
TYPE Original Research

PUBLISHED 14 August 2023

DOI 10.3389/fmicb.2023.1172862

OPEN ACCESS

EDITED BY

Mikhail Semenov,

Russian Academy of Agricultural

Sciences, Russia

REVIEWED BY

Ilya Yevdokimov,

Russian Academy of Sciences, Russia

Chong Juan You,

Beijing Forestry University, China

*CORRESPONDENCE

Gregory M. Bonito

bonito@msu.edu

RECEIVED 23 February 2023

ACCEPTED 10 July 2023

PUBLISHED 14 August 2023

CITATION

Benucci GMN, Toosi ER, Yang F, Marsh TL,

Bonito GM and Kravchenko A (2023) The

microbiome structure of decomposing plant

leaves in soil depends on plant species, soil

pore sizes, and soil moisture content.

Front. Microbiol. 14:1172862.

doi: 10.3389/fmicb.2023.1172862

COPYRIGHT

© 2023 Benucci, Toosi, Yang, Marsh, Bonito

and Kravchenko. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

The microbiome structure of
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pore sizes, and soil moisture
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Microbial communities are known as the primary decomposers of all the

carbon accumulated in the soil. However, how important soil structure and its

conventional or organic management, moisture content, and how di�erent plant

species impact this process are less understood. To answer these questions, we

generated a soil microcosm with decomposing corn and soy leaves, as well

as soil adjacent to the leaves, and compared it to control samples. We then

used high-throughput amplicon sequencing of the ITS and 16S rDNA regions

to characterize these microbiomes. Leaf microbiomes were the least diverse

and the most even in terms of OTU richness and abundance compared to near

soil and far soil, especially in their bacterial component. Microbial composition

was significantly and primarily a�ected by niche (leaves vs. soil) but also by soil

management type and plant species in the fungal microbiome, while moisture

content and pore sizes weremore important drivers for the bacterial communities.

The pore size e�ect was significantly dependent on moisture content, but only in

the organic management type. Overall, our results refine our understanding of

the decomposition of carbon residues in the soil and the factors that influence

it, which are key for environmental sustainability and for evaluating changes in

ecosystem functions.

KEYWORDS

soil microbiome, CONSTAX2, metabarcoding, ITS rDNA, 16S rDNA, detritusphere, soil
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Introduction

Adding aboveground plant residues to the topsoil can increase soil fertility, improve

hydraulic properties, enhance carbon sequestration, and reduce erosion (Miguez and

Bollero, 2005; Scholberg et al., 2010). Sustainable agriculture management practices that

involve residue additions include cover cropping, green manure cropping, and crop residue

incorporation by tillage (Lal, 1997). Such practices are growing in popularity worldwide

and are particularly important in organically based agriculture and in agricultural systems

in developing countries. The benefits of incorporating plant residues stem from their

decomposition within the soil, which provides soil carbon and nutrient inputs and is driven

by microorganisms (Lehtinen et al., 2014; Liu et al., 2017).
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Micro-environmental conditions within the soil matrix

influence microbiome activity and composition (Chenu et al.,

2001; Mummey and Stahl, 2004; Wolf et al., 2013). Soil pores are

known to play a major role in shaping soil micro-environments

(Kravchenko and Guber, 2017). They enable gas and liquid

transport, impact microbial colonization of the soil matrix

(Dechesne et al., 2003; Long and Or, 2009; Wang et al., 2013), and

create physical barriers between microbial communities (Treves

et al., 2003) that can either reduce or enhance accessibility to

predators (Wright et al., 1995) and other stress factors (Harvey

et al., 2021). Connectivity among the soil micro-environments,

facilitated through liquid bridges, is a major driver of the diversity

of microbial communities within the soil matrix (Tiedje et al.,

2001; Long and Or, 2005; Carson et al., 2010). Accounting for

the characteristics of the soil pore space in numerical modeling

is necessary for understanding the mechanisms and drivers

of microbial dynamics and activity (Golparvar et al., 2021).

However, while significant attention has been given to the role

of pore characteristics in influencing microorganisms in bulk

soil, defined as the soil not affected by plant residues or live

plant roots (Bickel and Or, 2020; Nunan et al., 2020; Xia et al.,

2022), relatively less is known about how such characteristics

contribute to microbiome dynamics around incorporated

plant residues.

The soil in the immediate vicinity of decomposing plant

residue is known as the detritusphere (Kögel-Knabner et al.,

2023), and physical properties in this zone drive the rate of

residue decomposition and the fate of decomposition products

(Kravchenko et al., 2017; Kim et al., 2020). A greater abundance

of large pores in the detritusphere stimulates decomposition

and leads to greater quantities of residual carbon being fully

decomposed into CO2 and emitted into the atmosphere (Toosi

et al., 2017). The prevalence of small pores stimulates the diffusion

of decomposition products into the surrounding soil matrix,

enriching it with new C inputs but also potentially stimulating

microbial activity, thus priming the loss of native soil organic

matter (Toosi et al., 2017).

In this study, we used microcosms to test the impact that soil

pore size, moisture, and plant tissue quality have on fungal and

bacterial dynamics and the incorporation of leaf litter residue into

soil across space and time. We hypothesized that the decomposing

residue itself would drive microbial community composition

changes in the soil and that environmental conditions within

the soil matrix, specifically the presence and size distribution

of soil pores and the level of soil moisture, would define

the composition of microbial communities on the decomposing

residue and in the surrounding detritusphere. Assessment of

the microbial community composition over a time course, i.e.,

at 7, 14, and 24 days, improves our ability to detect diversity

patterns that with only one sampling time would not be

possible to detect. It also provides insight into longer-term

trends and factors involved in microbial turnover. We explored

their role in microcosm systems from soils of contrasting long-

term agricultural management histories, namely, conventional

and organic row crop agriculture practices, and with residues

(leaves) of two plant species common in conventional row crop

agriculture, namely, corn [Zea mays (L.)] and soybean [Glycine

max (L.)].

Materials and methods

Study design

A detailed description of the study site and the setup of

the microcosm experiment is provided by Toosi et al. (2017);

thus, here we only briefly highlight the key components of

the experiment. The soil for the microcosms was collected

from two contrasting agricultural management practices, namely,

conventionally fertilized corn-soybean-wheat rotation (Conv) and

biologically based corn-soybean-wheat rotation with winter cover

crops (Bio), implemented since 1989 at the Long-Term Ecological

Research site at Kellogg Biological Station, Michigan. During each

3-year rotation cycle (the Bio practice), the cover crop red clover

(Trifolium pratense L.) is frost-seeded into winter wheat and then

incorporated into the soil 10 months later prior to corn planting,

and the cereal rye (Secale cereale L.) is planted after corn harvest

and incorporated prior to soybean planting. The studied soil is

Kalamazoo loam (fine-loamy, mixed, and mesic Typic Hapludalf)

(Robertson and Hamilton, 2015).

The soil material dominated by large pores, referred to further

on as the large pore soil, consisted of a 1–2mm aggregate fraction

obtained by sieving air-dried bulk soil. The soil material dominated

by small pores, referred to further on as small pore soil, was created

from a subset of the 1–2mm fraction by crushing and sieving the

soil to a 0.05–0.1mm size range. Creating small pore material from

the large-pore material in this study ensured maximum consistency

between the inherent chemical and biological properties of the

two materials; however, we are aware that the procedure could

have potentially affected soil microorganisms (Powlson, 1980). X-

ray-computed microtomography of the soil materials revealed that

the large pore material had a substantial presence of >30µm Ø

pores, which represented the pore space in-between the 1 and 2mm

aggregates, and of <2µm Ø pores from within the aggregates.

The pores space of the small pore material was dominated by 5–

10µm Ø pores, with no >30µm Ø pores present (Toosi et al.,

2017). The microcosms were constructed so as to maintain the

same bulk density of 1.1 g cm−3, so both materials had the same

58% total porosity.

The treatment design for the incubation experiment consisted

of the following factors: two agricultural management practices

(Conv and Bio), two soil materials with contrasting pore size

diameters (PSD: large and small pore materials), two soil moisture

levels (18 and 28% volumetric water contents), two plant residue

substrates (corn and soybean leaves), and no residue treatment

(control). Since the colonization of a new substrate by soil

microbiota is dynamic and therefore changes with time, we

sampled the microcosms at three time points (7, 14, and 24 days

after the start of the incubation). Three replicated microcosms

were prepared for each treatment combination, for a total of 216

microcosms. Samples were processed as three experimental blocks

in a randomized complete block design.

Each microcosm was 8mm in diameter and 10mm in length

(Supplementary Figure S1) and contained a Ø7mm dry leaf disk

placed in-between two equal soil layers (0.45 g above and 0.45 g

below the leaf). Microcosms were incubated at 20◦C in the dark.

At each sampling time, the microcosms were randomly assigned to

the specific sampling time point, taken out of the incubation, and
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FIGURE 1

Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity matrices of fungal (A) and bacterial (B) communities. Incubated samples that

did not contain leaves are referred to as control (black), and dry samples of the soil materials used in the study (prior to incubation) are referred to as

start (red).

FIGURE 2

Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity matrices of fungal microbiomes. PCoA of all samples grouped by treatment

and niche: T1-leaf, T1-near soil, T1-far soil, and T1-control (A) and T4-leaf, T4-near soil, T4-far soil, and T4-control (B). Sample points are coded

according to plant (color), moisture (shape), and size (pore). Factors that explained the most variation in the data are reported, as are the R
2 and 75%

confidence level ellipses assuming a normal distribution.

prepared for microbial analyses. Each control microcosm (without

a plant leaf) was processed as a single sample. From each treatment

microcosmwith plant leaf, we procured three samples for microbial

analysis, representing what we consider to be three ecological

niches differing in quantity and quality of the nutrient sources

available for the microorganisms. These consisted of the remains

of the plant leaf itself, the soil layer at a 0–2mm distance from

the leaf, and the soil layer at a 3–5mm distance from the leaf.

The latter two samples are referred to as soil adjacent (near soil)

to the leaf and soil non-adjacent (far soil) to the leaf, respectively.

The samples were placed on ice immediately after cutting and

then kept frozen at −80◦C until further analysis. In addition,
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FIGURE 3

Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity matrices of bacterial microbiomes. PCoA of all samples grouped by treatment

and niche: T1-leaf, T1-near soil, T1-far soil, and T1-control (A) and T4-leaf, T4-near soil, T4-far soil, and T4-control (B). Sample points are coded

according to plant (color), moisture (shape), and size (Pore). Factors that explained the most variation in the data are reported, as are the R
2, and 75%

confidence level ellipses assuming a normal distribution.

baseline microbial analyses were conducted in air-dry samples

of large- and small-pore starting materials from conventional

(T1) and organic (T4) managements that were not subjected

to incubation.

This experiment was a component of a larger study that

examined the effects of management practices, PSDs, soil

moisture level, and plant leaf source (corn vs. soybean) on leaf

decomposition, the emission of CO2 and N2O during incubations,

the distribution of leaf decomposition products within the soil, and

soil priming effects. The findings on these other components of

the study have been published elsewhere (Kravchenko and Guber,

2017; Toosi et al., 2017) and thus provide auxiliary information for

analyzing the data from the experiment described here.

DNA extraction, library preparation, and
sequencing

DNA was extracted from soil samples with the MoBio

Power Soil kit according to the vendor’s protocol, with the

exception that a Biospec Mini-Beadbeater-16 was used for cell

disruption. Approximately 0.25–0.5 g of soil was extracted for

each sample. Samples were shaken for 1.5min at 25◦C. DNA

yield was quantitated with a Nanodrop Spectrophotometer. Total

soil DNA was amplified and sequenced at the Michigan State

University sequencing core facility. Briefly, to assess fungal

communities, the ITS region was amplified using the primer

sets ITS1F12 (5
′

-GAACCWGCGGARGGATCA) and ITS2 (5
′

-

GCTGCGTTCTTCATCGATGC). Amplification products were

run in the same manner as the V4 amplification products (below)

but on a separate MiSeq v2 flow cell.

To assess prokaryote communities, the microbial 16S

rRNA gene V4 regions were amplified using primer sets

515F (5
′

-GTGCCAGCMGCCGCGGTAA-3
′

) and 806R (5
′

-

GGACTACHVGGGTWTCTAAT-3
′

) following the method

described by Kozich et al. (2013). Amplicons of 16S rRNA gene

V4 regions were pooled and run on a standard MiSeq v2 flow cell

with a 500-cycle reagent kit (PE250). Base calling was done using

the Illumina Real-Time Analysis (RTA) version 1.18.54, and the

output of RTA was demultiplexed and converted to FastQ format

using the Illumina Bcl2fastq version 1.8.4.

Fungal and prokaryotic sequence
processing

Raw forward and reverse Illumina ITS reads were quality

evaluated with FastQC (Andrews, 2010) and merged with PEAR

(Zhang et al., 2014). Primers and adapters were removed with

Cutadapt (Martin, 2011). Reads were quality filtered (Edgar

and Flyvbjerg, 2015; Edgar, 2016), de-replicated, removed from

singleton sequences, and clustered into operational taxonomic

units (OTUs) based on 97% similarity using the UPARSE

algorithm (Edgar, 2013). Taxonomy assignments were performed
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in CONSTAX2 (Liber et al., 2021) using the UNITE sequence

database (Kõljalg et al., 2013).

Raw forward and reverse Illumina 16S reads were processed

as previously described (Rieke et al., 2018) with the following

modifications. Briefly, we used Ribosomal Database Project (RDP)

Paired-end Reads Assembler (Cole et al., 2014) to merge the

primer-trimmed pair-ended reads to 250–280 bases and a minimal

Q score of 25. Using BLAST, we confirmed that the assembled 16S

rRNA gene V4 sequences shorter than 250 bases or longer than

280 bases were non-microbial. Vsearch (2.4.3, 64-bit) (Rognes et al.,

2016) was used to remove chimeras de novo, followed by removing

chimeras by reference using RDP 16S rRNA gene training set

sequences (No. 15). High-quality and chimera-free sequences were

then clustered at 97% sequence similarity by CD-HIT (4.6.1) (Fu

et al., 2012). The taxonomy of each representative OTU sequence

was identified using the RDP Classifier (Wang et al., 2007; Fu

et al., 2012) with a confidence cutoff of 50% (-c 0.5). Finally, OTUs

detected fewer than five times across all samples were removed.

Statistical modeling

For each marker gene (i.e., ITS and 16S), otu_table (McDonald

et al., 2012), taxonomic classifications, representative OTU

sequences, and metadata files were imported into the R statistical

environment (R Core Team., 2023) and combined with the

phyloseq package (McMurdie and Holmes, 2014). To standardize

the sequencing depth across all samples, we rarefied all samples to

the minimum sample size (i.e., 1,010 sequences for the fungi and

13,377 sequences for the prokaryotes) in the phyloseq R package

(McMurdie and Holmes, 2013).

To explore differences in microbial community beta-diversity,

we analyzed two components, namely, (i) community structure,

defined as the difference in multivariate space between samples

and sample groups and (ii) community dispersion, defined as

multivariate variance within each sample group. Community

structure was investigated using principal coordinate analysis

(PCoA) of the Bray-Curtis distance matrix with the function

“ordinate” in phyloseq (McMurdie and Holmes, 2014). A

permutational multivariate analysis of variance (Permanova) was

used to test differences among a priori defined sample groups

(Anderson, 2001) with the function “adonis” in the veganR package

(Oksanen et al., 2019). To assess the amount of multivariate

dispersions (Anderson et al., 2006) around centroids, we used the

“betadisper” function in vegan. Statistical differences in dispersion

were assessed through pairwise permutational ANOVA, using the

“anova” function in the car R package, with 9,999 permutations. All

P-values were corrected based on the Benjamini-Hochberg method

(Benjamini and Hochberg, 1995).

To explore which bacterial genera will follow the decomposing

residue vs. soil and the increasing vs. decreasing time trends,

we first conducted a 3-way factorial ANOVA for the abundances

of individual OTUs. To identify the leaf-dominating and soil-

dominating genera, the ANOVA was followed by contrasts

comparing the leaf with near soil and the leaf with far soil and a

non-incubated control, tested simultaneously (P < 0.01). Then, the

abundances of genera identified as either leaf- or soil-dominating

were subjected to linear regression with time as the independent

variable to identify those that exhibited a clear positive or negative

linear trend (P < 0.05).

Alpha diversity, OTU richness, and Shannon diversity indexes

were calculated in vegan with the “specnumber” and “diversity”

functions of the vegan package (Oksanen et al., 2019). The

Shannon index was standardized to 0–1 to allow for easier

comparisons across groups, as previously explained (Benucci et al.,

2022). Significant differences (P ≤ 0.05) in alpha diversity were

assessed by a Wilcoxon test, with P-values corrected with the

Benjamini-Hochberg method (Benjamini and Hochberg, 1995). All

graphs were plotted in the ggplot2 (Wickham, 2016) and ggpubr

(Kassambara, 2020) R packages. Minimal graphical adjustments to

improve the figures’ visibility were performed in Inkscape (Inkscape

Project, 2020).

Results

Sequencing results

This study resulted from community data from 252 samples

that yielded 2,193,913 (8,671.6 ± 6,448.2 mean reads and standard

deviation per sample, respectively) ITS reads and 3,701,268

(14,629.52 ± 7,687.7) 16S reads in the otu_table after quality

filtering. The data were rarefied at 1,010 reads per sample for ITS

and 13,377 for 16S.

Beta diversity

In the dry control samples (i.e., the soil materials used in

the study tested prior to incubation), the long-term history

of contrasting agricultural management practices (T1 =

conventional vs. T4 = organic) influenced both fungal and

bacterial microbiomes (Supplementary Table S1). However,

neither fungal nor bacterial communities differed between the

large- and small-pore soil materials (Supplementary Table S1). In

the study samples, the largest amount of variation in composition

was present across different niches (i.e., leaf, near soil, and far

soil), as hypothesized, which accounted for roughly 16% and

39% of the total variance in fungal and bacterial communities,

respectively (Supplementary Table S1). Differences across niches

and treatments are clear in the principal coordinate analysis

(PCoA) ordination plots based on the Bray-Curtis dissimilarity

of fungal (Figure 1A) and bacterial communities (Figure 1B),

with clear clustering of samples along the first and second

PCoA axes, respectively. Fungal communities were also more

clearly impacted by soil treatment (T1 = conventional vs. T4

= organic), which explains nearly 11% of the variance, and,

to a lesser extent, by plant species (i.e., corn or soy), pore size

(i.e., small or large), and moisture content (i.e., low or high).

Bacterial communities were also impacted by pore size (∼2.5%),

moisture content (∼2%), treatment (∼2%), and plant species

(∼1.5%), but these effects were hidden by the effect of niche.

Significant interactions (P ≤ 0.05, after Benjamini-Hochberg

P-value correction), mainly involving niche and other factors, were

also present, but, in general, the amount of variation explained was

negligible (Supplementary Table S2).
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TABLE 1 Permanova (Permutational Multivariate Analysis of Variance Using Distance Matrices) and Betadisper (Multivariate Homogeneity of Groups

Dispersions) models on the subsetted fungal and bacterial datasets according to slice and treatment (leaf-T1, leaf-T4, near soil-T1, T1-control, near

soil-T4, far soil-T1, far soil-T4, and T4-control).

Fungi Permanova Betadisper

Group Factor Df Sum.Sq F R2 P.adj Sum.Sq F P.adj

T1-Leaf Plant 2 4.22612 14.90845 0.29459 0.00080 0.0132 0.5592 0.5743

T1-Leaf Pore 1 0.44086 3.11042 0.03073 0.01840 0.0883 13.6263 0.0004

T1-Nearsoil Plant 2 2.85516 11.13978 0.24329 0.00080 0.0233 1.7466 0.1824

T1-Nearsoil Pore 1 0.44797 3.49560 0.03817 0.00880 0.0425 14.7884 0.0003

T1-Farsoil Pore 1 0.74554 4.85338 0.07261 0.00080 0.3237 71.3412 0.0000

T1-Farsoil Moisture 1 0.42277 2.75218 0.04118 0.00800 0.0063 0.5691 0.4537

T1-Control Pore 1 0.32534 2.38360 0.10468 0.00040 0.0427 10.4906 0.0041

T4-Leaf Plant 2 4.03977 15.91940 0.28679 0.00080 0.0507 2.0021 0.1436

T4-Leaf Pore 1 0.92249 7.27047 0.06549 0.00080 0.0299 4.4552 0.0387

T4-Leaf Time 2 0.81393 3.20743 0.05778 0.00080 0.0202 1.2462 0.2946

T4-Leaf Moisture 1 0.55793 4.39724 0.03961 0.00160 0.0067 0.8304 0.3656

T4-Leaf Pore:Moisture 1 0.37736 2.97408 0.02679 0.02000 - - -

T4-Nearsoil Plant 2 1.60929 6.19018 0.15103 0.00080 0.0094 0.5129 0.6012

T4-Nearsoil Pore 1 0.40427 3.11009 0.03794 0.00160 0.2103 36.0006 0.0000

T4-Nearsoil Moisture 1 0.34383 2.64510 0.03227 0.01120 0.0066 0.7250 0.3976

T4-Farsoil Pore 1 0.35941 2.63748 0.04163 0.01440 0.3542 56.6875 0.0000

T4-Farsoil Plant:Pore:Moisture 1 0.40467 2.96966 0.04687 0.00480 - - -

T4-Control Pore 1 0.30512 2.49281 0.10162 0.01240 0.1199 18.9037 0.0003

Bacteria

Group Factor Df Sum.Sq F R2 P.adj Sum.Sq F P.adj

T1-Leaf Plant 2 7.99222 33.13792 0.39641 0.00080 0.2459 32.4638 0.0000

T1-Leaf Moisture 1 1.69730 14.07491 0.08418 0.00080 0.0029 0.4915 0.4857

T1-Leaf Time 2 1.22462 5.07759 0.06074 0.00080 0.0127 1.4587 0.2398

T1-Leaf Pore 1 1.01912 8.45110 0.05055 0.00080 0.0002 0.0480 0.8273

T1-Nearsoil Plant 2 0.96853 5.43286 0.12532 0.00080 0.0010 0.6545 0.5231

T1-Nearsoil Time 2 0.53755 3.01534 0.06956 0.00080 0.0003 0.1776 0.8377

T1-Nearsoil Pore 1 0.45416 5.09507 0.05877 0.00080 0.0018 2.0833 0.1536

T1-Nearsoil Moisture 1 0.25621 2.87432 0.03315 0.00080 0.0012 1.7753 0.1873

T1-Farsoil Time 2 0.52353 2.90084 0.08460 0.00080 0.0000 0.0285 0.9719

T1-Farsoil Plant 2 0.40441 2.24080 0.06535 0.00080 0.0013 0.9940 0.3765

T1-Farsoil Pore 1 0.36626 4.05886 0.05919 0.00080 0.0032 5.2212 0.0261

T1-Control Time 2 0.36715 2.03374 0.16551 0.00040 0.0220 2.1863 0.1398

T1-Control Pore 1 0.19382 2.14727 0.08737 0.00960 0.0427 10.4906 0.0041

T4-Leaf Plant 2 7.65287 37.25758 0.40881 0.00080 0.2337 20.6704 0.0000

T4-Leaf Pore 1 1.67765 16.33514 0.08962 0.00080 0.0187 3.0142 0.0873

T4-Leaf Time 2 1.57711 7.67806 0.08425 0.00080 0.0400 5.0084 0.0095

T4-Leaf Moisture 1 0.98904 9.63021 0.05283 0.00080 0.0010 0.3096 0.5799

T4-Leaf Pore:Moisture 1 0.52480 5.10997 0.02803 0.00720 - - -

(Continued)
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TABLE 1 (Continued)

Fungi Permanova Betadisper

Group Factor Df Sum.Sq F R2 P.adj Sum.Sq F P.adj

T4-Nearsoil Plant 2 0.88452 5.07130 0.12185 0.00080 0.0012 0.7689 0.4678

T4-Nearsoil Pore 1 0.39821 4.56619 0.05486 0.00080 0.0010 1.1113 0.2957

T4-Nearsoil Time 2 0.32738 1.87699 0.04510 0.00320 0.0003 0.2050 0.8152

T4-Nearsoil Moisture 1 0.25161 2.88516 0.03466 0.00080 0.0002 0.2241 0.6375

T4-Nearsoil Pore:Moisture 1 0.19160 2.19708 0.02639 0.00880 - - -

T4-Farsoil Time 2 0.34319 1.94229 0.05863 0.00080 0.0013 0.8474 0.4338

T4-Farsoil Pore 1 0.30714 3.47648 0.05247 0.00080 0.0010 1.1832 0.2812

T4-Farsoil Plant 2 0.29821 1.68774 0.05094 0.00080 0.0003 0.1571 0.8550

T4-Farsoil Moisture 1 0.15576 1.76304 0.02661 0.00960 0.0000 0.0122 0.9124

T4-Farsoil Plant:Pore:Moisture 1 0.14815 1.67689 0.02531 0.01440 - - -

T4-Control Time 2 0.25182 1.49254 0.11267 0.00240 0.1105 4.4663 0.0242

T4-Control Pore 1 0.19786 2.34541 0.08853 0.00040 0.1199 18.9037 0.0003

T4-Control Moisture 1 0.16089 1.90716 0.07199 0.00080 0.0039 0.3283 0.5724

Time was treated as a fixed effect and included as a factor variable in the models (Time + Plant ∗ Pore ∗ Moisture, and Time + Pore ∗ Moisture for just the control samples). The order of

the factors was chosen to first remove variance from variables with the highest impact in the models and better investigate the remaining variables. Only factors with significant (P ≤ 0.05)

Benjamini-Hochberg-corrected P-values are displayed. Factor explaining the highest R2 for each model and significant adjusted p-values are reported in bold.

To better evaluate the impacts of all the variables, the datasets

were divided by niche and treatment into eight subsets composed

of leaf-T1, leaf-T4, near soil-T1, near soil-T4, far soil-T1, far soil-

T4, control-T1, and control-T4. The PCoA ordinations generated

for each subset showed significantly different clusters of samples

for both fungi (Figure 2) and bacteria (Figure 3), as supported by

the Permanova tests.

Overall, the Permanova [P ≤0.05, after Benjamini-Hochberg

(BH) correction] results showed that plant species and pore size

were the two main drivers of the communities in both T1 and T4

and for each studied niche. In particular, plant species were always

the major driver of variation in the leaf and the near soil niches

(and also in the far soil for the bacterial microbiome in T1), while

pore sizes impacted the far soil (i.e., soil further away from the

leaf) niches; control samples were impacted by pore sizes the most

(Table 1). Microbiome variance attributed to plant species ranged

from about 29% in the T1-leaf to 15% in the T4-near soil of the

fungal microbiome and from about 40% in the T1-leaf to 5.1% in

the T4-far soil of the bacterial microbiomes, with no substantial

difference between T1 and T4. Microbiome variance attributed to

pore sizes ranging from about 7.3% in T1-far soil (10.5% in the

T1-control samples) to 3.1% in T1-leaf of the fungal microbiome

and from about 8.9% in T4-leaf (8.8% in the T4-control samples)

to 5% in T1-leaf of the bacterial microbiome, with, in general,

higher variance in T4 compared to T1 if we do not consider the

control samples. Moisture content was most important in shaping

the bacterial rather than fungal microbiome. Significant effects

were present in T1-far soil (4.1%), T4-leaf (3.9%), and T4-near soil

(3.2%) in the fungal microbiomes, and T1-leaf (8.4%), T1-near soil

(3.3%), T4-leaf (5.3%), T4-near soil (3.6%), T4-far soil (2.7%), and

T4-control samples (7.2%) in the bacterial microbiomes.

The effect of time was the most important for the bacterial

microbiome than the fungal microbiome, and significant

pore:moisture and plant:pore:moisture interactions were also

present in both fungal and bacterial communities, but only in

T4 treatments, which represent the organic management type.

Microbiomes clustered mainly according to plant and pore, as

shown by the fungal (Figure 2) and bacterial (Figure 3) PCoA

ordinations, as emphasized by 75% confidence ellipses.

Alpha diversity

Alpha diversity measurements were also impacted primarily

by niche, followed by other factors both in fungal (Figure 4) and

bacterial (Figure 5) microbiomes. The bar plots also showed that

there were no substantial alpha diversity differences between the

T1 and T4 treatments. In particular, OTU richness in the leaf

was considerably lower than that of the soils and controls, but

differences between near soil, far soil, and control soil were also

present. In the leaf niche, there was a significant (P ≤ 0.05 after

BH correction) effect of pore size in the T1 sample of the fungal

microbiome and a significant effect of moisture in both the T1 and

T4 samples of the bacterial microbiomes. In the near soil niche, a

higher richness was present in the small pores of T1 and T4 in fungi,

but only in T1 in bacterial microbiomes. In the far soil niche, fungal

microbiomes were affected by pore sizes in T1 and T4, but only in

T1, a higher richness was detected for the bacterial microbiomes.

The effect of pore sizes and moisture content was also significant in

T1 and T4, respectively, but only in the fungal microbiome.

Regarding Shannon diversity, differences between niches were

mostly limited to the leaves being different from soils and control

samples. Additionally, Shannon diversity followed an opposite

trend to richness, being higher in leaves (a more evenly abundant

microbiome) and lower in soils, and this phenomenon was more

evident in the bacterial (Supplementary Figure S3) than fungal
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FIGURE 4

Bar plots showing significant di�erences (P ≤ 0.05 after Benjamini-Hochberg correction) in mean observed species richness (±standard deviation) for

fungal microbiomes in (A) conventional (T1) and (B) organic (T4) managament samples. Samples were grouped according to treatment, and

statistical di�erences were calculated across niche factors (leaf, near soil, far soil, and control) using pairwise Wilcoxon tests.

(Supplementary Figure S4) microbiome. In particular, in the leaf

niche, there was a significant (P ≤ 0.05 after BH correction) effect

of moisture in both T1 and T4 in the fungal microbiome, but

Shannon diversity was higher for the T4 bacterial microbiome

in soy, small, and low moisture samples. Shannon diversity was

significantly higher in the T1 near soil niche for the fungi but also

in soy, large pores, and low moisture for the bacterial microbiome

in T1 samples. No other significant differences were present. Large

pores and low moisture samples were more even in T1 and T4 far

soil samples of the bacterial microbiomes, respectively.

Most abundant, variable, and significantly
di�erent OTUs across treatments

In Figure 6, the most abundant fungal (Figure 6A) and

bacterial (Figure 6B) OTUs are reported, averaged across all

samples, and those that showed the highest variation and had

significantly different mean abundance (P ≤ 0.05) after BH

correction across the treatments. Some of these selected taxa

showed different treatments. For example, FOTU85 (Xilariales)

was higher in abundance in soy leaves and small pores, while

present in small amounts in the control samples. FOTU58

(Apodus sp.) was instead significantly more abundant in corn

leaves, but its abundance was not relevantly affected by other

factors. Some OTUs were present and significantly different

between factors in the in T1 treatment (e.g., FOTU545-Mucor),

others only in the T4 treatment (e.g., FOTU100-Podospora).

In the bacterial dataset, POTU25222-Chitinophaga, POTU27262-

Flavobacterium, POTU24422-Bdellovibrio, and other unclassified

bacteria were higher in soy samples with large pores and

high moisture content in T1 samples. Other OTUs, such as

unclassified Gammaproteobacteria, POTU6175-Saccharibacillus,

and POTU12661-Aureimonas, were also higher in soy samples with

large pores and high moisture content, but only in T1.

In the near soil samples, FOTU272-Robillarda showed a higher

abundance in large pores, together with FOTU216-Pleosporales

and FOTU366-Ballistosporomyces (Figure 7A). Unclassified

Gammaproteobacteria were higher in abundance in soy, large

pores, and high moisture in T1, while an unclassified OTU in the

Alphaproteobacteria was higher in T4, in corn, large pores, and

high moisture samples. In T1, the most abundant and variable

OTUs were associated with soil, while in the T4 treatment,

they were associated with corn. POTU12661-Aureimonas and

POTU12354-Asticcacaulis were the only two prokaryotes with a

higher abundance in small soil pores (Figure 7B).
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FIGURE 5

Bar plots showing significant di�erences (P ≤ 0.05 after the Benjamini-Hochberg correction method) in the mean observed species richness

(±standard deviation) for bacterial microbiomes in (A) conventional (T1) and (B) organic (T4) managament samples. Samples were grouped according

to treatment, and statistical di�erences were calculated across niche factors (leaf, near soil, far soil, and control) using pairwise Wilcoxon tests.

In the far soil samples, some of the same OTUs present in the

near soil samples were abundant and variable across groups. For

example, FOTU545-Mucor (Figure 8A) was shown to be higher in

corn with large pores and high moisture content, while FOTU358-

Chaetothyriales (Figure 8B) was higher in soy with large pores

and high moisture content; both were higher in T1 compared to

T4, highlighting inherent differences between soil communities.

In general, in T4, the most abundant OTUs that vary across

factors were also present in the control samples, while in T1, they

were absent.

Discussion

In this study, we tested the impact of the prevalence of soil

pores of a certain size range, different soil moisture contents, and

decomposition of plant tissue of different qualities on fungal and

bacterial dynamics across space and time. We explored both the

tissue itself and the surrounding detritusphere. We found that soils

subjected to long-term differences in soil management practice, i.e.,

conventional vs. organic management, had the greatest influence

on microbial community structure, likely the result of differences

in plant diversity but also due to increases in soil organic matter

in the organic management in these field soils (Syswerda et al.,

2011). That is in agreement with observations by Epp Schmidt

et al. (2022) on the soils from similar management practices, also

after extended implementation. The microbial community in the

long-term biologically based treatment showed greater microbial

richness (Figure 3), consistent with a number of past reports (de

Graaff et al., 2019).

As expected, the greatest contrast in microbial community

composition was observed between the community on the

decomposing residue and the communities of the surrounding

soil. Leaf microbiomes were less species rich as compared to the

adjacent soil (Figure 3), likely reflecting the special environment

dominated by leaf decomposers, organisms that benefited from

their necromass, and predators. The decomposing leaves, providing

a carbon and nutrient supply, drive microbial functioning in the

soil microenvironment (Figure 3).

As we reported in a companion study, decomposition rates

and magnitudes substantially differed between microcosms with

incubated corn vs. soybean leaves (Kravchenko et al., 2017). While

>85% of the soybean residue was completely decomposed after

7 days of incubation, only 30–50% of the corn residue was

decomposed by that time. However, surprisingly, the effect of

plant species on the composition of the microbial community was

relatively minor, especially for bacteria. Mortierellomycetes, a clade

of fungi reportedly abundant in agricultural conventionally and
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FIGURE 6

Top abundant, variable, and significantly di�erent (pairwise Wilcoxon tests, P ≤ 0.05 after Benjamini-Hochberg correction method) OTUs across T1

and T4 treatments in the fungal (A) and bacterial (B) microbiomes of the leaf. Point sizes represent the mean abundance across samples at a

treatment level. Only significantly di�erent OTUs among the top 25 were selected among the most variable (OTUs with a di�erence in abundance

between treatment levels ≥ the 50 percentile of the coe�cient of variation for that OTU across samples for the fungi and ≥ the 75 percentile for the

bacteria) and are shown.

organically managed systems (Epp Schmidt et al., 2022; Benucci

et al., 2023) and known to include soil saprotrophs as well as

plant growth promoters (Põlme et al., 2020; Vandepol et al., 2022),

had a greater abundance on soybean leaves than corn leaves.

Agaricomycetes and Sordariomycetes groups, known to include

large proportions of wood and litter saprotrophs (Põlme et al.,

2020), were more abundant in corn than in soybean leaves.

We hypothesized that micro-environments within small pore-

dominated soil, especially when accompanied by low soil moisture,

would stimulate greater diversity of microbial communities.

Smaller and less hydraulically connected pore spaces generate more

fragmented microhabitats, shielding inhabitants from predation

and competition (Tiedje et al., 2001;Wolf et al., 2013; Bickel andOr,

2020). This effect was expected to be more pronounced in bacteria

than in fungi since hyphal growth was assumed to enable fungi to

easily navigate and spread through the pore space, allowing them

greater resistance to fluctuations in local environmental conditions

(Barnard et al., 2013; Nunan et al., 2020). Our findings only

partially supported this hypothesis (Figure 3). Greater bacterial

diversity was indeed observed in small pore treatments than in

large pore treatments, but it was statistically significant only in the

soil of conventional agriculture and was only a numeric trend in

organic management. However, a greater diversity of fungi was

consistently observed in the soils of both management practices.

The result suggests a greater than expected sensitivity of fungi to

micro-environmental conditions, even at a few-cm spatial scale.

However, the association between soil moisture and microbial

richness was either absent or the opposite of what we anticipated.

Moisture did not influence fungal richness, and on decomposing

residues and partially in the surrounding soil, greater richness was

associated with higher moisture (Figure 3). It is possible that the

lower moisture of the study limited many organisms and selected

for those tolerant of drier conditions, while the optimal (field

capacity) moisture of our high soil moisture treatment provided an

Frontiers inMicrobiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1172862
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Benucci et al. 10.3389/fmicb.2023.1172862

FIGURE 7

Top abundant, variable, and significantly di�erent (pairwise Wilcoxon tests, P ≤ 0.05 after Benjamini-Hochberg correction method) OTUs across T1

and T4 treatments in the fungal (A) and bacterial (B) microbiomes of the Nearsoil. Point sizes represent the mean abundance across samples at a

treatment level. Only significantly di�erent OTUs among the top 25 were selected among the most variable (OTUs with di�erences in abundance

between treatment levels ≥ the 50 percentile of the coe�cient of variation for that OTU across samples for the fungi and ≥ the 75 percentile for the

bacteria) and are shown.

optimal growth environment. Indeed, the moisture corresponding

to field capacity was reported as beneficial to bacterial diversity

in both experimental works (Carson et al., 2010) and theoretical

considerations (Bickel and Or, 2020).

Nevertheless, for several bacterial groups, the associations with

pores were consistent with the associations with soil moisture

levels, suggesting the contribution of general micro-environmental

effects to the performance of these microorganisms during the

experiment. Betaproteobacteria and Bacteriodetes were in greater

abundance in both large-pore soils and at higher soil moisture

(Figure 5). Gammaproteobacteria and Shingobacteria were in

greater abundance in both small-pore soils and at lower soil

moisture. Actinobacteria, a phylum known to be resistant to

desiccation (Bardgett and Caruso, 2020), was also notably more

abundant in both small-pore soils and at lower soil moisture.

A number of Acidobacteria groups, which are usually described

as oligotrophs resistant to harsh environments, were also in

greater abundance in small pores, as were Anaerolinea. The higher

abundance of Acidobacteria in the small pore treatment, with its

lower oxygen supply, was expected. Consistent with our findings,

Xia et al. (2022) reported a greater abundance of Actinobacteria

in smaller pores and drier conditions and a greater abundance of

Betaproteobacteria in large pores.

Conclusion

We reported here that decomposing leaves in the soil drive

microbial activity and turnover over time. As we hypothesized,

incubated fresh plant detritus was shown to harbor a reduced

diversity but a more even microbiome composition compared

to that of the adjacent communities in the soil and was the

most important factor explaining fungal and bacterial microbiomes

across space. We did not entirely expect to have such an important

effect of management type (organic vs. conventional), which was

also variable across the different niches, and impactful on the effect

of pore size on both bacterial microbiomes. Soil pores andmoisture

content were influenced by both niche and management type and
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FIGURE 8

Top abundant, variable, and significantly di�erent (pairwise Wilcoxon tests, P ≤ 0.05 after Benjamini-Hochberg correction method) OTUs across T1

and T4 treatments in the fungal (A) and bacterial (B) microbiomes of the far soil. Point sizes represent the mean abundance across samples at a

treatment level. Only significantly di�erent OTUs among the top 25 were selected among the most variable (OTUs with a di�erence in abundance

between treatment levels ≥ the 50 percentile of the coe�cient of variation for that OTU across samples for the fungi and ≥ the 75 percentile for the

bacteria) and are shown.

were important in shaping bacterial communities, which are known

to rely on water films for dispersal and were more dynamic over

time compared to fungi. In contrast, and as hypothesized, plant

species had a greater effect on the fungal community composition

over time. Together, these results contribute to our understanding

of the decomposition of carbon residues in the soil and the factors

that regulate the microbes that drive soil C and nutrient cycling.
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