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Background: The link between gut microbial dysbiosis and the development 
of chronic obstructive pulmonary disease (COPD) is of considerable interest. 
However, little is known regarding the potential for the use of the fecal 
metagenome for the diagnosis of COPD.

Methods: A total of 80 healthy controls, 31 patients with COPD severity stages 
I  or II, and 49 patients with COPD severity stages III or IV fecal samples were 
subjected to metagenomic analysis. We  characterized the gut microbiome, 
identified microbial taxonomic and functional markers, and constructed a COPD 
disease classifier using samples.

Results: The fecal microbial diversity of patients with COPD stages I  or II was 
higher than that of healthy controls, but lower in patients with COPD stages III 
or IV. Twenty-one, twenty-four, and eleven microbial species, including potential 
pathogens and pro-inflammatory bacteria, were significantly enriched or depleted 
in healthy controls, patients with COPD stages I or II, and patients with COPD 
stages III & IV. The KEGG orthology (KO) gene profiles derived demonstrated 
notable differences in gut microbial function among the three groups. Moreover, 
gut microbial taxonomic and functional markers could be used to differentiate 
patients with COPD from healthy controls, on the basis of areas under receiver 
operating characteristic curves (AUCs) of 0.8814 and 0.8479, respectively. Notably, 
the gut microbial taxonomic features differed between healthy individuals and 
patients in stages I-II COPD, which suggests the utility of fecal metagenomic 
biomarkers for the diagnosis of COPD (AUC  =  0.9207).

Conclusion: Gut microbiota-targeted biomarkers represent potential non-
invasive tools for the diagnosis of COPD.
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Background

Chronic obstructive pulmonary disease (COPD) is a progressive 
inflammatory disease affecting the airways, alveoli, and 
microvasculature. Its primary characteristics include irreversible airflow 
limitation, chronic lung inflammation, and remodeling of the small-
airway compartment [Global Initiative for Chronic Obstructive Lung 
Disease (GOLD), 2021]. COPD is now a major public health problem 
all over the world and places a huge burden on economies, society, and 
medical care, especially in low- and middle-income countries [Halpin 
et al., 2019; Global Initiative for Chronic Obstructive Lung Disease 
(GOLD), 2021]. Our previous research showed the prevalence of COPD 
in people aged ≥40 years in China rose from 8.2% in 2007 to 13.7% in 
2015, suggesting that 90 million Chinese adults might have this 
condition (Zhong et al., 2007; Wang et al., 2018). Owing to the absence 
of specific symptoms during the mild to moderate COPD (FEV1 ≥ 50% 
predicted, GOLD stages I-II) stages and because few people undergo a 
pulmonary function test before they are diagnosed with COPD (Wang 
et al., 2018), a large proportion of patients are often diagnosed when at 
an advanced stage of disease (GOLD stages III–IV) (Fang L. et al., 
2018). Therefore, in addition to lung function testing, another 
non-invasive biomarker for the diagnosis of COPD is urgently needed.

The role of the gut microbiome in the development of this disease 
is now of considerable interest (Nie et al., 2019). Recent studies have 
linked changes in gut microbial composition and function with the 
development of COPD (Bowerman et al., 2020; Li et al., 2020, 2021; 
Lai et al., 2022). The gut microbiota and microbial metabolome of 
patients with COPD have been shown to be distinct to those of healthy 
individuals (Bowerman et al., 2020). In addition, the gut microbial 
composition has been shown to affect the development of cigarette 
smoke-induced COPD in mice, and the commensal bacterium 
Parabacteroides goldsteinii has been shown to ameliorate COPD (Lai 
et al., 2022). In our previous study, we showed that an abnormal gut 
microbiota in patients with COPD is associated with airway 
inflammation, and that the progression of COPD in mice is accelerated 
by fecal transplantation from mice with COPD, indicating a direct 
influence of the gut microbiota on COPD (Li et al., 2021). Furthermore, 
the concept of the use of the gut microbiome for the non-invasive 
diagnosis of colorectal cancer, hepatocellular carcinoma, and alcoholic 
liver disease has been validated in number of studies (Yu et al., 2017; 
Ren et  al., 2019; Smirnova et  al., 2020). However, the diagnostic 
potential of the gut microbiome for COPD has yet to be evaluated.

In the present study, we collected a total of 160 fecal samples from 
patients with COPD (GOLD stages I or II, n = 31; GOLD stages III or 
IV, n = 49) and healthy controls (n = 80) in Guangzhou city 
(Guangdong Province, P.R. China) and performed metagenomic 
sequencing of the microbial DNA content. The taxonomic and 
functional features of the microbiomes of patients with COPD and 
healthy controls were analyzed and used to evaluate the potential of 
the gut microbiome for use as a non-invasive biomarker of COPD.

Methods

Study design and participants

In the current study, participants were selected from our previous 
COPD cohort studies (Zhou et al., 2014, 2017; Liu et al., 2017; Li et al., 
2019), which were funded by the National Key Research and 
Development Program of China (No. 2016YFC1304101). All patients 
were residents of Guangzhou and characterized by similar lifestyle and 
eating habits. Some of the most common foods in Guangzhou include 
rice, seafood, dim sum, cantonese roast meat and vegetables and 
herbs. The healthy control group was recruited from the same 
residential area. Following rigorous pathological diagnosis and 
exclusion procedures, a total of 160 fecal samples were obtained, with 
31 from patients with COPD GOLD severity stages I or II, 49 from 
patients with COPD GOLD severity stages III or IV, and 80 from 
healthy controls. The Ethics Commission of the First Affiliated 
Hospital of Guangzhou Medical University approved the study (No. 
2017–21, e-Appendix 1), and written informed consent was obtained 
from all participants. Participant clinical information, including sex, 
age, body mass index (BMI), smoking index, and spirometry data, was 
collected. The COPD Assessment Test (CAT) score and modified 
Medical Research Council (mMRC) Dyspnea Scale score were 
also calculated.

Inclusion and exclusion criteria

In accordance with the GOLD guidelines [Global Initiative for 
Chronic Obstructive Lung Disease (GOLD), 2021], 80 male 
participants between 40–70  years of age were diagnosed with 
COPD. The participants included 39 individuals with COPD GOLD 
severity stages I or II (FEV1/FVC ratio < 70% and FEV1 50–80%), and 
41 individuals with COPD severity stages III or IV (FEV1/FVC 
ratio < 70% and FEV1 < 50%). All the participants underwent chest 
X-ray, electrocardiography, abdominal ultrasonography, and blood, 
urine, and fecal tests. The exclusion criteria were: presence of other 
diseases, such as hypertension, cancer, diabetes and gastrointestinal 
disease; history of cystic fibrosis, asthma, and/or another clinically 
significant lung disease other than COPD; and treatment with a 
systemic corticosteroid and/or an antibiotic (inclusive of macrolide 
antibiotics) within the preceding 8 weeks. The exclusion criteria for 
the healthy controls were clinically significant lung disease, 
gastrointestinal disease, hypertension, diabetes, obesity, metabolic 
syndrome, and treatment with antibiotics within the preceding 
8 weeks.

Collection of fecal samples and DNA 
extraction

Fresh stool samples were collected from donors in the morning. 
The consistency of each sample was assessed using the Bristol Stool 
Form Scale, and only samples with types 2–5 were included. The stool 
samples were immediately placed in sterile containers and stored in 
−80°C freezers at the research laboratory until further processing. 
Bacterial DNA was extracted from 200 mg samples using a MagPure 
Stool DNA KF kit (Magen Biotechnology, Guangzhou, China), 

Abbreviations: AUC, Area under the curve; COPD, Chronic obstructive pulmonary 

disease; CAT, COPD assessment test; FEV1, Forced expiratory volume in 1  s; FVC, 

Forced vital capacity; FEV1/FVC, Forced expiratory volume in 1  s to forced vital 

capacity ratio; MMRC, Modified Medical Research Council; OTU, Operational 

taxonomic unit.
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according to the manufacturer’s instructions. The DNA was quantified 
using a Qubit dsDNA BR Assay Kit (Thermo Scientific, Waltham, MA, 
United States) and a Qubit Fluorometer (Thermo Scientific, Waltham, 
MA, United States), following the manufacturer’s instructions.

PCR amplification, library construction and 
metagenomic sequencing

The DNA quality was assessed through 1% agarose gel 
electrophoresis, and the DNA library was generated using the method 
previously outlined (Huang et al., 2017). In brief, genomic DNA (1 μg) 
was fragmented using covaris to obtain random fragments. Magnetic 
beads were used to select fragments with an average size of 300–700 bp. 
The selected fragments then underwent end-repair, 3′ adenylation, 
adapters-ligation, and PCR amplification. The PCR products were 
subsequently purified using Magnetic beads. To form the final library, 
the double-stranded PCR products were heat denatured and 
circularized using a splint oligo sequence. The resulting single-strand 
circular DNA (ssCir DNA) was qualified through quality control (QC) 
assessment. The qualified libraries were sequenced using the BGISEQ-
500 platform (BGI, Shenzhen, China) (Huang et  al., 2017; Fang 
C. et al., 2018). The Genome Sequence Archive at the BIG Data Center 
(https://bigd.big.ac.cn; Beijing Institute of Genomics (BIG), Chinese 
Academy of Sciences) has received the raw sequencing read data for 
all samples, which can be  accessed under the accession 
number PRJCA013653.

Sequencing data processing

The Sunbeam pipeline was used to process raw sequencing reads 
for the metagenome. During processing, Cutadapt (v.2.5) was used for 
quality filtering, Komplexity was used to filter out sequences of low 
complexity, and BWA (v.0.7.17) was used to filter out host reads by 
mapping to the human genome GRCh38 (Li and Durbin, 2009; 
Marcel, 2011; Clarke et al., 2019). MEGAHIT (v.1.1.3) with default 
parameters was used to assemble non-human reads (Li et al., 2015). 
Genes sequences were predicted from assembled contigs using 
Prodigal (Hyatt et al., 2012) and a non-redundant (nr) gene collection 
was created by de-replicate the gene sequences using CD-Hit (Li and 
Godzik, 2006) at 95% identity over 90% of the shorter ORF length (set 
as −c 0.95, −aS 0.9, −g 1, −d 0).

Gene-level taxonomic profiling was accomplished by aligning 
genes to a curated collection of 6,530 representative bacterial genomes 
sourced from NCBI Genbank (retrieved in May 2021) using BLASTn 
(−e 0.01). For each gene, the alignments with the top 10% highest 
scores were kept requiring a minimum identity of 65% and coverage 
of 80%. Gene taxonomy was determined by achieving a consensus of 
at least 50% above the similarity threshold for a specific rank, with 
phylum requiring ≥65%, genus requiring ≥85%, and species requiring 
≥95% (Li et al., 2014; Dai et al., 2019). The last common taxonomy 
level shared by these high-scoring hits was assigned as the taxonomy 
of each gene. To perform functional annotation of genes, the KEGG 
database was aligned with using DIAMOND (v.0.9.32.133), and the 
best-hit with identity ≥30% and coverage ≥70% was selected 
(Buchfink et al., 2015; Dai et al., 2019). The number of mapped reads 
was subsequently adjusted to 3 million per sample to account for 

differences in sequencing depth. The abundance of each gene in each 
sample was normalized by mapping the reads using BBMap (v.38.44) 
and estimating the coverage using the jgi_summarize_bam_contig_
depths script (Bushnell, 2014; Kang et  al., 2015). The gene-level 
abundances were then combined to obtain the KEGG orthologs (KOs).

Statistical analysis

Alpha diversity was assessed using the Shannon index. Beta 
diversity was assessed using the Bray–Curtis dissimilarity index 
calculated from a weighted matrix abundance and visualized using 
principal coordinates analysis. The R software (R Project for Statistical 
Computing, Vienna, Austria) was used to perform the Wilcoxon 
rank-sum test to identify microbial taxonomic and functional features 
that exhibited differential abundance among the groups of individuals. 
Random forest analysis was performed using the differentially 
represented microbiome features in an attempt to predict the presence 
of COPD GOLD I or II grades and COPD GOLD III or IV grades, 
using five-fold cross-validation, and with the number of trees and 
mtry parameters (a tuning parameter in the random forest algorithm) 
defined using a grid search algorithm in the R caret package (Kuhn, 
2008). Feature selection was performed according to the scheme in 
Feng et al. (2015). Specifically, the microbial taxonomic and functional 
features were ranked by their variable importance and sequentially 
added into the model. The cross-validation errors were averaged and 
plotted against the number of genes. The cutoff for feature selection 
was determined as the minimum error in the averaged curve plus the 
standard deviation at that point. Features with an error less than the 
cutoff were listed, and the optimal set was chosen as the set with the 
smallest number of features. p-values were adjusted for multiple 
hypothesis testing using the Benjamini-Hochberg procedure.

Results

Characteristics of the participants

We collected 160 fecal samples (80 from controls and 80 from 
participants with COPD) from individuals resident in Guangzhou city. 
A total of 31 samples from participants with GOLD I or II COPD, 49 
from those with GOLD III or IV COPD, and 80 from healthy controls 
were subjected to metagenomic sequencing after a strict diagnosis and 
exclusion process (Figure 1). Table 1 summarizes the characteristics 
of the participants. Participants in the COPD III–IV group had lower 
BMI and FEV1, FVC, and FEV1/FVC values, but higher COPD 
assessment scores, than those in the other groups.

Gut microbial composition of patients with 
COPD and healthy controls

We found a small but significant difference in the beta diversity of 
the gut microbiota among the groups (Adonis R = 0.055, p = 0.011, 
Figure 2A). The microbiome of the healthy controls had lower alpha 
diversity than either group of participants with COPD, and the alpha 
diversity was highest in the participants with COPD I or II (Figure 2B). 
Bacteroides was the most abundant genus in the cohort overall 
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(21.3%), followed by Prevotella (13.4%), Faecalibacterium (4.6%), and 
Clostridium (4.3%) (Figure 2C). Differential analysis identified 21, 24, 
and 11 microbial species that were significantly enriched or depleted 
in the healthy, COPD I  or II, and III or IV groups, respectively 
(FDR < 0.1, Figure  2D). Specifically, Clostridioides difficile, a well-
established pathogen in the gut, was most abundant in participants 
with GOLD III or IV (0.324%) and least abundant in healthy 

individuals (0.242%, p = 0.004). The same trend was also identified for 
Flavonifractor plautii (0.15% in healthy and 0.2% in COPD, 
p = 6.08 × 10−4) and Ruminococcus sp. CAG:177 (0.09% in healthy and 
0.23% in COPD, p = 0.011). In contrast, Bacteroides plebeius and an 
unclassified Bacteroides sp. were most enriched in the healthy group 
and most depleted in the participants with GOLD III or IV (p < 0.001). 
Other members of the Bacteroides genus (Bacteroides dorei, Bacteroides 
thetaiotamicron, and Bacteroides caccae) were most depleted in the 
participants with GOLD I or II, whereas Prevotella stercorea and an 
unclassified Prevotella sp. were most enriched in this group (p < 0.05).

Gut microbiome functions in participants 
with COPD and healthy controls

We next assessed the differences in microbial functions among 
three groups. Functional profiling yielded 7,261 KEGG orthologs 
(KOs) in the cohort as a whole, spanning 396 functional categories. 
Principal components analysis revealed greater differences in gut 
microbial functions among the three groups compared to those 
identified based on taxonomic composition (Adonis R = 0.1, p = 0.001, 
Figure  3A). As for the gut microbiome composition, the gut 
microbiome functions of the participants with COPD I or II differed 
from those of the other two groups (Figure 3A). This was corroborated 
by the finding that the largest Bray–Curtis dissimilarity index was for 
the pairwise comparison between the COPD I or II and III or IV 
groups (p < 0.001, Figure  3B), which suggests the presence of 
substantial gut microbial dysbiosis in mild to moderate COPD.

Comparisons of the microbial functional KOs among the three 
groups identified 387, 188, and 131 genes that significantly differed in 
abundance in the healthy, COPD I  or II, and III or IV groups 
(FDR < 0.05, Figure 3C). Interestingly, a large proportion of the KOs that 
substantially differed in abundance among the three groups were in 
participants with GOLD I or II, implying that gut dysbiosis is a particular 

FIGURE 1

Schematic overview of the study workflow. A total of 181 fecal 
samples were obtained from 90 patients with COPD and 90 healthy 
controls. After a strict diagnosis and exclusion process, fecal samples 
remained from 31 participants from COPD stages I–II, 49 from 
participants with COPD stages III–IV, and 80 from healthy controls 
for DNA extraction, metagenomic sequencing, and data analysis. 
Finally, sequencing data from all the samples were used for 
bioinformatics analysis, and stratification analysis with respect to 
COPD was performed.

TABLE 1 Demographic characteristics of the participants.

Characteristic Healthy (n =  80) COPD I-II (n =  31) COPD III-IV (n =  49) p value

Age, years 62.48 ± 5.75 64.13 ± 3.14 62.20 ± 6.00 NS

BMI, kg/m2 23.32 ± 3.13 21.37 ± 2.48 20.36 ± 2.72 <0.01ab

Smoking index (pack-yr) 38.81 ± 28.38 46.75 ± 29.28 42.02 ± 26.90 <0.05a

Smoking status, n (%) <0.01ab

Never smoker 60 (75.0%) 0 0

Current smoker 15 (18.8%) 24 (77.4%) 30 (61.2%)

Ex-smoker 5 (6.2%) 7 (22.6%) 15 (38.8%)

MMRC score – 1.0 (0.0,1.0) 3.0 (2.0,3.0) <0.001c

FEV1 (L) 2.54 ± 0.42 2.09 ± 0.46 0.96 ± 0.28 <0.001abc

FEV1% 99.57 ± 14.2 81.10 ± 16.38 35.15 ± 8.96 <0.001abc

FVC (L) 3.30 ± 0.54 3.46 ± 0.51 2.33 ± 0.52 <0.001bc

FVC% 102.94 ± 15.60 105.08 ± 13.10 68.68 ± 14.60 <0.001bc

FEV1/FVC% 76.99 ± 4.62 60.13 ± 8.17 42.12 ± 9.41 <0.001abc

Data are shown as mean ± SD or median (interquartile range). Differences among continuous datasets were evaluated using ANOVA, with the Bonferroni correction. FEV1, forced expiratory 
volume in 1 s; FVC, forced vital capacity; BMI, body mass index; NS, no significant difference; COPD, chronic obstructive pulmonary disease; CAT, COPD assessment test; MMRC, modified 
Medical Research Council.
ap < 0.05 for the COPD I–II group vs. healthy controls.
bp < 0.05 for the COPD III–IV group vs. healthy controls.
cp < 0.05 for the COPD III–IV group vs. the COPD I–II group.
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feature of mild to moderate COPD. A large proportion of these were 
bacterial transporter genes, which were depleted (K03284) or enriched 
(K01998, K01995, and K01997) in participants with GOLD I or II, and 
this may play a role in the pathogenesis of the disease. Collectively, these 
results suggest that there are both compositional and functional 
alterations in the gut microbiomes of patients with COPD and that these 
are most pronounced in patients with COPD GOLD grades I or II.

Gut microbial markers that differentiate 
patients with COPD from healthy controls

Having established that the participants with COPD had gut 
microbial dysbiosis, we  next aimed to determine whether the gut 
microbiota could provide non-invasive markers of particular stages of 
COPD. We  performed random forest analyses to identify the gut 
microbial taxonomic and functional markers that were predictive of 
membership of each of the three groups. Using species-level taxonomic 
profiles, the areas under the receiver operating characteristic curves 
(AUCs) were found to be 0.881 (95% CIs: 0.829–0.934), 0.921 (95% 
CIs: 0.876–0.965), and 0.843 (95% CIs: 0.780–0.907) for the 
classification of healthy individuals, participants with COPD I or II, 
and those with COPD III or IV, respectively, indicating high levels of 
performance for the prediction of healthy status and the two COPD 

groups (Figure  4A). After feature selection based on variable 
importance, 12, 12, and 7 species-level taxa were retained in the 
classifier for each of the three groups (Figure  4B). To distinguish 
patients with COPD from healthy controls, Bacteroides sp. CAG875, 
Christensenella minuta, and Clostridium sp. Marseille-P2538 were the 
three most abundant species retained in the classifier. Fontimonas 
thermophile, Clostridium sp. CAG813, and Streptomyces olivaceus were 
the three most abundant species in the classifier for participants with 
COPD I or II, and Clostridium spp. Marseille-P2438, Erysipelotrichaceae 
bacterium, and Rhizophagus irregularis were the most abundant species 
that distinguished participants with COPD III or IV from the others.

We performed similar random forest analyses using gut microbial 
functional KOs. The model generated performed less well than the one 
discussed above, with AUCs of 0.848, 0.757, and 0.786, respectively, 
for each of the three groups (Figure  5A). Thirty-two KOs were 
retained in the classifier for the predictor of healthy individuals after 
feature selection, while small sets of 8 and 8 KOs were retained in the 
classifiers for participants with GOLD I or II and GOLD III or IV 
(Figure 5B). Consistent with the feature selection results, all these KOs 
were differentially abundant between the corresponding groups of 
comparison. Taken together, these results suggest the potential for the 
use of gut microbial taxonomic and functional components as 
non-invasive biomarkers for the identification of patients with mild to 
moderate COPD or later-stage COPD.

FIGURE 2

Gut microbial taxonomic profiles of healthy individuals and participants with COPD I or II and III or IV. (A) Principal coordinates analysis for the gut 
microbiome taxonomic profiles of the three groups. (B) Boxplots showing the alpha diversity (Shannon index) of the three groups. (C) The genus-level 
taxonomic profiles of the gut microbiomes of the three groups. The top 20 most abundant genera are shown. (D) Notch plots showing the relative 
abundances of the top 10 differentially abundant species-level taxa for the healthy controls, and participants with COPD I or II and III or IV. The minus 
log10 relative abundance is shown for each species.
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Discussion

The potential involvement of the gut microbiome in the 
pathogenesis of COPD has gained considerable attention in recent years 
(Bowerman et al., 2020; Kotlyarov, 2022). In our prior investigation, 
we detected microbial dysbiosis in the gut microbiota of COPD patients 
and a plausible association between gut microbial dysbiosis and the 
advancement of COPD (Li et  al., 2021). In the present study, 

we developed a diagnostic model comprising gut microbial features and 
clinical variables. The results suggest that there are significant 
differences in both gut microbial compositional and function between 
patients with COPD and healthy individuals. Gut microbiota-related 
biomarkers may therefore represent potential non-invasive tools for the 
diagnosis of mild to moderate COPD and later-stage COPD.

The impact of the gut microbiota extends beyond the intestinal tract 
and has been implicated in the progression of various lung diseases, such 

FIGURE 3

Gut microbiome functional profiles of healthy individuals, and participants with COPD I or II and III or IV. (A) Results of principal coordinates analysis for 
the gut microbiome taxonomic profiles of the three groups. (B) Boxplots showing the Bray–Curtis dissimilarity indices for the pairwise comparison of 
the healthy control versus COPD I or II groups, healthy control versus COPD III or IV groups, and COPD I or II versus III or IV groups. (C) Notch plots 
showing the relative abundances of the top 10 differentially abundant KEGG orthologs (KOs) for the healthy control, COPD I or II, and III or IV groups. 
The minus log10 relative abundance is shown for each KO.

https://doi.org/10.3389/fmicb.2023.1173614
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2023.1173614

Frontiers in Microbiology 07 frontiersin.org

as lung cancer, asthma, and pneumonia (Depner et al., 2020; Stevens 
et al., 2022; Zhao et al., 2022). Several recent studies have established a 
direct association between the gut microbiota and COPD (Bowerman 
et al., 2020; Kotlyarov, 2022; Lai et al., 2022). The alterations to the gut 
microbial composition associated with poor lung function in patients 
with COPD were first reported by Bowerman et al., who observed a 
lower abundance of the family Lachnospiraceae and a higher abundance 
of Streptococcus vestibularis (Bowerman et al., 2020). In 2021, Hsin-Chih 
et al. reported that the composition of the gut microbiota has a significant 
impact on the development of COPD induced by cigarette smoke, and 
that fecal microbiota transplantation can restore the pathogenesis of 
COPD. We previously found that the gut microbiota of patients with 
COPD is characterized by lower microbial abundance and diversity, a 
distinct overall composition of the microbiota, a Prevotella-dominated 
gut enterotype, and low concentrations of short-chain fatty acids (Li 
et al., 2021). Moreover, gut microbial dysbiosis is associated with the 
progression of COPD in an animal model (Li et al., 2020, 2021). In the 
present study, we present compelling evidence that the gut microbiome 
composition and function is altered in COPD. We  found that 
Clostridioides difficile, Flavonifractor plautii, and Ruminococcus spp. were 
the most abundant species in fecal samples from patients with COPD III 

or IV, and were least abundant in healthy individuals. In addition, 
Bacteroides plebeius and an uncharacterized Bacteroides sp. were least 
abundant in patients with COPD III or IV.

However, the functions of these microbial species in patients 
with COPD are currently unclear. Flavonifractor plautii, a gram-
positive anaerobic bacterium that belongs to the Clostridium genus, 
has been found in human feces and has been demonstrated to 
metabolize catechins. Several studies have shown that F. plautii is 
capable of inhibiting inflammation. For instance, Mikami et  al. 
reported that the oral administration of F. plautii strongly suppresses 
Th2 immune responses in mice (Mikami et  al., 2021). However, 
recent studies have shown that F. plautii is enriched in early-onset 
colorectal cancer (Kong et al., 2023). As for Clostridioides difficile, a 
well-established pathogenic gut bacterium, is a major cause of 
hospital-acquired infection, which cause intestinal epithelial injury 
and inflammation and even drive colonic tumorigenesis (Guh et al., 
2020; Drewes et al., 2022). When Bacteroides plebeius, a seaweed-
degrading species, is depleted, glycosaminoglycan metabolism is 
downregulated, which predisposes to damage to articular cartilage 
in rheumatoid arthritis (Cheng et al., 2022). Previous studies have 
also shown that the abundance of B. plebeius is affected by the diet; 

FIGURE 4

Random forest classifiers for the prediction of healthy status, COPD I or II, and III or IV using gut microbiome taxonomic features. (A) Receiver 
operating characteristic curve (ROC) for the classifiers for healthy status, COPD I or II, and COPD III or IV. The 95% confidence interval is shown for 
each ROC. (B) Notch plots showing the relative abundances of the microbial species retained in each classifier. The arcsin square root-normalized 
relative abundance is shown for each species.
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FIGURE 5

Random forest classifiers for the prediction of healthy status, COPD I or II, and III or IV using gut microbiome functional genes. (A) Receiver operating 
characteristic curves (ROCs) for classifiers for the prediction of healthy status, COPD I or II, and COPD III or IV. The 95% confidence interval is shown 
for each ROC. (B) Notch plots showing the relative abundances of the KOs retained in each classifier. The arcsin square root-normalized relative 
abundance is shown for each KO. The top 20 differential KOs are shown for the classifier for healthy status versus COPD.
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for example, B. plebeius s-OTU is positively associated with brown 
or wild rice consumption and negatively associated with the 
consumption of some processed meat (Peters et  al., 2020). 
Ruminococcus spp., which degrade dietary nutrients, providing the 
host with energy and nutrients, are also considered to 
be proinflammatory microbes. For example, Szu-Ju et al. reported 
that the abundance of Ruminococcus spp. is significantly associated 
with low fecal concentrations and high plasma concentrations of 
SCFAs in patients with Parkinson’s disease (Chen et al., 2022). In the 
present study, we observed the enrichment of potential pathogens, 
such as Flavonifractor plautii, Bacteroides stercoris, Clostridioides 
difficile, and pro-inflammatory Prevotella spp. Additionally, we noted 
a depletion of commensal bacteria, including Bacteroides vulgatus, 
Eubacterium spp., and Bacteroides plebeius.

A number of compelling studies have established that 
metagenomic analysis of the gut microbiome identifies potentially 
useful non-invasive biomarkers for diseases of the digestive system 
and others (Yu et al., 2017; Zheng et al., 2020; Coker et al., 2022). In 
the present study, we found that the microbial genera associated with 
COPD are an excellent means of differentiating patients with COPD 
from healthy individuals, with an AUC of 0.8814 (95% confidence 
interval (CI): 0.8290–0.9339). In addition, the AUC was 0.9207 (95% 
CI: 0.8764–0.9650) for the differentiation of mild to moderate COPD 
(COPD I or II), which implies that gut microbial markers would 
provide an accurate method for the early diagnosis of COPD. Thus, 
specific alterations in gut microbiota might have a future as 
non-invasive biomarkers of COPD.

We acknowledge the following limitations of the present study. 
Firstly, the sample size was relatively small, and we  only recruited 
Chinese participants. Therefore, further large-scale, multi-center 
studies involving participants of diverse ethnicities should be conducted 
to validate the generated model. Furthermore, it is necessary to establish 
a link between the differences observed in each stage and the potential 
significance of diagnosing this disease through metagenomic profiling. 
Secondly, the present study was cross-sectional in nature; therefore, 
we cannot infer causal relationships between the gut microbiota and 
COPD, nor can we  comment on the mechanisms involved or the 
specific effects of differential microbial species abundance.

Conclusion

Taken together, the present findings suggest the gut microbial 
taxonomic and functional components may represent useful 
non-invasive biomarkers for the differentiation of healthy individuals, 
and those with mild to moderate COPD or later-stage COPD.
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