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MicroRNAs (miRNAs) are short RNA molecular fragments that regulate gene

expression by targeting and inhibiting the expression of specific RNAs. Due to

the fact that microRNAs a�ect many diseases in microbial ecology, it is necessary

to predict microRNAs’ association with diseases at the microbial level. To this

end, we propose a novel model, termed as GCNA-MDA, where dual-autoencoder

and graph convolutional network (GCN) are integrated to predict miRNA-disease

association. The proposed method leverages autoencoders to extract robust

representations of miRNAs and diseases and meantime exploits GCN to capture

the topological information of miRNA-disease networks. To alleviate the impact of

insu�cient information for the original data, the association similarity and feature

similarity data are combined to calculate a more complete initial basic vector of

nodes. The experimental results on the benchmark datasets demonstrate that

compared with the existing representative methods, the proposed method has

achieved the superior performance and its precision reaches up to 0.8982. These

results demonstrate that the proposed method can serve as a tool for exploring

miRNA-disease associations in microbial environments.

KEYWORDS

miRNA-disease association, microbial ecology, dual-autoencoder, graph convolutional
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1. Introduction

MiRNAs are a class of endogenous short RNAs that have multiple important regulatory

functions in the microbial environment. MiRNAs exert a significant influence in microbial

ecology such as metabolism (Karp and Ambros, 2005), cell growth (Ambros, 2003), immune

response (Jung et al., 2006), proliferation (Miska, 2005), cell cycle regulation (Liu et al.,

2022a) and tumor invasion (Meng et al., 2007). Moreover, miRNAs completes the process of

regulating gene expression by base-pairing with target RNA (Jopling et al., 2005; Vasudevan

et al., 2007). As a result, miRNAs can effectively predict the occurrence of diseases in

microbial ecology and contribute in prevention and diagnosis. HMDD and Human Cancer

Differentially Expressed miRNA Database (dbDEMC) contains miRNA-disease related

information (Li et al., 2014). However, the data available for research are relatively scarce,

and the choice of wet assays to determine miRNA-disease associations is expensive. Thus, it

is crucial to design an effective model to handle the experimental testing process (Chen et al.,

2019a, 2021; Wang et al., 2019; Zhu et al., 2021).
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In the field of biocomputing, correlation studies between

various molecules have been conducted. For example, researchers

predict the interaction between circRNA and disease (Wang et al.,

2021), miRNA and lncRNA (Zhang et al., 2021), lncRNA and

protein (Hu et al., 2018), etc. The aforementioned methods are

necessary to predict miRNA-diseases, and most of them are based

on complex networks. This line of research works builds one or

multi networks on the original interaction datasets, and predicts

disease-related miRNAs by integrating multi-level data. In general,

these approaches can make reasonable predications about miRNA

relatedness based on similar disease phenotypes and similar

functions, and vice versa (You et al., 2017; Chen et al., 2018a,d,

2019b). For instance, Jiang et al. established a scoring mechanism

for predicting disease-miRNA correlations based on miRNA-

disease heterogeneous networks, and applied hypergeometric

distribution to predict the strength of miRNA-disease associations

(Jiang et al., 2010). Guided by global information of the data,

Chen et al. proposed a strategy based on random walk to predict

the association between diseases and miRNAs (Chen et al., 2012).

Considering the fact that most of models cannot accurately predict

miRNAs associated with isolated disease individuals, Zeng et al.

added some perturbations to the network to train the predictor

(Zeng et al., 2018). Recently, researchers have explored a wide

range of miRNA functions, which increases the complexity of

analyzing gene expression and regulatory networks in common

diseases today (Vickers et al., 2014). Moreover, studies have shown

that miRNAs participate in the regulation of many cardiovascular-

related diseases. These studies demonstrate new aspects of miRNAs

in the field of life sciences, and analyzing the regulation of these

miRNAs on cardiovascular-related diseases is extremely valuable

for proposing new diagnostic and preventive strategies.

Some studies based on statistical methods to predict miRNA-

disease associations are attracting more and more attention from

the researchers. For example, Li et al. constructed an SVM classifier

based on miRNAs associated with specific tumor phenotypes (Li

et al., 2012). This model is only for the prediction of diseases such

as tumors and may not be suitable for other diseases. Considering

the shortage of negative samples in supervised learning models,

Yan et al. proposed a model that can reveal the interaction

between diseases and miRNAs based on the principle of regularized

least squares (Chen and Yan, 2014). This model can predict

the associated miRNAs of emerging diseases, thanking to its

semi-supervised learning strategy. Chen et al. demonstrated a

computational model of matrix decomposition and heterogeneity

network inference for predicting miRNA-disease associations

(Chen et al., 2018c). In this model, similarities in disease signatures

and disease-miRNA associations are integrated into a unified

network. However, model parameters are relatively large, and how

to reasonably set the parameters is a very challenging task. Xu et al.

developed a novelmodel based on probabilisticmatrix factorization

(Xu et al., 2019). This model firstly integrates the similarity in the

miRNA-disease network; And then performs a probability matrix

factorization operation based on the interaction matrix and the

similarity matrix.

However, the aforementioned models cannot still achieve

promising performance in predicting miRNA-disease associations.

Note that deep learning technology has recently been applied to the

field of biological computing (Fu et al., 2020; Cai et al., 2021a,b; Liu

et al., 2022c; Peng et al., 2022a,b,c; Tian et al., 2022; Xu et al., 2023;

Zhang et al., 2023). For instance, Chen et al. constructed a restricted

Boltzmannmodel that can predict associations in different domains

(Chen et al., 2015). Because the variability among multiple types

cannot be fully modeled, the prediction accuracy is not promising.

Chen et al. pre-trained all miRNA-disease pairs on a restricted

Boltzmann model and fine-tuned on DBN on the same proportion

of positive and negative samples to obtain prediction scores (Chen,

2021). Peng et al. extract features based on a three-autoencoder and

then apply a convolutional network to predict the final label (Peng

et al., 2019).

Recently, graph neural networks have received much attention

from the researchers. For instance, Chen et al. developed a

method for miRNA disease association determination based on

heterogeneous graphs (Vickers et al., 2014). Furthermore, Chen

et al. proposed a network-integrated miRNA-disease-associated

internal and external score prediction method (Chen and Zhang,

2014). Chen et al. proposed a predictive model integrating matrix

deconstruction and heterogeneous graph aggregation (Chen et al.,

2016). Chen et al. utilized matrix factorization to alleviate the

influence of noise in adjacent matrices, and then perform node

aggregation operations on heterogeneous networks. Mugunga

proposed a predictive model based on path features and random

walk to obtain correlation scores for miRNA-associated diseases,

and potential miRNA-disease associations would be associated with

high prediction scores (Mugunga et al., 2017). Guo et al. used a

decision fusion strategy to prioritize the results of existingmethods,

and then verified the effectiveness of the decision fusion strategy

(Guang, 2018). Zeng et al. constructed a heterogeneous network to

predict potential associations between miRNAs and disease, while

also accounting for dataset imbalance (Zeng, 2017). The model also

uses a multi-layer perceptron-based approach to predict miRNA-

disease pairs, integrating a variety of biological data resources.

Although the aforementioned methods are outstanding in

predicting miRNA-disease associations, few studies consider

the similarity and topological information comprehensively.

Generally speaking, when the topological structure is very sparse,

feature information becomes more important in association

prediction; when feature information is incomplete, topological

information can also play an auxiliary role. Inspired by this

guidance, we propose a GCN and autoencoder-based approach

that can comprehensively consider both feature and topological

information in miRNA-disease networks. Our contributions can be

summarized as follows:

1. We develop a GCNA-MDA model to predict miRNA-disease

association based on GCN and autoencoders, which achieves the

excellent performance. We employ dual-autoencoders to extract

disease and miRNA features, which improves the robustness of

node presentation. At the same time, we apply a 2-layer GCN

to further aggregate disease and miRNA node features by fully

considering the topological information.

2. We propose a robust strategy for constructing miRNA and

disease basic feature matrix. Combining feature similarity

and Gaussian similarity, a unified similarity matrix is

constructed. Adding association information to the disease and
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miRNA nodes respectively make the feature representation

more abundant, thus alleviate the negative impact of

insufficient data.

3. We conduct multiple comparison experiments on the HMDD

dataset to verify that the GCNA-MDA model can accurately

perform the prediction task. Moreover, we construct case studies

to verify that the GCNA-MDA model can indeed be applied to

examine the specific miRNA-disease associations.

2. Materials and methods

2.1. Dataset

The dataset used in the experiment could be downloaded from

the HMDD v2.0 database (Li et al., 2014). The dataset includes 5430

validated associations generated by 495 miRNAs and 383 diseases.

It can be abbreviated as adjacency matrix A, in which there are

495 × 383 miRNA disease associations. If disease d is associated

with miRNA m, the association relationship is satisfied, that is,

A(m, d) = 1, otherwise its value is 0.

2.2. Constructing miRNA and disease basic
feature matrix

In this section, we describe in detail the process of constructing

robust initial feature for miRNAs and diseases. These similarity

matrices can be used as the input matrices for the autoencoder in

the next stage. The main process will be introduced below.

2.2.1. Disease feature similarly
Based on the collected disease original feature information, its

feature similarity network can be constructed (Schriml et al., 2012).

Specifically, we apply the strategy of DAG to denote these diseases.

For a disease node d, it is denoted byDAG(d) = (d, v(d), e(d)).

v(d) represents the set of nodes reached to d, and e(d) represents

all edges linked to d. In the DAG graph, the feature contribution

weightW of the upper node x to d is calculated as follows:

W1d(x) =

{

1 if x = d

max{▽ ∗W1d(x
′)|x′ ∈ xchildren} if x 6= d,

(1)

where ▽ represents the adjustment parameter of W, which is

empirically set to 0.5 (Chen and Yan, 2013). Based on d and its

upper nodes, the feature representation value of d can be calculated

as follows:

Df 1(d) =
∑

x∈v(d)

W1d(x). (2)

We hypothesize that the greater the number of DAGs shared

between two disease nodes, the smaller the difference between the

two nodes may be. Thus, the feature similarity of two disease nodes

A and B can be calculated as:

FS1(A,B) =

∑

x∈v(A)
⋂

v(B) W1A(x)+W1B(x)

Df 1(A)+ Df 1(B)
(3)

For disease node d, if two nodes involve approximately

the same DAG(d) level, then two nodes should have different

occurrence ratios and their contribution to the feature weight of

disease d should be different. Thus, we propose the following

equation to compute the influence of disease x on d:

W2d(x) = −log

∣

∣DAG(x)
∣

∣

|D|
, (4)

where D denotes the disease set, and |·| denotes the operation of

calculating the number of elements in the set. Similarly, the feature

representation value of d and the feature similarity of two disease

nodes A and B can be calculated as Equations 5 and 6, respectively:

Df 2(d) =
∑

x∈v(d)

W2d(x), (5)

FS2(A,B) =

∑

x∈v(A)
⋂

v(B) W2A(x)+W2B(x)

Df 2(A)+ Df 2(B)
. (6)

Combining the two measure methods to obtain a more

reasonable feature similarity, the calculation equation is as follows:

FS(A,B) =
FS1(A,B)+ FS2(A,B)

2
. (7)

2.2.2. Similarity based on Gaussian
We hypothesize that two miRNAs with small functional

differences should be associated with diseases with similar

properties (Van Laarhoven et al., 2011). Based on this assumption,

we apply the Gaussian kernel distance calculation equation to

calculate the similarity between disease nodes Da and Db:

GD(Da,Db) = exp(−γd‖Index(Da)− Index(Db)‖
2), (8)

where

− γd = −γ ′
d(

1

|D|

|D|
∑

i=1

‖Index(Di)‖
2), (9)

and γd represents the Gaussian kernel parameter, and represents

the index function, which can index the row vector of the matrix.

Similarly, the Gaussian kernel distance formula between miRNA

nodesmiRa andmiRb is as follows:

GM(miRa,miRb) = exp(−γm‖Index(miRa)− Index(miRb)‖
2),

(10)

where

− γm = −γ ′
m(

1

|M|

|M|
∑

i=1

‖Index(miRi)‖
2), (11)

andM represents the miRNA node set, and γd and γm are often set

to 1 empirically (Chen and Yan, 2013).

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1170559
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liao et al. 10.3389/fmicb.2023.1170559

2.2.3. Similarity integration
Due to missing data, some disease pairs may not exist in the

feature similarity. For this case, using Gaussian kernel distance

to measure the distance between diseases can robustly reflect the

differences between diseases. Therefore, the calculation formula of

the overall similarity between disease nodes A and B is formulated

as

SD(A,B) =

{

GD(A,B) + FS(A,B)
2 if x = d

GD(A,B) if x 6= d.
(12)

Similarly, the calculation equation of the overall similarity

between miRNA nodes X and Y is representated as follows:

SM(X,Y) =

{

GM(X,Y) + FM(X,Y)
2 if FM(X,Y) exists

GM(X,Y) otherwise,
(13)

where FM(·, ·) denotes the functional similarity score between two

miRNA nodes.

2.3. Model design

In this section, we propose GCNA-MDA model for

predicting miRNA-disease associations based on GCNs and

dual-autoencoders. It mainly consists of three parts: firstly, a

new similarity calculation strategy is used to obtain the initial

basic feature matrix of miRNA (or disease); secondly, a dual-

autoencoder is applied to extract the robust expression of miRNA

and disease respectively; finally, a 2-layer GCN is applied to

predict miRNA-disease associations. Next, the GCNA-MDAmodel

architecture will be introduced in detail, and its overall framework

is shown in Figure 1.

2.3.1. Node representation
In this subsection, a novel signature expression for miRNA (or

disease) nodes is proposed. Considering that the direct interaction

information between miRNA and disease is very important, we

add disease-related information to the features of miRNA nodes.

Similarly, we also add the corresponding miRNA information to

the disease node. Specifically, according to formulas (13) and (12),

we calculate the respective feature vectors based on miRNAs and

diseases, respectively. Based on the above formula, the fusion with

the miRNA-disease association matrix can be obtained:

Fd = (SD1R1, ..., SD1R495, ..., SD383R1, ..., SD383R495)
T , (14)

Fm = (SM1C1, ..., SM1C495, ..., SM383C1, ..., SM383C495)
T , (15)

where Ri andCj represent the i−th row and j−th column vectors of

the miRNA-disease association matrix, respectively. Subsequently,

the matrices Fm and Fd of miRNAs and diseases were fed into a

dual-autoencoder, respectively.

2.3.2. Feature extraction with dual-autoencoders
Based on the above presentation, the node expression of the

miRNA (or disease) node fused with the correlation relationship

can be obtained. Obviously, the number of nodes is small (383

and 495), but the vector length of each node is high (equal to

twice the number of nodes of each type). In this case, the deep

neural network may suffer from insufficient samples. Fortunately,

autoencoders can play their unique role in this situation. With the

strategy of unsupervised learning, the automatic encoding machine

no longer needs a large number of samples for its training. This is

convenient for us to extract more robust features for the next stage

of association prediction tasks.

We extract features of miRNAs and disease nodes separately

based on a symmetric dual-autoencoder. The process is mainly

divided into two stages of encoding and decoding. During the

encoding phase, the basis vectors of the nodes obtained in the

previous section is fed into the encoder network. By setting a

reasonable number of dimensions, low-rank feature vectors of

miRNAs and diseases can be obtained. The calculation method in

the encoder is:

Y = σe(WeX + be), (16)

where σe() represents the sigmod activation function. We and be
represent the weight and bias matrices in the encoder, respectively.

Both matrices can be efficiently trained in the encoder. Thus, the

low-rank vectors obtained from the encoding stage are fed into the

decoder network. By setting a reasonable number of dimensions,

robust feature vectors for miRNAs and diseases can be obtained.

The calculation method in the decoder is:

F = σd(WdX + bd), (17)

where σd(·) represents the sigmod activation function. Wd and bd
represent the weight and bias matrices in the decoder, respectively.

F is stored as the final feature vector and is fed to the GCN in the

next stage for association prediction tasks. To minimize the final

feature distribution and the node’s initial basic feature distribution,

an optimization objective of the dual-autoencoder can be set as:

Loss =
∑

x∈X

‖x− Fx‖
2. (18)

In our research, we apply the common square loss function as

the optimization objective. The X matrix covers all miRNA and

disease nodes, and x is a row vector in the X matrix, which can be

regarded as a certain node. In the last layer of the decoder, the node

vector length is empirically set to 128.

2.3.3. Predict miRNA–Disease association by GCN
Through the aforementioned process, we can obtain robust

features of miRNAs and disease nodes. It is well known that

graph neural networks can well aggregate node features and fully

consider the topological information of miRNA-disease networks.

Therefore, this study uses GCN to predict whether there is an

association between miRNA nodes and disease nodes. Since GCN

is suitable for tasks on graphs with only one type of nodes and

one type of links. Therefore, in order to obtain a unified node

adjacency matrix, it is necessary to splice miRNA nodes and

disease nodes. For adjacency matrix A, the first 495 indexes of

its row (or column) represent miRNA, and the last 383 indexes
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FIGURE 1

The concatenated feature representations are input to dual-autoencoders.

represent disease. For the elements in the matrix, the sub-matrix

composed of elements from 1 to 495 rows and 496 to 878 columns

represents miRNA-disease association. The specific calculation is

as follows:

A =

(

NMM NMD

NDM NDD

)

. (19)

In the above equation, the size of the adjacency matrix

A is 878 × 878. NMD and NDM represent miRNA-disease

association, and NDD and NMM are set to 0. In GCN, the

feature matrix F obtained in the previous section is fed into

the GCN network as the initial node embedding matrix. Along

with it, matrix A participates in GCN. GCN can aggregate

nodes based on topology information to obtain more effective

node embedding. The node embedding aggregation calculation is

as follows:

Hi+1 = σ (Γ̂ − 1
2 ÂΓ̂ − 1

2HiWi), (20)

where Hi represents the node embedding of the i-th layer,

H0 comes from Fd or Fm. Â represents the adjacency matrix

with self-loops, and Γ̂ represents the degree matrix of Â, Wi

represents the trainable matrix. In this study, we design a 2-

layer GCN to predict miRNA-disease associations as shown

in Figure 2.

3. Results

In this section, our model compares the performance of several

typical models on the HMDD dataset. In order to verify the

reliability of the model, we also conducted 5-fold and 10-fold

cross-validation experiments. At the same time, to demonstrate

that the proposed model has certain practical significance, such

as preliminary prevention and guidance for diseases, we also

constructed corresponding case studies for certain diseases.

3.1. Evaluation strategy

We used common AUC and precision metrics to validate the

performance of our model. Among them, AUC is a comprehensive

indicator, which can reflect the comprehensive performance of the

model. Since the sparse rate in the dataset is ((495X383)− 5430)÷

(495X383) ≈ 97.14%, in other words, the number of negative

samples is far more than that of positive samples. However, from

a practical point of view, we need to pay more attention to the

performance of the model in the positive sample. Therefore, we use

Precision to evaluate the performance of the model. Its calculation

formula is as follows:

Precision =
True Positive rate

True Positive rate+ False Negative rate
. (21)
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FIGURE 2

Prediction of miRNA-disease associations using GCN.

TABLE 1 Precision of six methods in miRNA-disease classification task.

Models Precision (%)

RFMDA (Chen et al., 2018b) 62.53

LMTRDA (Wang et al., 2019) 80.13

ABMDA (Zhao et al., 2019) 81.52

GAEMDA (Li et al., 2021) 81.37

GBDT_LR (Zhou et al., 2020) 83.15

GCNA-MDA 87.80

Furthermore, in N-fold cross-validation experiments, we

perform N-fold cross-validation by randomly splitting the sample

into N equal parts. N − 1 parts are used as the training set, and

the rest are used as the test set. According to this strategy, N

parts are used in turn as test sets, and the remaining parts are

used as training sets to complete all cross-validation experiments.

In the experiment, we consider the AUC metric to measure the

performance of the model.

3.2. Comparative evaluation

We compare the GCNA-MDA model with GAEMDA (Li et al.,

2021), GBDT_LR (Zhou et al., 2020), ABMDA (Zhao et al., 2019),

LMTRDA (Wang et al., 2019), RFMDA (Chen et al., 2018b)

models. The GAEMDA (Li et al., 2021) model fuses similarity

information and topological neighborhood information in the

miRNA-disease network, and integrates GCN and autoencoder

for prediction tasks. GBDT_LR (Zhou et al., 2020), ABMDA

(Zhao et al., 2019) and RFMDA (Chen et al., 2018b) use

ensemble learning strategies to obtain high-quality features and

then make corresponding predictions. Besides, GBDT_LR (Zhou

et al., 2020), ABMDA (Zhao et al., 2019) used a new negative

sample collection strategy to weaken the impact of negative sample

coverage. LMTRDA (Wang et al., 2019) combined multi-way

data for prediction tasks. Table 1 lists the results of performance

comparison, indicating that the GCNA-MDA model obtains the

highest Precision value of 89.82%. Our model fully incorporates

multi-level information, while applying a dual-autoencoder to

further refine the features. Meanwhile, we applies GCN to predict

miRNA-disease associations, making the good use of topological

information. Combining the above two reasons, our model has

achieved the best accuracy results.

For the compared models, RFMDA (Chen et al., 2018b)

achieves the worst performance. The main reason is attributed

that although the model adopts the strategy of integrated learning,

RFMDA (Chen et al., 2018b) does not consider the skew caused by

excessive negative samples and it does not synthesize information

from multiple sources. While the rest of the models employing

multiple information significantly outperform the RFMDA (Chen

et al., 2018b) model, which exhibits the importance of integrating

multiple information. In addition, GBDT_LR (Zhou et al., 2020)

combined with ABMDA (Zhao et al., 2019) applied the strategy of

ensemble learning and weakening negative samples, resulting in a

significant performance improvement.

3.3. Scalability evaluation

To measure the scalability of the GCNA-MDA model, we

perform 5- and 10-fold cross-validation on the HMDD dataset. The

results of 5-fold cross-validation are shown in Figure 3. The GCNA-

MDA model achieved AUC values of 0.867, 0.878, 0.875, 0.878,

and 0.867 in five experiments. The average of 5 AUCs is 0.8730,

and the standard deviation is 0.00526. This shows that our model

has good scalability and its performance is not easily affected by
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FIGURE 3

AUC performance of GCNA-MDA model on 5-fold cross-validation.

random factors. In order to further eliminate the interference of

other factors, our GCNA-MDA model was subjected to a 10-fold

cross-validation experiment on the HMDD dataset. Figure 4 shows

the AUC performance of 10-fold cross-validation. The GCNA-

MDA model achieved AUC values of 0.860, 0.863, 0.877, 0.889,

0.873, 0.879, 0.881, 0.882, 0.875, and 0.876 in 10 experiments. It can

be calculated that the average value of the AUC indicator is 0.8755,

and the standard deviation is 0.00561. We can find that there is

only a difference of 0.0003 between the means of the two groups

of experiments, and a difference of 0.00338 between the standard

deviations of the two groups. Such variance is perfectly acceptable

because random sampling is not controllable. It shows that the

performance of the GCNA-MDA model is very stable, and it also

shows that its accuracy will not be affected by random sampling. In

addition, thismay also be due to the local sampling strategy adopted

in our research, so that the distribution and ratio of positive and

negative samples tend to be similar at the same time.

3.4. Evaluation of di�erent forecasting
methods

Table 2 compares the performance of two autoencoder-based

methods. The DFELMDA model (Liu et al., 2022b) employs

autoencoders for feature extraction and random forests formiRNA-

disease association prediction. While it performs well on the AUC

indicator, its performance on other indicators is unsatisfactory,

possibly due to overfitting caused by random forests. Moreover,

the extreme imbalance of positive and negative samples further

contributes to the low indicators. In contrast, the GCNA-MDA

model performs consistently across all indicators, likely because

it utilizes GCN in the prediction module, which effectively

incorporates topological information. Additionally, we address the

issue of imbalanced samples by maintaining a 1:1 ratio of positive

and negative samples.

FIGURE 4

AUC performance of GCNA-MDA model on 10-fold

cross-validation.

TABLE 2 Performance comparison of twomodels using autoencoders (%).

Models AUC AUPR MCC F1-
score

Precision

86.66 86.80 55.90 73.97 85.78

87.80 88.42 58.33 73.61 90.24

GCNA-MDA 87.54 88.60 58.77 74.57 89.33

87.75 87.99 57.19 75.49 85.19

86.73 87.23 53.51 69.86 88.43

Average 87.30 87.81 56.74 73.50 87.80

DFELMDA

(Liu et al.,

2022b)

95.56 58.49 13.17 14.23 20.57

3.5. Case analysis

In order to verify the validity of our model, we conduct

case analysis of 10 related diseases on the miRNA numbered

hsa-mir-29a. In a more detailed operation, we selected the best

model parameters in a 5-fold cross-validation experiment, and then

selected these diseases in Table 3 as an external test set to predict

the association with hsa-mir-29a. We picked 7 positive samples

associated with hsa-mir-29a and 3 negative samples not associated

with hsa-mir-29a. Table 3 presents the results of the case analysis.

By comparing the results in the original database, the GCNA-MDA

model correctly predicted all associations in the case analysis. This

shows that the GCNA-MDAmodel does have certain reliability and

can be further used as a reference for disease prediction.

We also performed a case analysis of the model on the disease

side. For instance, we analyzed miRNAs potentially associated

with Renal Cell-related cancer. Table 4 presents the analysis

results, indicating that the GCNA-MDAmodel accurately identifies

miRNAs associated with the disease by comparing databases. Thus,

our model is effective for case studies involving both miRNAs

and diseases.
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TABLE 3 A case study of the association of miRNA named hsa-mir-29a

with various diseases.

Diseases Predicted Diseases Predicted

Carcinoma,

hepatocellular

Verified Heart failure Verified

Liver neoplasms verified Cerebral infarction Unverified

Influenza, human verified Colonic neoplasms Verified

Scleroderma,

localized

Verified Gerstmann-Straussler-

Scheinker

disease

Verified

Skin neoplasms Unverified Carcinoma, Small cell Unverified

TABLE 4 A case study of the association of disease named Carcinoma,

Renal Cell with various miRNAs.

miRNAs Predicted miRNAs Predicted

hsa-mir-132 Verified hsa-mir-1303 Verified

hsa-mir-378b Verified hsa-mir-378e Verified

hsa-mir-141 Verified hsa-mir-218 Verified

hsa-mir-19b Verified hsa-mir-196b Unverified

hsa-mir-498 Unverified hsa-mir-3196 Verified

4. Conclusion

In this paper, a GCNA-MDA model that accurately

predicts miRNA-disease associations is proposed based on

dual autoencoders and GCN. We proposed a novel feature

integration strategy based on the combination of multi-way

data such as association similarity and feature similarity. This

allows for a more complete initial representation of the node.

Furthermore, we further perform feature extraction on these

initial node representations with higher dimensions based on the

dual-autoencoder. The self-supervised learning strategy alleviates

the problem of insufficient positively correlated data, resulting in

a more robust initial node embedding matrix. Finally, based on

GCN, we perform corresponding aggregation operations on all

miRNAs and disease nodes, and perform association prediction

tasks. We constructed comparative experiments and scalability

experiments to verify the effectiveness and scalability of our model.

The case analysis of hsa-mir-29a shows that the GCNA-MDA

model has certain practical significance.
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