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Background: Several reports in recent years have found an association between

gut microbiota and upper urinary urolithiasis. However, the causal relationship

between them remains to be clarified.

Methods: Genetic variation is used as a tool in Mendelian randomization for

inference of whether exposure factors have a causal e�ect on disease outcomes.

We selected summary statistics from a large genome-wide association study

of the gut microbiome published by the MiBioGen consortium with a sample

size of 18,340 as an exposure factor and upper urinary urolithiasis data from

FinnGen GWAS with 4,969 calculi cases and 213,445 controls as a disease

outcome. Then, a two-sample Mendelian randomization analysis was performed

by applying inverse variance-weighted, MR-Egger, maximum likelihood, and

weighted median. In addition, heterogeneity and horizontal pleiotropy were

excluded by sensitivity analysis.

Results: IVW results confirmed that class Deltaproteobacteria (OR = 0.814, 95%

CI: 0.666–0.995, P = 0.045), order NB1n (OR = 0.833, 95% CI: 0.737–0.940, P

= 3.15 × 10−3), family Clostridiaceae1 (OR = 0.729, 95% CI: 0.581–0.916, P =

6.61 × 10−3), genus Barnesiella (OR = 0.695, 95% CI: 0.551–0.877, P = 2.20 ×

10−3), genus Clostridium sensu_stricto_1 (OR = 0.777, 95% CI: 0.612–0.986, P

= 0.0380), genus Flavonifractor (OR = 0.711, 95% CI: 0.536–0.944, P = 0.0181),

genus Hungatella (OR = 0.829, 95% CI: 0.690–0.995, P = 0.0444), and genus

Oscillospira (OR = 0.758, 95% CI: 0.577–0.996, P= 0.0464) had a protective e�ect

on upper urinary urolithiasis, while Eubacterium xylanophilum (OR =1.26, 95% CI:

1.010–1.566, P = 0.0423) had the opposite e�ect. Sensitivity analysis did not find

outlier SNPs.

Conclusion: In summary, a causal relationship was found between several

genera and upper urinary urolithiasis. However, we still need further randomized

controlled trials to validate.
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1. Introduction

Urinary stones are one of the most frequent benign diseases

with a high incidence of up to 20% worldwide (Hoffman et al.,

2021). The most troubled and most studied of urolithiasis is the

upper urinary stones, including nephrolithiasis and ureterolithiasis

derived from the renal. The prevalence of renal stones is

projected to rise further as the growing population with associated

diseases including diabetes and hypertension and the changing

environmental trends of global warming (Carbone et al., 2018;

Johnson et al., 2019). It will likely cause complications including

urinary obstruction, infection, pain, and even permanent damage

to renal function (Rule et al., 2020). Renal stones are also generally

considered to be a lifelong disease with high recurrence (Corbo

andWang, 2019), which has a tremendous influence on individuals

and society, and has emerged as a substantial public health

issue (Johnson et al., 2019). The mechanism of formation and

growth of renal stones is complicated. A variety of processes

including supersaturation of urinary stone components, reduction

of inhibitors of stone formation (Cicerello et al., 2019), and renal

tubular epithelial cell injury (Aggarwal et al., 2013) are involved.

Metabolism and inflammation are considered important factors

involved in the formation of renal stones (Tian et al., 2022;

Capolongo et al., 2023).

The gutmicrobiota is the largest micro-ecosystem of the human

body, participating in and influencing the metabolism of the

substance and energy (Anand andMande, 2022). Crosstalk between

the gut microbiome and kidney has been widely documented, for

example, intestinal ecological disorders are often found in patients

with chronic kidney disease (Voroneanu et al., 2023). The role

of gut microbiome in the pathogenesis of kidney stones has also

attracted more and more attention. There are significant changes in

gut microbiota in patients with and without renal calculi (Siener

et al., 2013b; Stern et al., 2016; Tavasoli et al., 2020; Kim et al.,

2022). Furthermore, the normal group had a greater abundance of

Bifidobacterium (Kim et al., 2022). Stern reported that Bacillus was

3.4 times more abundant in the stone group and Prevotella was 2.8

times more abundant in the non-stone group (Stern et al., 2016).

Some microbial producers of short-chain fatty acids deserved our

attention, and an observational study found that the proportion of

some key taxa responsible for the production of short-chain fatty

acids decreased in groups with nephrolithiasis (Liu et al., 2020).

Moreover, many studies have focused on Oxalobacter formigenes,

Bifidobacterium, and Lactobacillus due to the oxalic acid-degrading

ability (Siener et al., 2013a; Tavasoli et al., 2020). Oxalobacter

formigenes can stimulate the secretion of oxalate in the colon,

thereby reducing oxalic acid levels in the urine (Allison et al.,

1985). Some studies found that individuals with oxalate stones

had considerably greater urine oxalate excretion and very low

levels of Oxalobacter formigenes compared to controls, so it can

be assumed that the formation of oxalate stones is related to

the lack of colonization by Oxalobacter formigenes (Siener et al.,

2013b; Tavasoli et al., 2020). However, clinical supplementation

with Oxalobacter reagents did not improve blood and urine oxalate

levels in patients with hyperoxaluria in another study (Siener et al.,

2013b). Therefore, exploring the causal relationship between gut

microbiota and calculi may provide new targets and ideas for the

prevention and treatment of upper urinary urolithiasis.

In conclusion, since the gut microbiota is a complex ecosystem,

there may be regulatory networks among various types of bacteria

as well as the presence of some confounding factors that limit the

causal inference between intestinal flora and renal calculi disease.

Mendelian Randomization (MR) can be employed to infer the

causal link between exposure factors and disease through genetic

variation. MR provides a more convenient method for exploration

of potential protective and risk factors for disease and has been

applied to several research studies on the relationship between gut

microbiota and diseases (Freidin et al., 2021; Liu et al., 2022; Luo

et al., 2022). The genome-wide association study (GWAS) summary

datasets about gut microbiota and renal and ureter stones were

applied to this analysis.

2. Materials and methods

2.1. Data source

Our workflow diagram is presented in Figure 1. The MiBioGen

group released the biggest genome-wide meta-analysis of gut

microbiota composition, which included genetic variation data for

the gut microbiota (Kurilshikov et al., 2021). The research contains

16SrRNA gene sequencing profiles and genotyping data from

18,340 individuals from the United States, the United Kingdom,

Finland, Sweden, Denmark, the Netherlands, and other countries.

Nine phyla, 16 classes, 20 orders, 35 families, and 131 genera

(Supplementary Table 1) of bacteria were classified in the summary

data of this study. Then, we excluded three unknown families

and 12 unknown genera. Since genus is the minimal level

of bacterial classification, we enrolled nine phyla, 16 classes,

20 orders, 32 families, and 119 genera in the subsequent

MR analysis.

Several summary statistics for urolithiasis were available

(Supplementary Table 2), and to ensure the credibility of the data,

we chose GWAS data with the highest number of SNPs published in

2021 from FinnGen (Kurki et al., 2023). The phenotype “Calculus

of renal and ureter” was used, and this GWAS had 218,414 Finnish

adult subjects including 4,969 cases and 213,445 controls.

2.2. Filter instrumental variables

Gut microbiota and urolithiasis were exposure factors

and outcomes, respectively. Valid IVs must satisfy three key

assumptions (Slob and Burgess, 2020): (1) The correlation

hypothesis: instrumental variables are strongly correlated with

exposure. (2) The exclusivity hypothesis: instrumental variables are

independent of the outcome. (3) The independence assumption:

instrumental variables are independent of confounding factors.

Thus, we made the following criteria. A P-value of <1∗10−5

was chosen as the significance threshold to avoid too few single-

nucleotide polymorphisms (SNPs) (Sanna et al., 2019). Linkage

disequilibrium (LD) is a phenomenon in which two genes at

different seats in a population are inherited at a significantly

higher frequency than would be expected at random (Roze,

2023). To avoid LD, we set the chain imbalance threshold r2

< 0.001 and the distance to 10,000 kb. Palindromic variation

means if the alleles are A and T (or C and G), then the same
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FIGURE 1

Workflow of the MR analysis.

alleles will appear on the plus and minus chains (Girault and

Ménigot, 2022). Thus, Palindromic SNPs were removed to

prevent inconsistent SNP orientation in the exposure and

outcome. Second, IVs should fulfill a P-value of >1∗10−5 in

the outcome for the p-value according to assumption (2). The

PhenoScanner (Kamat et al., 2019) online tool was used to inquire

whether the SNPs were related to confounders of urolithiasis

according to the European Association of Urology Guidelines

section on urolithiasis (Zeng et al., 2022). Then we excluded the

relevant SNPs.

2.3. Statistical analysis

The inverse variance-weighted (IVW) approach was used as

the principal analysis method, while three other methods, namely

MR-Egger regression, weighted median analysis (WME), and

maximum likelihood (ML), were used as secondary references.

For exposure factors with individual SNP, the IVW technique

provided a consistent estimate when all SNPs were believed

to be genuine and the presence of an intercept term was

not taken into account. The WME method was premised on

the assumption that over half of the SNPs had valid IVs

(Bowden et al., 2016). The MR-Egger method assumes that all

SNPs were invalid instrumental variables and defaulted to the

presence of an intercept term (Bowden et al., 2015). Further

sensitivity analysis was carried out only when the IVW results

were meaningful.

The F-statistic was utilized to determine the intensity of IVs

(F =
R2×(n−k−1)
(1−R2)×K

denotes the fraction of variance explained by

genetic variation in exposure, nmeans sample size, and k represents

the number of SNPs) (Pierce et al., 2011). When the F-statistic

for SNP was more than 10, it was assumed that there was no

substantial weak instrumental bias; otherwise, the instrumental

variable should be omitted. After removing the corresponding IVs

that did not qualify as described above, the MR analysis was rerun

to acquire the final MR estimations. When there did not exist

heterogeneity and pleiotropy, the IVW results were trustworthy

(Bowden et al., 2015). Effect estimates were expressed as odds ratio

for binary outcomes.

2.4. Sensitivity analysis

The sensitivity analysis involved a heterogeneity test and a

multiplicity of validity test. Cochran’s Q-test was performed to

confirm IV heterogeneity, with a p-value < 0.05 indicating the

lack of heterogeneity. MR-PRESSO summed the residuals for

each SNP to assess the magnitude of horizontal pleiotropy.

The MR-PRESSO outlier test allowed the assessment of

outlier SNPs that contributed to the presence of pleiotropy

at the overall level. The impact of one outlier on the overall

results was assessed by calculating the remaining SNP effects

after removing individual SNPs one by the leave-one-out

analysis. Both MR-PRESSO and leave-one-out analysis methods

could identify and remove SNPs that exhibited pleiotropy

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1170793
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2023.1170793

FIGURE 2

The circus plot showing four method results of all gut microbiota.

or heterogeneity. MR Steiger test was also carried out (Xue

and Pan, 2020) to investigate the correctness of the causal

direction. Additionally, we performed the reverse Mendelian

randomization analysis.

MR analyses were carried out using the R (version 4.1.2)

computational environment and the TwoSampleMR (version 0.5.6)

and MR-PRESSO packages (version 1.0). The R package “ggplot2”

was applied for drawing some figures. For evidence of causal effects,

a p-value of <0.05 was judged statistically significant.

3. Results

We screened 2,104 SNPs as instrumental variables from 196

gut microbiota. F-statistics for all instrumental variables were

calculated. Two SNPs (rs17074066 and rs2835874) not satisfying

F-statistic > 10 were excluded (Supplementary Table 3). The

results of the MR analysis for IVs are shown in a circus plot

(Figure 2) and detailed in Supplementary Table 4. We queried the

aforementioned SNPs for positive findings in PhenoScanner and
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FIGURE 3

Significant results for the IVW analysis.

TABLE 1 Sensitivity analysis of significant gut microbiota.

Gut microbiota Q_pval (IVW) MR PRESSO MR-egger_test Steiger test

Intercept Pleiotropy test

Genus Barnesiella 0.231 0.269 −0.010 0.797 8.67E-63

Clostridium sensus_tricto_1 0.426 0.471 −0.051 0.161 3.54E-36

Flavonifractor 0.445 0.492 0.048 0.380 5.58E-33

Hungatella 0.972 0.973 −0.007 0.932 7.97E-21

Oscillospira 0.141 0.166 0.021 0.741 8.74E-36

Eubacterium xylanophilum 0.424 0.453 0.011 0.725 5.38E-49

Class Deltaproteobacteria 0.478 0.511 0.010 0.627 4.24E-56

Family Clostridiaceae1 0.514 0.569 0.004 0.882 5.02E-42

Order NB1n 0.430 0.471 −0.016 0.619 1.09E-64

found no SNPs associated with the aforementioned confounders

(Supplementary Table 5). Finally, one class, one order, one family,

and six genera showing significant results for IVW analysis

(Figure 3) were class Deltaproteobacteria (OR = 0.814, 95% CI:

0.666–0.995, P = 0.045), order NB1n (OR = 0.833, 95% CI:

0.737–0.940, P = 3.15 × 10−3), family Clostridiaceae1 (OR

= 0.729, 95% CI: 0.581–0.916, P = 6.61 × 10−3), genus

Barnesiella (OR = 0.695, 95% CI: 0.551–0.877, P = 2.20 ×

10−3), genus Clostridium sensu_stricto_1 (OR = 0.777, 95% CI:

0.612–0.986, P = 0.0380), genus Flavonifractor (OR = 0.711,

95% CI: 0.536–0.944, P = 0.0181), genus Hungatella (OR =

0.829, 95% CI: 0.690–0.995, P = 0.0444), genus Oscillospira

(OR = 0.758, 95% CI: 0.577–0.996, P = 0.0464), and genus

Eubacterium xylanophilum (OR =1.26, 95% CI: 1.010–1.566, P

= 0.0423).

The results of sensitivity analyses are presented in Table 1.

Cochran’s Q-test results revealed no significant values for any

of these gut microbiota, indicating that none of the IVs were

heterogeneous. MR-PRESSO results did not show the presence

of outliers. MR-Egger’s intercept analysis had no meaningful

results and demonstrated that there was no horizontal pleiotropy

(Figure 4) and the directions calculated by each method were

consistent except for the genus Clostridium sensu_stricto_1. The

effect value calculated using the MR-Egger method for Clostridia

was not consistent with the other three methods. Considering that

the MR-Egger method assumed that all IVs were invalid, which
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FIGURE 4

Scatter plots of the MR analysis.

weakened the statistical power making the results less precise.

Therefore, we primarily used it to assess horizontal pleiotropy. As

shown in Figure 5, the results of the leave-one-out technique were

really robust to the outcomes of this MR analysis, where no matter

which SNP was removed, it did not have a fundamental effect on

the results.

A total of nine SNPs were used as instrumental variables for

each reverse Mendelian randomization (Supplementary Table 6).

Significant results of the IVW method (Figure 6) showed class

Methanobacteria (OR = 1.142, 95% CI: 1.003–1.301, P = 0.045),

order Methanobacteriales (OR = 1.142, 95% CI: 1.003–1.301, P =

0.045), family Methanobacteriaceae (OR = 1.142, 95% CI: 1.003–

1.301, P = 0.045), family Defluviitaleaceae (OR =1.108, 95% CI:

1.015–1.208, P = 0.022), genus Defluviitaleaceae UCG001 (OR

=1.111, 95% CI: 1.018–1.212, P = 0.019), genus Lachnospiraceae

UCG004 (OR = 0.934, 95% CI: 0.875–0.997, P = 0.042), genus

Streptococcus (OR =1.071, 95% CI: 1.007–1.139, P = 0.030), and

genus Victivallis (OR= 1.172, 95% CI: 1.022–1.345, P = 0.023).

4. Discussion

The gut microbiome is associated with several diseases in

humans. Since the theory of the kidney gut axis became available,

several clinical and animal model studies have confirmed the

association of the gut microbiome with kidney diseases, especially

chronic kidney disease (Cigarran Guldris et al., 2017; Yang et al.,

2018). The relationship between intestinal flora and renal and
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FIGURE 5

Leave-one-out results.

ureter stones has also been gradually recognized in recent years.

However, the correct direction of causality could not be inferred

from observational studies. Our study was the first to confirm a

causal relationship between gut microbiota and upper urinary tract

stones using an MR analysis.

In this study, we used summary information on the gut

microbiota from the largest GWAS meta-analysis conducted

by the MiBioGen Consortium and summary statistics on upper

urinary urolithiasis released by FinnGen R8 to investigate

the causal link. Mendelian randomization and sensitivity

analysis were performed on the filtered qualifying instrumental

variables, and we found a causal relationship between several

gut microbiota for upper urinary urolithiasis, with high

levels of the genera Barnesiella, Clostridium sensu_stricto_1,

Flavonifractor, Hungatella, Oscillospira, family Clostridiaceae1,

class Deltaproteobacteria, and order NB1n, reducing the
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FIGURE 6

Significant results of reverse MR by the IVW method.

risk of upper urinary tract stones (OR < 1), whereas

the genus Eubacterium xylanophilum (OR > 1) had the

opposite effect.

The association between these florae in our findings and

upper urinary tract stones has rarely been reported. However,

risk-associated flora is often reported to be associated with some

inflammation-related diseases. For instance, Barnesiella is anti-

inflammatory and protective in animal models and is associated

with several immunomodulatory cells. Higher levels of Barnesiella

in the colon are correlated with the intestinal environment

less prone to inflammation (Berry and Reinisch, 2013). The

main products of Barnesiella derivation are butyric acid and

isobutyric acid (Sakamoto et al., 2009), and butyrate stimulates GFR

receptors, which limit the production of inflammatory proteins

such as IL-6, IL-1, and NF-B, reducing inflammation (Chen

et al., 2018; Clemente et al., 2018). Clostridium sensu_stricto_1

belonging to the family Clostridiaceae is one of the most

important anaerobic bacteria in the intestine (Guo et al., 2020)

and has positive effects on short-chain fatty acid production and

immune regulation through the production of butyrate through

fermentation (Vital et al., 2014; Li et al., 2019). Bioinformatics

analysis of the phylum Firmicutes (Rawat et al., 2022) showed

that their genomes, particularly the genus Hungatella, are a rich

source of glycosaminoglycan-specific catabolic enzymes and that

the interaction of glycosaminoglycans withmany ligands is relevant

to the biological function of inflammation. Li found that feeding

Hungatella to a mouse model ameliorated inflammation and

extracellular matrix remodeling (He et al., 2016). Flavonifractors

have been suggested in several articles to affect inflammation and

obesity through multiple mechanisms (Kasai et al., 2015; Mikami

et al., 2020; Ogita et al., 2020). Animal experiments by Tasuku

(Mikami et al., 2020) have demonstrated that this genus suppresses

allergen-specific IgE synthesis and may contribute to the relief

of antigen-specific immunological responses in a Th2-dominated

environment. Another study (Ogita et al., 2020) found that oral

treatment of Flavonifractor preparations reduced the inflammatory

response in the adipose tissue of obese mice, raising the possibility

that it is involved in the suppression of TNF expression in

an inflammatory environment. Mice treated with Hungatella

exhibited reduced cytokine release and NF-κB activation in

dendritic cells (Rossi et al., 2016). Oscillospira, a genus capable

of synthesizing short-chain fatty acids like butyrate, has been

linked to inflammation-related disorders, such as inflammatory

bowel disease, non-alcoholic fatty liver disease, and aging processes

distinguished through increased levels of circulating inflammatory

mediators (Chierico et al., 2017; Lima and Longman, 2021;

Xu et al., 2021), and is strongly negatively associated with

pro-inflammatory monocyte chemoattractant protein-1 (Buford,

2017). Deltaproteobacteria were found to be negatively related to

antineutrophil cytoplasmic antibody-associated vasculitis (AAV)

with kidney injury (Yu et al., 2022). The herbal tea ingredient

Rabdosia serra acts as an anti-inflammatory agent by boosting

the number of helpful bacteria, such as Lactobacillus, as well as

reducing the number of harmful bacteria including Eubacterium

xylanophilum, thus alleviating artificially induced colitis in mice (Li

et al., 2022).

It is believed that in the prevalent explanation of kidney

stone production, the inflammatory immunological response

contributes to the creation of Randall’s plaques and calcium

stones. Crystal deposition in mouse kidneys has been linked

to reactive oxygen species generation, inflammatory vesicle

activation, and the increased expression of molecules involved

in the inflammatory cascade response (Khan et al., 2021).

The renal—intestinal axis theory suggests that inflammatory

cells, cytokines, soluble urokinase produced in our intestines

promote renal inflammation via the circulation and metabolites

of the microbiota entering the circulation may also have an

impact on the kidney (Ticinesi et al., 2018). This is laterally

supported by the higher prevalence of urinary stones in the

inflammatory bowel population than in the general population

(Dimke et al., 2021). Genera with protective effects usually

exhibit anti-inflammatory actions in this study. Because this anti-

inflammatory effect may depend on butyrate, a kind of SCFs,

we hypothesized that the gut microbiota may influence the
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development of kidney stones by altering the level of inflammation

in the body.

Reverse MR analysis revealed that several gut microbiota had

the propensity to colonize in the gut of patients with kidney and

ureteral stones. This may be related to the dietary habits and

antibiotic usage of the patients. For example, increased abundances

of Methanobacteria and Victivallis were found in mice fed with

a high-fat diet (Mathur et al., 2013; Rodriguez et al., 2020) and

a high sugar diet-induced changes in Lachnospiraceae UCG004

(Han et al., 2022). An epidemiological survey revealed a greater

predilection for a western-style diet (a diet high in fat, calories,

and animal protein and low in fiber and plant-based proteins)

among the population with kidney stones (Kohjimoto et al.,

2013).

The major strength of our study was that MR analysis

results were unlikely to be biased by confounders and reverse

causation compared with conventional observational studies; thus,

our results provided more convincing evidence to support the

causality of gut microbiota and upper urinary tract stones. In

addition, the data of both gut microbiota and upper urinary

tract stones were obtained from a large sample population, which

could greatly improve the MR analysis power based on the

pooled data.

This study had some limitations. First, our study was conducted

in a European population only and may not be applicable to

other populations. Second, because the minimal taxonomic level

was genus, we could not further explore the causal relationship

between gut microbiota and upper urinary urolithiasis at the

species level. Furthermore, summary statistics lacked grouping

information for stone composition, such as calcium oxalate

stones or uric acid stones; therefore, we were unable to perform

subgroup analyses.

5. Conclusion

Finally, a causal relationship was established between

upper urinary urolithiasis and the gut microbiota through

two-sample MR. Deltaproteobacteria, NB1n, Clostridiaceae1,

Barnesiella,Clostridium sensu_stricto_1, Flavonifractor,Hungatella,

Oscillospira, and Eubacterium xylanophilum were identified. These

strains may develop into new biomarkers and provide potential

direction for the treatment and prevention of urinary stones.

In addition, the mechanism and role of the inflammatory

response in the formation of upper urinary tract stones deserve

our attention.
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