM Control GDM Control

Bacteroidetes 40.40% 43.66% 42.30% 45.76% 48.73% 50.79%

Firmicutes 50.19% 45.34% 44.92% 44.67% 42.95% 34.57%

Actinobacteria 4.95% 2.25% 8.18% 3.74% 4.53% 7.17%

Proteobacteria 3.43% 7.86% 3.09% 3.86% 2.79% 6.20%

Fusobacteria 0.62% 0.68% 1.01% 1.85% 0.51% 0.62%

Total 99.59% 99.79% 99.50% 99.88% 99.51% 99.35%

The abundance of each phylum is based on the total percentage of all OTUs present in that phylum.
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3.4. Microbial metabolic pathways 
influence hormone levels

We predicted the activities of microbial metabolic pathways based 
on the difference of microbial profiles over two consecutive time 
points, i.e., t2 vs. t1 and t3 vs. t2 (Figure 1). Then, we used a permutation 
test to evaluate the significance of our findings. Thus, we identified 45 
metabolic pathways significantly altered between t1 and t2 (Set1-
pathways, Supplementary Table S2) and 87 between t2 and t3 (Set2-
pathways, Wilcoxon test, p < 0.05, Supplementary Table S3). 

Additionally, we  noticed that Set1-pathways showed significantly 
different activities between GDM subjects and controls (Fisher test 
p < 0.05, Supplementary Figure S3A).

Then we  performed the principal component analysis (PCA) 
based on the significant metabolic pathways’ activities followed by 
K-means clustering (Figures  3A,B). We  observed that the Set1-
pathways (Figure  3A; Supplementary Table S2; 
Supplementary Figure S6) were clustered into three distinct groups. 
The first contained seven pathways, 6 of which were biosynthetic. The 
second contained 34 pathways, mainly for nucleotide biosynthesis, cell 

TABLE 4 Set1-OTUs with significantly altered abundances between GDM and healthy controls.

Order Genus OTU ID FDR Abundance: GDM vs. Control

o__Lactobacillales g__Lactobacillus f383c2310b0591938662cfc86103cbee 0.000 low vs. increasing

o__Lactobacillales g__Lactobacillus (s__zeae) 623908ac1fccc394e50027f1dec0d7d5 0.000 increasing vs. decreasing

o__Fusobacteriales Unassigned d7e44c932c551da8eeedd8ac53f01a02 0.035 decreasing vs. increasing

o__Caulobacterales g__Caulobacter 3a98d5ec65c7c79a28b65611e1cc5f3b 0.035 increasing vs. decreasing

o__Bacteroidales g__Prevotella dd880d05e7985b728b0292355b402dc4 0.084 low vs. increasing

o__Clostridiales g__Dialister 73f1eb71de84311115038599adfa4c40 0.093 decreasing vs. increasing

o__Bacteroidales g__[Prevotella] adac2e87e83cbfb6d144469e510d6b7c 0.093 low vs. decreasing

o__Burkholderiales g__Sutterella dcd619b840bf5c7dc86c231026407b85 0.093 low vs. decreasing

o__Clostridiales g__Anaerococcus c0f60859070d06f230c0d077915a74c9 0.093 low vs. increasing

Annotated Set1-OTUs that show significant difference between timepoint t1 and t2. All OTUs are annotated to the most exclusive taxonomic levels.

TABLE 5 Set2-OTUs with significantly altered abundances between GDM and healthy controls.

Order Genus OTU ID FDR Abundance: GDM vs. Control

o__RF32 Unassigned 1a2237a36f37e9dc6b1d6adaf82ba995 0.000 increasing vs. decreasing

o__Bacteroidales g__Bacteroides a8b7c477f24d9eefad61089da9b3737c 0.000 increasing vs. decreasing

o__Burkholderiales g__Sutterella dcd619b840bf5c7dc86c231026407b85 0.000 increasing vs. decreasing

o__Clostridiales g__Faecalibacterium(s__prausnitzii) f545f1befaa2154503f4d48be98d6f20 0.000 increasing vs. decreasing

o__Clostridiales g__Faecalibacterium (s__prausnitzii) 47ced4607b5c319fe5021ca041d3d310 0.000 increasing vs. decreasing

o__Clostridiales g__Peptoniphilus 4f070ff4895d8743d3111d180e25f7ed 0.000 increasing vs. decreasing

o__Bacteroidales g__Prevotella 0b28c7f9f52a5bc4fa6fc92e3a6a3e61 0.000 low vs. increasing

o__Clostridiales g__Dorea (s__longicatena) c5ce48ef1bde6255a8dfc808e4dcd9ba 0.000 increasing vs. decreasing

o__Clostridiales Unassigned 77c3857f39a914d68117114dae6ff9fa 0.000 increasing vs. decreasing

o__Clostridiales g__Anaerococcus 6b38e1484786e62b68ddb88194b6d5a7 0.000 increasing vs. decreasing

o__Clostridiales g__Blautia 1bd9abd8981a87cc18fcab2ea5357043 0.000 increasing vs. decreasing

o__Clostridiales g__Oscillospira 6db1ecacf0a9069bdc3769d566e6bc14 0.000 increasing vs. decreasing

o__Clostridiales g__Oscillospira 4513d13bd91f493e23fddc8458ddc242 0.000 increasing vs. decreasing

o__Clostridiales g__Oscillospira 6ea68b1f9306c6a113f3b54d7dd96980 0.016 stable vs. increasing

o__Coriobacteriales Unassigned 9634685a7deef3481e6a70c7066abbf7 0.023 decreasing vs. increasing

o__Bacteroidales g__Bacteroides 583f1c98ae63ff6c82fec113e7935b6a 0.060 low vs. increasing

o__Clostridiales Unassigned 93e69425555947e705e1a08df6b4314e 0.060 low vs. increasing

o__RF39 Unassigned 529494b7c7acd36d33035ad989f3a6ac 0.060 low vs. increasing

o__Lactobacillales g__Lactobacillus ebd417f69f94dd74b6baa60f66202ea8 0.060 low vs. increasing

o__Clostridiales g__Blautia 2c1587124073059af1de3a13debb8376 0.068 low vs. increasing

o__Bacteroidales g__Prevotella ddb902955d5cf7410502b2078b0c19f7 0.070 low vs. increasing

o__Clostridiales Unassigned 3d6b98c9310d0d9e09e62f9b292f3f41 0.077 low vs. increasing

o__Clostridiales g__Ruminococcus 176bd59dc7968cb5ac2fbe63c9940e39 0.084 low vs. increasing

Annotated Set2-OTUs that show significant difference between timepoint t2 and t3. All OTUs are annotated to the most exclusive taxonomic levels. “increasing” and “decreasing” indicate the 
changing trends of the abundance for each OTU. “low” means the overall abundance of the OTU is very low.
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structure, and degradation pathways. Finally, the third group 
contained four pathways, mostly related to energy metabolism.

Similarly, 87 Set2-pathways (p < 0.05) formed three groups 
(Figure 3B; Supplementary Figure S7; Supplementary Table S3). The first 
contained 39 pathways, predominantly biosynthesis and degradation 
processes of amino acids and aromatic compounds. The second group 
contained 13 pathways of aromatic compounds degradation. Finally, the 
last group contained 35 pathways, mostly biosynthetic.

To identify the critical metabolites in the microbial metabolic 
pathways associated with GDM, we  retrieved from the MetaCyc 
database (Caspi et al., 2020) all the metabolites for each group of 
significant pathways. Then, we  ranked the metabolites based on 
recurrence frequency per group (Supplementary Table S4). In Set1-
pathways, we noticed that butyrate-related (n = 20) and mevalonate-
related metabolites (n = 16) were both highly represented 
(Supplementary Table S4). Finally, we identified similar metabolites 
in the Set2-pathways but with a moderate frequency. We  then 
retrieved 8 Set1-pathways and 4 Set2-pathways in which butyrate and 

mevalonate metabolites were overrepresented (Figures  3C,D; 
Supplementary Figures S8A,B; Table 2).

Overall, our data show a difference in the gut microbiota of GDM 
subjects vs. controls, leading to a drastic change of microbial metabolic 
pathways, potentially linked with GDM’s onset.

3.5. Validation of the blood metabolites 
and hormone levels in GDM

To verify whether blood butyrate and mevalonate levels elevate 
with the increasing activities of the corresponding microbial 
pathways, we performed a targeted metabolomics assay using the 
blood samples of an independent cohort (28 GDM subjects and 28 
controls) at t1 and t2, respectively. As a result, butyrate levels in GDM 
subjects were higher than the controls (p < 0.001) at t1, while they 
decreased to similarly low levels during late pregnancy (Figure 4A; 
Supplementary Figure S9A). Mevalonate levels remained similar in 

FIGURE 3

Clustering of inferred significantly altered microbial metabolic pathways from Set1-OTUs and Set2-OTUs. PCA of significantly altered microbial metabolic 
pathways corresponding to Set1-OTUs (A) and Set2-OTUs (B) by permutation test. Clustering of pathways by k-means algorithm are labeled by colored 
circles. Pathway IDs highlighted in light green are butyrate-related pathways, those highlighted in light orange are mevalonate-related pathways. Pathways 
in Table 5 were labelled in each cluster. (C) butyrate-related and pathways in Set1 and Set2: PWY-5676 (acetyl-CoA fermentation to butanoate II), P163-
PWY (L-lysine fermentation to acetate and butanoate), P162-PWY (L-glutamate degradation V (via hydroxyglutarate)), CENTFERM-PWY (pyruvate 
fermentation to butanoate), PWY-6590 (superpathway of Clostridium acetobutylicum acidogenic fermentation). (D) mevalonate-related pathways in Set1 
and Set2: PWY-7560 (methylerythritol phosphate pathway II), PWY-7392 (Engineered Pathway: taxadiene biosynthesis (engineered)), PWY-5121 
(superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP)), NONMEVIPP-PWY (methylerythritol phosphate pathway I), PWY-922 (mevalonate 
pathway I (eukaryotes and bacteria)), PWY-5910 (superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate)). Significance of alteration 
were tested by permutation test (*** p < 0.001, ** p < 0.01, * p < 0.05). “Normal” denotes healthy controls.
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GDM subjects and controls at t1; but increased significantly in GDM 
subjects at t2 (p < 0.001, Figure 4B; Supplementary Figure S9B).

In the same cohort, we also measured estradiol and progesterone 
levels, which increased with the length of pregnancy from t1 to t2 
(Figures  4C,D), in both groups. However, GDM subjects showed 
higher estradiol levels at t1 (Wilcoxon’s test p  < 0.005, 
Supplementary Figure S9C), and higher progesterone levels at both t1 
and t2 (Wilcoxon’s test p < 0.001) (Supplementary Figure S9D). The 
increase in estradiol and progesterone levels in GDM was consistent 
to the changes of butyrate and mevalonate levels, which are coupled 
with the suppression of butanoate and Isopentenyl Diphosphate 
Biosynthesis (Supplementary Figure S10). Of note, our data show 
Isopentenyl Diphosphate Biosynthesis tend to increase in the normal 
controls (PWY-592, PWY-5910) but remain unchanged or decrease 
in GDM subject, which contributes to the accumulation of mevalonate.

4. Discussion

GDM is a common metabolic disorder during pregnancy, known 
to be associated with changes in the gut microbiome. However, to 
date, microbiota’s possible mechanisms and relevant metabolites in 
GDM subjects remain unclear. In this study, we identified a set of 
bacterial taxa associated with GDM’s onset in early and late pregnancy, 
and postpartum. We found that GDM-associated taxa are enriched in 
butanoate and mevalonate metabolic pathways in GDM subjects, 
resulting in increased levels of pregnancy hormones, further 
contributing to insulin resistance.

Although the interaction between microbiota and GDM is widely 
reported, most of the current knowledge is based on cross-sectional 
design, making it challenging to establish causal relationships. The 

major advantage of the current study is based on self-controlled, 
time-dependent profiling of gut microbiota in GDM subjects and 
their healthy counterparts, via which we are able to obtain highly 
relevant changes in microbiota involved in the onset of GDM. This 
approach is more specific than cross-sectional design and augmented 
by stringent process for fecal specimen collection, preserving 
microbiota’s richness and enhancing the accuracy of the analysis. Our 
findings suggest that variations in gut microbiota contribute to the 
pathogenesis of GDM through individual hormonal metabolism, as 
represented by specific metabolites of pregnancy hormones. These 
results help differentiate the causal effects of microbiota on hormonal 
changes in GDM from other conflicting reports.

We report two sets of microbial taxa, significantly associated with 
GDM in the second and third trimester. In Set1-OTUs, Veillonellaceae 
was more abundant in GDM, and reported as a potential target for 
diabetes and hyperlipidemia management (Liu et al., 2019), and as a 
marker of euglycemia during pregnancy (Chen et  al., 2021). As 
previously published, Fusobacteriaceae was suppressed in GDM 
subjects between t1 and t2, whereas the controls showed an opposite 
tendency (Gomez-Arango et al., 2016). In Set2-OTUs, Dorea (Family 
Lachnospiraceae) was reported to be associated with type II diabetes 
(Li et al., 2020) and GDM (Ferrocino et al., 2018). Furthermore, our 
results showed that Prevotellaceae (Clemente et al., 2015; Martínez 
et al., 2015) was depleted in GDM subjects, confirming a recent study 
(Chen et al., 2021). Moreover, we reported for the first time some 
microbial taxa in association with GDM, such as Caulobacteraceae. 
Although little is known of the relationship between gut microbiota 
and pregnancy hormones, a previous study showed that the 
interruption of microbiota, because of antibiotic treatment for 
example, indeed impacts the host’s metabolic pathways, including 
steroid hormones synthesis (Antunes et al., 2011).

FIGURE 4

Covariation of metabolites and hormone levels in GDM subjects and controls between t1 and t2. (A,B) Plasma butyrate and mevalonate levels of GDM 
and normal group between t1 and t2. Measures from the same patient are linked by solid lines. (C,D) Estradiol and progesterone levels of GDM and 
normal group between t1 and t2. Measures from the same patient are linked by solid lines. The significance of the difference between GDM subjects 
and normal group are based on Wilcoxon’s rank-sum test p values (*** p < 0.001, ** p < 0.01, * p < 0.05). “Normal” denotes healthy controls.
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The relationship between gut microbes and hormones such as 
progesterone and estradiol levels has been reported in previous studies 
in healthy and GDM subjects (Nuriel-Ohayon et al., 2019; Rold et al., 
2022). During pregnancy, certain microbes, such as Bifidobacterium 
in microbiota interacts with hormones, including progesterone, 
estrogen and insulin, and plays a significant role in reproductive 
endocrinological processes (Nuriel-Ohayon et  al., 2019; Qi et  al., 
2021). In GDM subjects, a high-fat and low-fiber diet, along with 
altered gut microbiota, has been shown to contribute to abnormal 
glucose metabolism, insulin resistance, and increased risk of GDM 
incidence (Hasain et al., 2020). While cumulative evidence has shown 
an association between hormonal changes and changes in the 
microbiota, none of the included studies compared the hormonal 
change between GDM and non-GDM women in light of time-varying 
microbiota during pregancy. Therefore, the implication of the 
covariation between hormones on the gut microbiota in GDM 
remains unclear (Rold et al., 2022). Our study addresses the gap in the 
current literature by comparison of temporal variation of serum 
estradiol and progesterone levels between women with GDM and 
healthy controls, which provides insight into the potential role of the 
interaction of gut microbiota and hormone metabolism in GDM.

Metabolic pathways differ between healthy pregnant women and 
those with GDM, for example, arginine metabolic pathway, beta-
oxidation, urea cycle pathway, which also resemble type 2 diabetes 
(DM2) (Spanou et  al., 2022). Specific metabolites were primarily 
involved in the metabolic disorders of GDM, such as 3-methyl-2-
oxovaleric acid, branch-chain amino acids, isobutyric acid (Lu et al., 
2021). Nevertheless, there is a lack of consistency among the altered 
metabolic pathways across different studies.

Our data suggests that microbiota changes in GDM are likely to 
affect the butyrate and mevalonate metabolic pathways. Butanoate 
pathways are known to influence insulin sensitivity by increased 
production of butyrate (Gao et al., 2009). In our data, both butyrate-
related pathways’ activities and butyrate levels showed a drastic 
decrease from significantly high levels at t1 in GDM subjects vs. 
controls, where butyrate levels remain stably low. Additionally, 
we report a set of significantly altered OTUs contributing to these 
pathways (Figures 3C,D), all previously reported as butyrate-producers 
(Bäckhed et al., 2015; Lopez-Siles et al., 2017; Wu et al., 2018; Ozato 
et al., 2019). Interestingly, mevalonate metabolic pathways were less 
known for their effects on GDM until a recent review mentioned that 
the levels of a mevalonate-related metabolite, isopentenyl phosphate 
(IPP), were significantly altered in GDM subjects (Roverso et al., 2021). 
Several mevalonate-related metabolites found in our study, including 
IPP, DMAPP, and GGPP, are precursors for steroid hormones. These 
hormones are involved in metabolic reprogramming and increased 
GDM risk (Holstein and Hohl, 2004). Notably, we detected significantly 
higher levels of mevalonate in GDM subjects at t2 with consistent 
increase of estradiol and progesterone levels. Our findings indicate that 
metabolites of microbial origin can contribute to the aberrant levels of 
steroid hormones in association with insulin resistance in GDM.

Nevertheless, the current study has several limitations. First, a 
small sample size. Second, the 16S rRNA gene-based taxonomy 
annotation is less sensitive than shot-gun metagenome, failing to 
annotate several OTUs to species level. Third, while our study identified 
butyrate and mevalonate as intermediary metabolites of gut microbiota 
in GDM, their enrichment significance was not directly verified, and 
other intermediary metabolites are yet to be discovered. Finally, our 

validation confirmed that estradiol and progesterone changes were 
inconsistent in GDM subjects. Many other pregnancy hormones are 
also associated with insulin resistance. However, as the hormone levels 
in pregnant women vary drastically due to physiological changes, the 
current study is not sensitive enough to detect all relevant hormonal 
changes in GDM in response to microbiota.

In this study, we generated self-controlled, temporal profiles of 
microbiota for GDM subjects and their healthy counterparts using 16S 
rRNA gene sequencing and identified critical pathways with 
overrepresented metabolites, which were further validated in targeted 
metabolomics assay. Our findings shed light on a novel perspective 
regarding the elusive pathogenesis of GDM and contributed to 
expanding our comprehension of the correlation between microbiota 
and the onset of GDM. Our results revealed important insights into 
the interaction mechanisms among hormonal changes, gut 
microbiome alterations, and metabolites in the context of GDM.
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