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Integrating proteomic data with 
metabolic modeling provides 
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Pertussis, commonly known as whooping cough is a severe respiratory disease 
caused by the bacterium, Bordetella pertussis. Despite widespread vaccination, 
pertussis resurgence has been observed globally. The development of the current 
acellular vaccine (ACV) has been based on planktonic studies. However, recent 
studies have shown that B. pertussis readily forms biofilms. A better understanding 
of B. pertussis biofilms is important for developing novel vaccines that can target 
all aspects of B. pertussis infection. This study compared the proteomic expression 
of biofilm and planktonic B. pertussis cells to identify key changes between the 
conditions. Major differences were identified in virulence factors including an 
upregulation of toxins (adenylate cyclase toxin and dermonecrotic toxin) and 
downregulation of pertactin and type III secretion system proteins in biofilm cells. 
To further dissect metabolic pathways that are altered during the biofilm lifestyle, 
the proteomic data was then incorporated into a genome scale metabolic model 
using the Integrative Metabolic Analysis Tool (iMAT). The generated models 
predicted that planktonic cells utilised the glyoxylate shunt while biofilm cells 
completed the full tricarboxylic acid cycle. Differences in processing aspartate, 
arginine and alanine were identified as well as unique export of valine out of biofilm 
cells which may have a role in inter-bacterial communication and regulation. 
Finally, increased polyhydroxybutyrate accumulation and superoxide dismutase 
activity in biofilm cells may contribute to increased persistence during infection. 
Taken together, this study modeled major proteomic and metabolic changes that 
occur in biofilm cells which helps lay the groundwork for further understanding 
B. pertussis pathogenesis.
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Introduction

Whooping cough is a re-emerging severe respiratory disease caused by Bordetella pertussis. 
Following the change from the whole cell vaccine (WCV) to the acellular vaccine (ACV) in 
many developed countries, there has been an increase in the incidence of whooping cough (de 
Melker et al., 1997; Güriş et al., 1999; Galanis et al., 2006; Campbell et al., 2015). Although most 
likely multifaceted, waning immunity of the ACV and vaccine driven selection of non-ACV 
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genotypes or strains not expressing one of the ACV antigens have 
been previously reported as major factors contributing to the 
re-emergence of pertussis (Octavia et al., 2011; Mooi et al., 2014). It is 
evident that an improved ACV is needed to control the infections.

Recent studies have shown that B. pertussis readily forms biofilms 
in vivo (Soane et al., 2000; Mishra et al., 2005; Paddock et al., 2008; 
Conover et al., 2010, 2011; Serra et al., 2011; Cattelan et al., 2017). 
Development of the vaccine has been based on planktonic studies and 
may not be entirely representative of the infection cycle. Although 
proteomic comparisons have been performed between biofilm and 
planktonic B. pertussis cells (Serra et al., 2008; de Gouw et al., 2014; 
Arnal et al., 2015; Dorji et al., 2016; Carriquiriborde et al., 2021), little 
is known about the metabolic reactions that are altered while in the 
biofilm state. In response to changes in environment, the most widely 
studied regulator of gene expression in B. pertussis is the Bordetella 
virulence gene (Bvg) system (Moon et  al., 2017). The Bvg system 
controls the expression of most of the virulence factors in B. pertussis 
but has also been implicated in the regulation of metabolism (Belcher 
et al., 2020). The Bvg system exists in 3 states, Bvg+, Bvg− and Bvgi 
where the expression of virulence genes is active, inactive or 
intermediately expressed, respectively. There are conflicting studies 
surrounding the role of the Bvg system in the biofilm process, but 
studies have linked Bordetella biofilm with the Bvgi phase (Irie et al., 
2004; Serra et al., 2008; Nicholson et al., 2012; Sisti et al., 2013; de 
Gouw et al., 2014; Arnal et al., 2015). Further studies identifying key 
changes in protein expression and metabolism in biofilm cells can 
provide an insight into the capabilities of the pathogen and help with 
understanding the role of biofilms in B. pertussis pathogenesis.

Genome scale metabolic models (GSMM) have emerged as a 
powerful tool in understanding the metabolic capabilities of an 
organism. The creation of a GSMM begins as a draft network based 
on annotated enzyme data and the genome. This yields a model with 
a network of reactions and metabolites within a mathematical matrix. 
The movement of metabolites through the network is defined as flux, 
i.e., the rate at which the metabolites are consumed or produced. 
Based on stoichiometric and thermodynamic constraints, permissible 
minimum and maximum flux values for each reaction can 
be calculated (Orth et al., 2010).

GSMMs have been successfully utilised in several pathogens such 
as Salmonella enterica serovar Typhimurium (Fong et  al., 2013), 
Listeria monocytogenes (Lobel et  al., 2012; Metz et  al., 2018), 
Staphylococcus aureus (Lee et  al., 2009) and Mycobacterium 
tuberculosis (Rienksma et al., 2018) to predict important pathways for 
virulence and growth. Currently, there have been over 6,000 organisms 
that have been metabolically reconstructed either manually or 
automatically (Gu et  al., 2019). There have been two GSMMs 
extensively curated for B. pertussis (Branco Dos Santos et al., 2017; 
Fyson et al., 2017). These models showed the metabolic versatility of 
the organism by identifying minimal nutrient requirements. 
Additionally, both models were utilised to validate key pathways 
essential for infection (Gonyar et al., 2019). The major drawback of 
these models is the assumption that all protein products are 
simultaneously expressed. Many physical and chemical constraints 
make this assumption unlikely to be true. Additionally, the different 
conditions in which the organism is grown strongly affects the 
metabolic processes (Åkesson et al., 2004).

To predict metabolic reactions reflecting a specific phenotype, 
such as biofilms, a context specific model should be created. This can 

be done through the integration of ‘omics’ expression data into the 
GSMM to enrich pathways reflective of the context (i.e., biofilm). The 
Integrative Metabolic Analysis Tool (iMAT) (Zur et al., 2010) is a 
method that has been developed to incorporate expression data within 
a metabolic model. The iMAT algorithm uses a mixed integer linear 
programming (MILP) problem to enrich pathways based on the 
expression data while maintaining a steady flux distribution and the 
stoichiometric and thermodynamic constraints. A major advantage of 
the iMAT method is the incorporation of the expression data as 
accumulated cues for a base model. By applying the expression data 
as influential factors rather than forcing flux through the associated 
reactions, the method accounts for experimental limitations such as 
missing proteins or errors in expression measurements (Shlomi et al., 
2008). The iMAT model not only creates a phenotype specific model 
but post-transcriptional regulation can be  predicted through this 
model as the surrounding fluxes would indicate the relative activity of 
an enzyme in a pathway (Zur et  al., 2010). Potential changes in 
metabolic reactions between phenotypes can be  identified by 
comparing the predicted flux distributions between two context 
specific models (Shlomi et al., 2008; Stempler et al., 2014).

In this study, proteomic expression data was used to compare 
biofilm and planktonic B. pertussis cells from a representative current 
circulating strain. Furthermore, the protein expression data was 
incorporated into a GSMM to create context specific iMAT models to 
elucidate key metabolic changes that may allow biofilm cells to persist 
in the host.

Methods

Bacterial strains and biofilm growth

A clinical Bordetella pertussis strain, L1423 isolated from the 
2008–2012 Australian epidemic with genotype ptxP3/ptxA1/fim3A/
prn2 and expressing pertactin, was used as a representative of the 
predominant cluster I strains (Safarchi et al., 2016). The genome has 
been previously sequenced, and the strain has been used in two 
separate infection studies in mice (Safarchi et  al., 2015, 2016). 
B. pertussis cells were grown using a previously established method 
and proteins were extracted (Luu et al., 2018). Briefly, the B. pertussis 
strain was grown on Bordet-Gengou agar (BG, BD Scientific) for 
3–5 days at 37°C. A loopful of pure Bvg+ colonies were suspended in 
20 mL Thalen-IJssel (THIJS) media (Thalen et al., 1999) supplemented 
with 1% heptakis [(2,6-O-dimethyl) β-cyclodextrin] and 1% THIJS 
supplement in 50 mL TPP TubeSpin Bioreactor tubes (Merck). Cells 
were grown for 24 h shaking at 180 rpm at 37°C. For planktonic 
growth, the OD600 of the starter culture was adjusted to 0.05/mL in 
20 mL THIJS and incubated under the same conditions as above for 
12 h [reaching log phase for L1423 (Luu et al., 2017)]. For biofilms, the 
OD600 was adjusted to 0.1/mL in THIJS media and 1 mL of this 
adjusted culture was seeded into each well of a 24 well polystyrene 
plate (Dorji et al., 2016; Hoffman et al., 2017). The 24 well plate was 
incubated statically for 5 h at 37°C for attachment of cells before the 
media was refreshed to remove non-adherent cells (Serra et al., 2008; 
de Gouw et  al., 2014). After 96 h of incubation under agitation 
(60 rpm), the wells were washed with PBS and then the plate was water 
bath sonicated at 37 kHz for 2 min to detach cells (Bjerkan et al., 2009; 
Noorian et al., 2017). The planktonic and biofilm cells were then probe 
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sonicated and proteins extracted as described by Luu et al. (2018). Six 
biological replicates per condition were performed.

Confocal laser scanning microscopy 
analysis

To confirm biofilm maturity, confocal laser scanning microscopy 
(CLSM) was used. This method was adapted from Cattelan et  al. 
(2018). The B. pertussis cells were grown on a glass coverslip angled at 
45° in the same method as described above. The biofilm was imaged 
at 24, 48, 72, and 96 h. The biofilm was fixed with 4% paraformaldehyde 
and stained with SYTO 9 (Thermo Fisher Scientific) fluorescent dye. 
The coverslips were imaged on the FluoView FV1200 inverted 
confocal microscope (Olympus Life Sciences) at the UNSW Katharina 
Gaus Light Microscopy Facility (KG-LMF). Three biological replicates 
were performed per time point and 3 field of views per replicate were 
randomly selected for z-stack 3D imaging. The biomass, average 
thickness and maximum thickness were calculated using the 
COMSTAT2 (v 2.1) ImageJ (v 2.8.0) plugin (Heydorn et al., 2000).

Protein preparation and LC–MS/MS

Ten micrograms of protein extract from biofilm and planktonic 
cells were reduced with dithiothreitol, alkylated with iodoacetamide 
and then digested with trypsin as described in Luu et al. (2017). The 
peptides were analyzed on the LTQ-Orbitrap Velos mass spectrometer 
(Thermo Fisher Scientific) at the UNSW Bioanalytical Mass 
Spectrometry Facility (BMSF) with the settings described in Luu et al. 
(2017). The output spectra were matched against a custom B. pertussis 
database (consists of Tohama I, CS, B1917 and B1920 protein 
sequences) on the MaxQuant (v2.0.3.1) proteomics software with the 
following parameters: digestion mode – specific, enzyme – Trypsin/P, 
variable modification – oxidation (M), fixed modification – 
carbamidomethyl (C), max missed cleavages – 1, Label free 
quantification – LFQ, Protein identification false discovery rate – 0.01 
and min peptides per protein – 2. All other parameters were set as the 
recommended default values. Student’s t-test was calculated and a false 
discovery rate (FDR) q-value multiple test correction was performed 
using the Storey-Tibshirani method on R (v4.1.1) (Storey and 
Tibshirani, 2003). Proteins were considered upregulated if the fold 
change (FC) was >1.2, q < 0.05 and downregulated if FC < 0.8, q < 0.05 
based on previous studies (Luu et al., 2018). Functional categories 
were assigned to proteins based on Bart et  al. (2014). The mass 
spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 
2022) partner repository with the dataset identifier PXD033664 and 
DOI 10.6019/PXD033664.

Integrative Metabolic Analysis Tool (iMAT) 
model generation

The proteomic expression data was used to generate context 
specific metabolic models for the planktonic and biofilm cells. The 
iMAT (Zur et al., 2010) method, available in the COBRA Toolbox 
(v3.0) (Heirendt et  al., 2019), was used. Processing was done in 

MATLAB (R2020a) using the IBM CPLEX optimiser (v12.10.0). The 
iMAT algorithm extracts a simplified model based on the trade-off 
between high expression and low expression reactions. The protein 
expression data were not used as absolute values but used as cues for 
the likelihood that its associated reaction carries metabolic flux 
(Shlomi et al., 2008; Zur et al., 2010). The comprehensive, manually 
curated B. pertussis metabolic model (iBP1870) generated by Branco 
Dos Santos et al. (2017) was used as the base model. Subsystems from 
the Escherichia coli genome scale metabolic model (iAF1260) were 
assigned to each of the reactions in the B. pertussis model (Feist et al., 
2007). The E. coli (iAF1260) model was used as a template for the 
original B. pertussis model (iBP1870) and therefore, most of the 
subsystems are transferrable. The original B. pertussis iBP1870 model 
had the tricarboxylic acid (TCA) cycle partially dysfunctional (no flux 
from oxaloacetate to ⍺-ketoglutarate), as this model was based on 
previous studies which stated B. pertussis has an incomplete TCA cycle 
(Thalen et al., 1999). However, recent studies have shown that the 
TCA cycle is fully functional and therefore the disabled pathways were 
activated before generating the iMAT models (Izac et al., 2015). After 
refining the B. pertussis model, the biofilm and planktonic proteins 
were assigned to the gene-protein-reaction (GPR) associations listed 
in the B. pertussis model (iBP1870).

Label free quantification (LFQ) intensity values designated by the 
MaxQuant software were used to estimate relative protein abundance. 
To increase confidence in the imported data, only proteins identified 
in all six biological replicates per condition were incorporated. 
Proteins were designated as uniquely identified if found in all 6 
biological replicates in one condition and none in the other. The 
expression data was defined as highly (+1), lowly (−1) or moderately 
(0) expressed based on the threshold of mean expression ±0.5 x STD 
of the proteins included in the model (Zur et  al., 2010). After 
generating the planktonic and biofilm context specific iMAT models, 
the reactions in the biofilm and planktonic models were compared 
(Figure 1).

Additional models were generated with proteomic expression data 
from a separate study. To our knowledge, there are 5 studies that have 
compared protein expression of B. pertussis biofilm cells with their 
planktonic counterpart (Serra et al., 2008; de Gouw et al., 2014; Arnal 
et al., 2015; Dorji et al., 2016; Carriquiriborde et al., 2021). Of these, 
only one study by de Gouw et al. (2014) has publicly available global 
proteomic expression data of planktonic and biofilm cells and thus 
was used for the production of iMAT models. The proteomic study by 
de Gouw et al. (2014) compared B. pertussis biofilm and planktonic 
(mid-log and stationery) cytosolic and membrane proteins. The 
averaged expression values of the cytosolic and membrane fractionated 
proteins were combined, and mid-log planktonic expression values 
were used to generate the models. All models have been deposited to 
the BioModels database (Malik-Sheriff et al., 2019) in SBML L3V1 
format under the model identifier MODEL2205270001. Differences 
between the growth conditions are listed in Supplementary Table S1.

Flux analysis

A flux variability analysis (FVA) (Mahadevan and Schilling, 2003) 
using the COBRA Toolbox (v3.0) (Heirendt et  al., 2019) was 
performed on the models which provides minimum and maximum 
permissible flux bounds for each reaction. Flux is recorded as a 
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millimoles of metabolite per gram of dry cell weight per hour (mmol 
· gDCW

−1 · h−1). To compare the similarity in flux bounds between the 
biofilm and planktonic models, the Jaccard index function within the 
COBRA Toolbox (v3.0) (Heirendt et al., 2019) was used. This process 
assigns a similarity index (1 = most similar) by comparing the 
minimum and maximum flux bounds for the common reactions 
between the two models for each individual reaction. Many of the 
reactions have a forward and/or reverse directionality. This is 
represented in the model as a positive (forward) and negative (reverse) 
flux value. The FVA values are helpful in determining the predicted 
directionality of the reaction in the model as flux bounds would often 
be limited to negative or positive values.

Each model contains a complete set of reactions, however, not all 
reactions are essential to the model. If a reaction that is essential to the 
model is missing, the FVA function in the COBRA Toolbox (v3.0) 
(Heirendt et al., 2019) states that the model is infeasible. To identify 
the most important reactions in each model, each reaction was 
individually removed in turn and an FVA calculation was attempted 
to determine whether the model would still be  feasible without 
the reaction.

A flux balance analysis (FBA) was performed using COBRA 
Toolbox (v3.0) (Heirendt et al., 2019) to identify changes in flux in 
reactions shared by the planktonic and biofilm models. The FBA 
provides a single value for each reaction based on a predefined 
metabolic goal so that the models may be compared. The FBA method 
has been extensively developed to predict metabolic fluxes within 
metabolic models (Orth et al., 2010). Typically, the objective function 
(c) of the linear optimisation equation is set as an artificial biomass 
reaction as the metabolic goal of the organism. As generating biomass 
may not be  the metabolic objective of biofilm cells, an alternate 
method for defining the objective function was used in this study. The 
objective function was defined based on proteomic expression data as 
described in Montezano et  al. (2015). For all proteins that were 
identified with GPR associations in the model, the intensities were 

normalized by the maximum intensity value for each condition 
(planktonic and biofilm) and these values were input as c. This leads 
the FBA to push flux toward the reactions which have higher protein 
expression and considerably shrinks the solution space to increase 
prediction accuracy (Montezano et al., 2015).

Results

Key proteomic changes identified between 
biofilm and planktonic cells

To identify changes that occur in biofilm conditions, label free 
quantification mass spectrometry (LFQ-MS) was performed on 
biofilm and planktonic cells. Analysis was performed on L1423, a 
clinical isolate representative of the current circulating B. pertussis 
strains. Confocal microscopy confirmed biofilm formation and 
mature structure at 96 h (Supplementary Figure S1). Furthermore, 
there was a polysaccharide biosynthesis protein, WbpO (FC = 2.98, 
q = 1.17E-5), a phosphoglucomutase enzyme, Pgm (FC = 1.23, 
q = 0.041) and an outer membrane porin protein, BP0840 (FC = 9.45, 
q = 1.05E-5) that were seen to be  upregulated in biofilm cells 
(Figure  2B). These proteins have been previously linked with 
B. pertussis biofilm reinforcing the biofilm phenotype achieved in this 
study (Serra et al., 2008). There were 948 proteins identified in total 
(Supplementary Table S2), of which, 571 were proteins identified in 
all 6 biological replicates (Figure 2A). There were 478 proteins with 
significantly differential expression (q < 0.05) between the two 
conditions. In biofilm cells, there were 242 proteins downregulated 
and 236 proteins upregulated (Figure 2B).

There were many proteins related to virulence with altered 
expression identified in this study (Table 1). BipA, an outer membrane 
protein associated with biofilm formation was upregulated (de Gouw 
et al., 2014). Adenylate cyclase toxin (CyaA) and dermonecrotic toxin 

FIGURE 1

Experimental design for iMAT model generation. Proteins were extracted from planktonic and biofilm B. pertussis cells. The expression values were 
then used to generate context specific metabolic models based on the extensively curated iBP1870 B. pertussis model (322). Flux balance analysis was 
run on the models and the altered reactions compared between the planktonic and biofilm models.
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(Dnt) were also upregulated in biofilm (Figure 2B). There were 10 
proteins from the type III secretion system (T3SS) that were 
downregulated in biofilm cells or uniquely identified in planktonic 
cells. One protein (Bcr4) involved in the T3SS was upregulated in 
biofilm cells (Goto et al., 2021). Tracheal colonisation factor (TcfA) 
and virulence associated gene 8 (Vag8) were downregulated in biofilm 
cells while Bordetella resistance to killing (BrkA) protein was 
upregulated (Figure 2B). Of the ACV antigens, there was no change 
in expression for filamentous haemagglutinin (FhaB) but the 
filamentous haemagglutinin outer membrane transporter protein 
(FhaC) was uniquely identified in biofilm cells. The membrane bound 
pertussis toxin subunit 4 (PtxD) was also uniquely identified in 
biofilm cells, however, pertussis toxin subunit 1 (PtxA) was 
downregulated in biofilms. Furthermore, fimbriae protein (Fim2) was 
downregulated in biofilm. Finally, pertactin (Prn) was strongly 
downregulated in biofilm (FC = 0.16, q = 2.42E-6). These changes 
demonstrate a strongly altered virulence profile in B. pertussis biofilm 
cells compared to planktonic cells.

When the proteins were grouped into functional categories based 
on Bart et al. (2014), there was a significant increase in proteins in the 
categories of transport/binding and miscellaneous proteins under 
biofilm conditions. There was also a downregulation of the functional 
groups: ribosome constituents and cell processes (Figure 3).

iMAT model generation

For an in-depth analysis of the metabolic changes between biofilm 
and planktonic cells, iMAT metabolic models were generated based 
on protein expression from both conditions. Of the 571 proteins 
identified using mass spectrometry, 228 were annotated with GPR 
associations in the B. pertussis (iBP1870) model (Branco Dos Santos 
et al., 2017). These are proteins which have assigned reactions in the 
base model. The overlap between the identified proteins and the 
reactions in the model constitutes 29.61% of the total GPR associations 
listed in the base model. Context specific models were created using 

the iMAT algorithm implemented in the COBRA Toolbox (Heirendt 
et al., 2019). The biofilm iMAT model consisted of 198 metabolites, 
206 reactions and 188 genes. The planktonic iMAT model had 213 
metabolites, 219 reactions and 195 genes (Table 2). To identify changes 
between the planktonic and biofilm iMAT models, the number of 
unique and common reactions between the two models were 
compared. There were 168 reactions that were common between the 
two models, 51 reactions that were unique to the planktonic model 
and 38 that were unique to the biofilm model (Figure  4A). The 
reactions were grouped into subsystems and total number of reactions 
in each group were similar between the two models (Figure 4B). It is 
notable however that there was a high proportion of reactions that 
were unique to the individual models. Major pathways are summarised 
and represented in Figure 5. Additionally, metabolic pathways for the 
TCA cycle, arginine metabolism, aspartate metabolism and 
glycerophospholipid metabolism pathways are highlighted in 
Figures 6–8.

Bordetella pertussis biofilm model 
completes the tricarboxylic acid cycle

An FBA was performed to predict potential changes in flux 
between reactions that were common between the planktonic and 
biofilm models. A major difference was seen in the TCA cycle. It was 
predicted that biofilm cells pushed flux to complete the TCA cycle 
while the planktonic model pushed flux toward the glyoxylate shunt 
(Figure  5A). While there was slightly higher levels of flux from 
oxaloacetate through to isocitrate in the planktonic model (planktonic: 
10.40 mmol · gDCW

−1 · h−1, biofilm: 8.92 mmol · gDCW
−1 · h−1), the 

planktonic model pushed all flux (11.31 mmol · gDCW
−1 · h−1) into the 

glyoxylate shunt to convert isocitrate to glyoxylate and succinate while 
comparatively, only a small flux (0.57 mmol · gDCW

−1 · h−1) was 
predicted for the same reactions for the biofilm model (Figure 6). 
Instead, the flux moved toward ⍺-ketoglutarate (AKG) to 
succinyl-CoA and succinate to complete the TCA cycle (Figure 6). The 

FIGURE 2

Volcano plot of total protein expression changes between biofilm and planktonic cells. (A) Expression profile of all proteins identified through the LC–
MS/MS analysis of planktonic and biofilm B. pertussis cells. Proteins are plotted on a volcano plot displaying the -log(q-value) on the y-axis and log[fold 
change (biofilm/planktonic)] on the x-axis. The dashed vertical gray lines mark a fold change of 0.8 and 1.2 and the horizontal line marks the threshold 
of q-value  =  0.05. Highlighted in red are the proteins that were identified in all 6 biological replicates that were incorporated into the iMAT models. 
(B) Expression profile of the subset of proteins incorporated into the iMAT model. Red markers are proteins that were designated significantly 
differentially downregulated, and the blue markers are proteins that were significantly upregulated in biofilm cells. The dashed vertical gray lines mark a 
fold change of 0.8 and 1.2 and the horizontal line marks the threshold of q-value  =  0.05. Proteins of interest are labeled.
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planktonic model comparatively predicted no flux through these 
reactions. Despite these changes, there was an increased level of flux 
from succinate to fumarate and malate in the planktonic model which 
was fed from the glyoxylate shunt, branched chain amino acid 
degradation and the arginine biosynthesis cycle. Finally, there was also 
increased conversion of pyruvate to acetyl-CoA in the planktonic 
model which was then fed back into the TCA cycle as citrate. Most of 
the acetyl-CoA synthesis/utilisation pathways were either unique to 
the planktonic model or downregulated in the biofilm model. 
However, the biofilm model had unique reactions to convert 
acetyl-CoA to polyhydroxybutyrate (PHB) (Figure 5).

Cardiolipin synthesis reactions present in 
the planktonic model

There were many reactions included in both models that were 
grouped into the glycerophospholipid metabolism subsystem. Flux 
was predicted through the gluconeogenesis pathway in both the 
models from pyruvate through to dihydroxyacetone phosphate and 

then glycerol 3-phosphate (Figure 5D). The pathways for most of the 
glycerophospholipids and fatty acid synthesis were the same between 
the two models. However, the planktonic model had pathways 
producing cardiolipin (tetradodecanoyl, n-C12:0) while the biofilm 
model lacked these pathways. The production of cardiolipin is through 
the pathway of conversion of 1,2-didodecanoyl-sn-glycero-3-cytidine 
5′-diphosphate (CDP-DAG) to phosphatidylglycerophosphate 
(didodecanoyl, n-C12:0) and therefore there is a higher level of flux 
from the cytidine monophosphate (CMP) to cytidine triphosphate 
(CTP) in the planktonic model. The models suggest that there would 
be a higher level of 1-dodecanoyl-sn-glycerol 3-phosphate, 1-hexadec-
9-enoyl-sn-glycerol 3-phosphate and glycerol 3-phosphate in the 
periplasm of the biofilm cells. In the planktonic model, it was 
predicted that there would be higher activity of reactions related to 
cardiolipin, phosphatidylglycerol (didodecanoyl, n-C12:0), 
2-dodecanoyl-sn-glycerol 3-phosphate and 2-hexadec-9-enoyl-sn-
glycerol 3-phosphate. The biofilm model had unique reactions to 
export glycerol 3-phosphate into the extracellular space through these 
pathways while planktonic model had predicted reactions that 
exported glycerol into the extracellular space (Figure 5D).

TABLE 1 Virulence proteins differentially expressed or uniquely identified between planktonic and biofilm cells.

Locus Gene Product Fold change 
(Biofilm/

Planktonic)

t-test (p  ≤  0.05) q-value 
(q  ≤  0.05)

BP0499 btcA Type III secretion chaperone 0.594 0.002 0.0005

BP0500 bteA Type III secretion toxin, effector 0.131 9.02E-08 2.52E-07

BP0760 cyaA Bifunctional hemolysin-adenylate cyclase 1.530 0.042 0.008

BP1054 prn Pertactin autotransporter 0.163 2.19E-06 2.42E-06

BP1112 bipA Outer membrane ligand binding protein 2.073 3.65E-06 3.4E-06

BP1119 fim2 Serotype 2 fimbrial subunit 0.590 0.002 0.0006

BP1201 tcfA Tracheal colonisation factor 0.070 2.94E-05 1.64E-05

BP1251 – Putative toxin Planktonic unique

BP1877 bvgS Virulence sensor protein BvgS 1.876 5.63E-05 2.77E-05

BP1878 bvgA Virulence factors transcription regulator BvgA 3.101 1.69E-06 2.02E-06

BP1884 fhaC Filamentous hemagglutinin transporter protein FhaC Biofilm unique

BP2233 bspR Type III secretion chaperone 0.430 1.66E-06 2.02E-06

BP2236 bscW Type III secretion chaperone Planktonic unique

BP2250 bcr4 Type III secretion protein 1.533 0.027 0.005

BP2251 bcrH2 Type III secretion chaperone 0.324 1.38E-08 8.98E-08

BP2253 bopD Type III secretion system outer protein D 0.116 7.61E-10 1.49E-08

BP2255 btc22 Type III secretion protein chaperone Planktonic unique

BP2256 bsp22 Type III secretion tip protein Planktonic unique

BP2257 bopN Type III secretion outer protein N, effector Planktonic unique

BP2263 bscE Type III secretion protein 0.282 3.24E-08 1.73E-07

BP2315 vag8 Autotransporter 0.429 1.39E-05 9.03E-06

BP3439 dnt Dermonecrotic toxin 1.429 0.135 0.022

BP3494 brkA BrkA autotransporter 1.218 0.139 0.023

BP3654 cyaY Iron–sulfur cluster assembly protein CyaY 0.618 0.188 0.030

BP3783 ptxA Pertussis toxin subunit 1 0.299 1.37E-06 1.75E-06

BP3785 ptxD Pertussis toxin subunit 4 Biofilm unique
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Decreased arginine biosynthesis activity in 
the biofilm model

The metabolic models also revealed potentially altered amino acid 
metabolism pathways. There was an equal number of reactions grouped 
into the arginine and proline metabolism subsystem between the two 
models. However, the processes within the pathways were varied as seen 
by the number of unique reactions within the subsystem (Figure 4B). 
Both models predicted movement into the arginine metabolism 
pathways through conversion of L-glutamate (GLU). Subsequently, both 
models have reactions to produce carbamoyl phosphate (CBP) 
(Figure 7A). While the planktonic model pushed the CBP into the 
arginine biosynthesis pathway, the biofilm model had reactions to 
convert CBP through to orotate which was then exported out of the cell 
(Figure 7B). The reactions surrounding orotate were grouped in the 

purine and pyrimidine metabolism subsystem, which were predicted to 
be unique to the biofilm model (Figure 4B). The planktonic model 
completed the arginine biosynthesis cycle, with reactions exporting urea 
out of the cell as a by-product (Figure  7C). Furthermore, in the 
planktonic model, argininosuccinate is converted to arginine and 
fumarate which is fed back into the TCA cycle (Figures 5A, 7D). When 
each of these reactions were deleted in turn and tested for model 
feasibility, it led to infeasible models for the planktonic model but were 
still feasible for the biofilm model (Supplementary Table S3).

Both models were predicted to produce ornithine surrounding the 
arginine metabolism pathways. The planktonic model produced 
ornithine through the arginine biosynthesis pathway while the biofilm 
model synthesised ornithine through N-acetyl-L-glutamate to acetyl-
ornithine and then to ornithine (Figure 7E). The fate of ornithine also 
differed greatly between the two models. When the FVA values were 
compared, the smallest Jaccard index value (lowest similarity) between 
the models were for the reactions acetylornithine transaminase (R_
ACOTA) and glutamate N-acetyl transferase (R_ORNTA). R_ACOTA 
is a reversible reaction of acetyl-ornithine and AKG to N-acetyl-L-
glutamate 5-semialdehyde and GLU. The FVA revealed that the 
biofilm model only had capabilities to run this reaction in reverse 
(Figure  7F). The opposite was seen for R_ORNTA, a reversible 
reaction of acetyl-ornithine and GLU to ornithine and N-acetyl-L-
glutamate (Figure 7G). The planktonic model ran this reaction in 
reverse. Overall, the ornithine in the planktonic model was either 
utilised to produce acetate or pushed back through the arginine 
biosynthesis pathway. The biofilm model pushed ornithine through 
the butanoate metabolism pathway into the TCA cycle as succinate 
with the production of NADPH and NADH. This process utilised 
AKG and produced GLU.

FIGURE 3

Proteins up and downregulated in B. pertussis biofilm cells compared to planktonic cells identified using LC–MS/MS. Proteins significantly up and 
downregulated in biofilm cells were categorised in functional categories based on Bart et al. (2014). Red and blue bars represent the total number of 
proteins within the functional category significantly up or downregulated, respectively. Asterisk (*) denotes functional categories significantly up or 
downregulated based on Fisher’s exact test with Benjamini-Hochberg multiple test correction (adjusted p  <  0.05).

TABLE 2 Number of metabolites, reactions and genes in the iMAT context 
specific models for B. pertussis biofilm and planktonic cells.

Biofilm Planktonic

High expression (+1) 36 36

Moderate expression (0) 117 86

Low expression (−1) 65 78

Total proteins incorporated 218 200

iMAT models

Metabolites 198 213

Reactions 206 219

Genes 188 195
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Downregulated aspartate metabolism in 
the biofilm model

Linked with the arginine metabolism pathways was the amino 
acid, aspartate (Figure 5C). Aspartate is synthesised in the model 
through the aspartate transaminase reaction which converts 
oxaloacetate and GLU to L-aspartate and AKG. This reaction had 
decreased predicted flux in the biofilm model (Figure  8A). 
Interestingly, when the reaction was deleted in the planktonic model, 
it led to an infeasible model while the biofilm model remained feasible 
without the reaction. The predicted flux in the biofilm model pushed 
from aspartate through to threonine synthesis and CBP metabolism. 
Threonine was eventually degraded through the branched chain 
amino acid (BCAA) degradation pathway (Figure 8B). Additionally, 
aspartate was uniquely converted with CBP to N-carbamoyl-L-
aspartate and ultimately into orotate as mentioned above for the 
biofilm model (Figure 8B). The planktonic model had flux flow from 
aspartate to homoserine, but rather than following through to 
threonine, the homoserine was converted to O-acetyl-L-homoserine 
toward acetate and L-cystathionine (Figure 8C). L-cystathionine was 
then converted to L-cysteine and 2-oxobutanoate which was fed 
through the BCAA (specifically the isoleucine pathway) degradation 
pathway that was upregulated in the planktonic model. The BCAA 
degradation pathway leads to the production of acetyl-CoA, NADH, 
NADPH and FADH2. There was further production of these molecules 
through the valine degradation pathway in the planktonic model. 
These pathways led flux back into the TCA cycle as succinate and 
pyruvate through propanoate metabolism. Although the planktonic 
model moved flux through the valine degradation pathway, the 
reactions for the production of valine were unique to the biofilm 
model. The valine was either exported out of the cell or converted to 
AKG in the biofilm model.

Cysteine was predicted to be transported into the cell at the same 
rate between the two models. Both models source cysteine through 
diffusion, active ABC transport and the conversion of glutathione and 
L-cysteinylglycine. The biofilm model pushed all flux of cysteine to 
L-alanine while the planktonic model also has pathways to convert the 
cysteine through to acetyl-CoA as mentioned above (Figure 8C). The 
reactions to move L-alanine in and out of the periplasm were unique 
to the biofilm model. The main source of L-alanine for the biofilm cells 
was from the conversion of pyruvate and glutamine to L-alanine and 
AKG. The planktonic model creates L-alanine through the conversion 
of β-alanine. This reaction also creates malonate-semialdehyde and 
was strongly downregulated in the biofilm model. The L-alanine was 
converted to D-alanine and then to GLU and pyruvate in both models.

Increased superoxide dismutase activity in 
the biofilm model

Bordetella pertussis has traditionally been classified as an aerobic 
organism with oxygen as its preferred terminal electron acceptor 
(Wan et al., 2009). There are limited studies on the effect of oxygen 
variation on B. pertussis growth. In the present study, it was predicted 
that the biofilm model had a slightly lower uptake of oxygen 
compared to the planktonic model and this may be  linked to 
decreased activity of the electron transport chain. Both models 
converted ubiquinol to ubiquinone through cytochrome ubiquinol 
oxidase. This reaction was downregulated in biofilm model. However, 
the biofilm model also had an additional reaction that converted 
ubiquinol to ubiquinone with the by-product of superoxide anions. 
The superoxide was converted to hydrogen peroxide and O2 by 
superoxide dismutase. The hydrogen peroxide was converted to H2O 
by thioredoxin. The other reactions involving ubiquinone were 

FIGURE 4

Comparison of reactions of B. pertussis planktonic and biofilm iMAT models. (A) Venn diagram highlighting common and unique reactions between 
planktonic and biofilm iMAT models generated by incorporating proteomic expression data. (B) Planktonic and biofilm model reactions grouped into 
subsystems based on the Escherichia coli iAF1260 metabolic model. Unique reactions identified in one model but not the other are highlighted in 
different colors on the graph.
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downregulated in biofilm cells including succinate dehydrogenase 
and NADH dehydrogenase. However, ubiquinone was converted to 
ubiquinol through the conversion S-dihydroorotate to orotate in a 
reaction unique to the biofilm cells.

Comparison with other metabolic models

We further used proteomics data from a previous B. pertussis 
biofilm study by de Gouw et al. (2014) to create iMAT models and 
compare the reactions. The study by de Gouw et  al. (2014) grew 
B. pertussis biofilms on flat polypropylene beads in a glass column 
reactor for 72 h with THIJS media refreshed every 24 h. The planktonic 
cells were extracted at both mid-exponential phase at 17 h and 
stationary phase at 40 h. That study identified 729–825 proteins from 
the three different conditions with an overlap of 645 proteins (de 
Gouw et al., 2014). While the biofilm iMAT model generated using 
that proteomic data had a higher number of reactions, metabolites and 
genes to the planktonic iMAT model generated from that same data, 
the overall values were comparable to the models of this study 
(Supplementary Table S1).

In line with our study, the de Gouw et al. (2014) biofilm model 
predicted completion of the full TCA cycle while the planktonic 
model pushed flux through the glyoxylate shunt. Further similarities 
were identified between the biofilm models in NADH dehydrogenase, 
aspartate transaminase (Figure 8A) and CO2 and O2 exchange. All 
biofilm models had decreased flux in these reactions compared to 
their planktonic counterpart. The NADH dehydrogenase reaction 
produced NAD+ from NADH with the conversion of ubiquinone to 
ubiquinol. The aspartate transaminase reaction (R_ASPTA – reversed) 
had decreased flux for all biofilm models. This reaction converted 
oxaloacetate and GLU to AKG and L-aspartate. The reaction from 
aspartate to CBP and subsequent reactions to orotate were unique to 
the biofilm models (Figure 7B; Supplementary Table S3).

Discussion

Recent studies have shown that biofilms are an important aspect 
of B. pertussis pathogenesis (Bosch et al., 2005; Arnal et al., 2015; 
Cattelan et  al., 2018). Biofilm cells are more resilient against 
antimicrobials and environmental stresses (Mishra et al., 2005; Dorji 

FIGURE 5

Summarized pathways with major changes between planktonic and biofilm iMAT models. Major changed core metabolic reactions from a comparison 
of iMAT models generated from biofilm and planktonic B. pertussis protein expression data. The model includes the reactions that were unique in 
either model as well as reactions with altered flux. Red lines indicate reactions that had decreased flux in biofilm cells while green lines indicate 
reactions with increased flux. The dashed lines indicate unique reactions to each model while the black lines are common reaction with the same flux. 
Highlighted sections are (A) the Tricarboxylic acid cycle, (B) Arginine metabolism, (C) Aspartate metabolism and (D) Gluconeogenesis and 
glycerophospholipid metabolism. Pathways for (A–C) are represented in more detail in Figures 6–8, respectively. Ac, Acetate; Ac-CoA, Acetyl-CoA; 
Akg, α-ketoglutarate; Ala, Alanine; Arg, Arginine; Argos, Argininosuccinate; Asp, Aspartate; BCAA, Branched chain amino acid degradation; Cbp, 
Carbamoyl phosphate; Cgly, Cysteinylglycine; Cit, Citrate; Citr, Citruline; CO2, Carbon dioxide; Cys, Cysteine; Dhap, Dihydroxyacetone phosphate; 
Fum, Fumarate; Gln, Glutamine; Glu, Glutamate; Glx, Glyoxylate; Gly, Glycine; Glyc3p, Glycerol 3-phosphate; Glyc, Glycerol; GNG, Gluconeogenesis; 
GPL, Glycerophospholipid metabolism; Gthrd, Glutathione; Hom, Homoserine; Icit, Isocitrate; Lac, Lactate; Mal, Malate; O2, Oxygen; OAA, 
Oxaloacetate; Orn, Ornithine; Orot, Orotate; Phb, Polyhydroxybutyrate; Prop, Propanoate metabolism; Ptrc, Putrescine; Pyr, Pyruvate; SO2, Sulfur 
dioxide; Suc, Succinate; SucCoA, Succinyl-CoA; TCA, Tricarboxcylic acid cycle; Thr, Threonine; Val, Valine; 2obut, 2-oxobutanoate.
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et al., 2016). While previous studies of B. pertussis biofilms have made 
important discoveries related to growth and virulence, there has been 
less research focused on biofilm metabolism. Biofilms are readily 
formed by B. pertussis and has been defined as an integral part of its 
pathogenesis (Conover et  al., 2010). Investigating the metabolic 
changes that occur within a biofilm community may help increase the 
understanding of B. pertussis adaption to the host (Holban et  al., 
2022). Therefore, this study integrated proteomic expression data from 
a currently circulating epidemic strain into a metabolic model of 
B. pertussis to identify major changes that occur in metabolism 
between the biofilm and planktonic states. To our knowledge this is 
the first extensive study into specific metabolic pathways within 
biofilms of B. pertussis. Although utilised metabolic pathways differ 
from species to species, many of the changes in this study have been 
identified and confirmed experimentally in other species reinforcing 
the strength of the metabolic models. The major metabolic differences 
predicted in this study relate to the TCA cycle, amino acid metabolism 
and virulence.

The TCA cycle is the major central metabolic pathway for many 
aerobic organisms, therefore it was surprising to find that there was 
altered flux for the TCA cycle. There was a major predicted shift for 
the planktonic model to utilise the glyoxylate shunt instead of 
completing the full TCA cycle. A recent study (Anziani et al., 2023), 
performed a temporal multi-omics analysis on planktonic B. pertussis 
cells and identified that the genes and proteins involved in the TCA 

cycle from the conversion of ⍺-ketoglutarate to fumarate had relatively 
low activity until after 12 h. These reactions would have lower activity 
during activation of the glyoxylate shunt reinforcing the flux predicted 
in this study. Additionally, it was reported that the proteins and genes 
involved in glyoxylate metabolism decreased following 12 h before 
increasing again after 18 h and 45 min (Anziani et  al., 2023). The 
extracellular metabolites that were measured also reinforced this trend 
(Anziani et  al., 2023). Variation in the glyoxylate shunt has been 
observed in the biofilms of other species. When the glyoxylate shunt 
was disabled in Pseudomonas aeruginosa, there was an increase in 
biofilm formation (Ahn et al., 2016), which is reflected in this study. 
It was suggested that the increased extracellular polymeric substances 
(EPS) produced when the glyoxylate shunt was disabled could lead to 
higher survival in the microaerobic conditions of the cystic fibrosis 
lung environment (Ahn et  al., 2016). Additionally, there was an 
increased level of glyoxylate activity in Candida albicans cells 
dispersed from biofilm (Uppuluri et al., 2018). It is hypothesised that 
as the glyoxylate shunt is activated to increase nutrient versatility, it 
may be an anticipatory reaction for low nutrient levels while searching 
for a new colonisation location (Uppuluri et al., 2018). The dispersed 
cells may reflect a planktonic lifestyle while established mature biofilm 
cells may utilise the network of cells to share nutrients and hence have 
a decreased requirement of the glyoxylate shunt. Targeting the TCA 
cycle has been suggested as a potential therapeutic strategy against 
biofilms (Yahya et al., 2014; Arnal et al., 2015). Additional models that 

FIGURE 6

Tricarboxylic acid cycle pathways and flux bounds between planktonic and biofilm iMAT models. This figure relates to Figure 5A. Reactions within the 
tricarboxylic acid (TCA) cycle between planktonic and biofilm B. pertussis iMAT metabolic models generated from proteomic expression data. Reaction 
names and flux values from the flux balance analysis (FBA) are given for each reaction within the TCA. Each arrow is indicates a reaction and flux values 
are labeled as (P) representing planktonic model flux and (B) representing biofilm model flux. All flux values are mmol · gDCW

−1 · h−1. Green arrows 
represent reactions that are upregulated in biofilm cells while red arrows are downregulated reactions. Green dashed arrows are unique reactions to 
the biofilm model while red dashed arrows are reactions unique to the planktonic model. Black arrows are common reactions. General metabolic 
pathways are in bold. Inset Range for flux variance analysis and FBA values for the tricarboxylic acid cycle between planktonic and biofilm cells. Flux 
ranges (min to max) are represented as lines and the FBA value is annotated with a point. Planktonic values are indicated in red and biofilm values in 
blue. *R_SUCOAS is a reaction that flows from succinate to succinyl-CoA. The reaction runs in reverse in the typical TCA cycle and so these values are 
negative. For simplicity, these reactions have been annotated as absolute values in the figure. Furthermore, the flux bounds for the planktonic models 
are at the max value and the max has been omitted from the graph. R_CS, type II citrate synthase; R_ACONTa, citrate hydrolase; R_ACONTb, aconitate 
hydratase; R_ICDHyr, isocitrate dehydrogenase; R_AKGDH, α-ketoglutarate dehydrogenase; R_SUCOAS, succinyl-CoA synthetase; R_SUCDi, 
succinate dehydrogenase; R_FUM, fumarate hydratase; R_MDH, malate dehydrogenase; R_ICL, isocitrate lyase; R_MALS, malate synthase.
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were created using B. pertussis biofilm and planktonic proteomic 
expression data from de Gouw et al. (2014) had similar differences in 
the TCA cycle to our results (Supplementary Figure S2).

Increased polyhydroxybutyrate (PHB) and superoxide dismutase 
activity may explain the increased survivability of B. pertussis biofilm 
cells. Reactions regarding PHB synthesis were predicted as unique to 
the biofilm model and superoxide dismutase activity was potentially 
increased in the biofilm model. While most reactions surrounding 
acetyl-CoA were downregulated in the biofilm model or unique in the 
planktonic model, a set of reactions that involve the conversion of 
acetyl-CoA to PHB were uniquely predicted in both the biofilm 
models. The PHB reactions would lead to an increase in cytoplasmic 
PHB demand. It has been previously reported that cytoplasmic PHB 
inclusions exist in B. pertussis cells (Thalen et  al., 1999). These 
inclusions are generated when there are high levels of carbon in the 
environment or when B. pertussis cells are undergoing iron starvation 
(Thalen et  al., 1999; Alvarez Hayes et  al., 2015). It has been 
hypothesised that the cells generate PHB inclusions as an energy 
reserve for when cells are in harsh environments (Thalen et al., 1999). 
As the PHB demand reactions are increased in the biofilm cells, this 
may lead to increased cell survivability that has been observed in 
B. pertussis biofilms (Dorji et al., 2016). Furthermore, the predicted 
increase in the superoxide dismutase activity may be protective as it 
leads to a decrease in superoxide which, as a free radical, may lead to 
cellular damage (De Groote et al., 1997; Suo et al., 2012). Put together, 
the models highlighted that these two factors may be related to the 

increased cell survivability of B. pertussis biofilm cells and may lead to 
persistent infections.

Strongly linked with nutrient acquisition and metabolism, there 
were major expression differences identified for virulence factors. Prn 
was found to be downregulated in biofilm cells. This is contrasted by 
previous results that have found an increase in Prn in B. pertussis 
biofilm cells (Serra et al., 2008; de Gouw et al., 2014; Arnal et al., 2015; 
Carriquiriborde et al., 2021). However, it should be noted that de 
Gouw et  al. had slightly decreased levels of Prn in biofilm cells 
compared to mid-log planktonic cells while there was a small 
upregulation compared to stationary phase cells (de Gouw et  al., 
2014). As this current study compared with early log phase cells, the 
difference in Prn may be related to variations in planktonic or biofilm 
phases of growth. Nevertheless, to our knowledge, this is the first 
report of a major downregulation of Prn in B. pertussis biofilm cells. 
As one of the three ACV components, the change in Prn identified 
supports the utility of biofilm related proteins as novel vaccine 
antigens to better target biofilm cells in vivo (de Gouw et al., 2014; 
Dorji et al., 2019; Carriquiriborde et al., 2021). Additionally, another 
ACV component, Ptx had varied expression dependent of the subunit. 
PtxA was downregulated in biofilm cells while PtxD was found 
uniquely in biofilm cells. As it has previously been reported that the 
subunits can have independent immune modularly activity, the 
variation in Ptx subunit expression may be  indicative of distinct 
immune evasion approaches between the two conditions (Mangmool 
and Kurose, 2011). This study provides additional targets that may 

FIGURE 7

Arginine metabolism pathways in B. pertussis biofilm and planktonic iMAT models. This figure relates to Figure 5B. Models were generated using 
proteomic expression data. Green arrows represent reactions that are upregulated in biofilm cells while red arrows are downregulated reactions. Green 
dashed arrows are unique reactions to the biofilm model while red dashed arrows are reactions unique to the planktonic model. Black arrows are 
common reactions. General metabolic pathways are in bold. ⍺-ketoglutarate (Akg) and glutamate (Glu) are utilised in many of the reactions and are 
therefore included multiple times in abbreviated form. N-acetyl-L-glutamate is also included as the abbreviation Acglu for the reaction R_ORNTA. Key 
sections of the pathways have also been annotated. (A) Both models generate carbamoyl phosphate through the same reactions. (B) The biofilm 
model has unique reactions to synthesize orotate from carbamoyl phosphate and export it out the cell. (C) The planktonic model completed the 
arginine biosynthesis pathway and exports urea out of the cell. (D) In addition to the urea, the arginine biosynthesis pathway leads to the production of 
fumarate which is fed back into the TCA. (E) The pathways from N-acetyl-L-glutamate to N-acetyl-L-glutamate 5 semialdehyde are unique to the 
biofilm model. (F) The reaction, acetylornithine transaminase reaction (R_ACOTA), runs in opposite directions for planktonic and biofilm models. 
(G) The reaction, glutamate N-acetyl transferase (R_ORNTA), also runs in opposite directions for biofilm and planktonic models.
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be explored further in addition to identifying key metabolic pathways 
that may be crucial to disrupting the biofilm lifestyle.

The virulence factor, adenylate cyclase toxin, CyaA, was 
upregulated in the biofilm cells. CyaA has been shown to interact with 
FHA and decrease biofilm formation in a concentration dependent 
manner (Hoffman et al., 2017). Furthermore, it was found that the 
addition of exogenous CyaA can lead to the diffusion of preformed 
B. pertussis biofilms (Hoffman et al., 2017). It has been shown that 
beyond 96 h of incubation the rate of B. pertussis biofilm formation 
can plateau (Serra et al., 2008). It is possible that B. pertussis utilises 
the activity of CyaA to diffuse cells from the biofilm to control growth 
in addition to allowing the spread of biofilm cells.

Traditional analysis of proteomic data to infer metabolic changes 
involves extrapolating metabolic activity based on individual protein 
expression, however, the level of protein abundance is not always 
directly proportional to enzymatic activity. Therefore, in this study, 
protein expression data was used as cues to assess the likelihood of the 
activity of a particular metabolic pathway. The major advantage of this 
approach is that it narrows down the highly extensive network of 
reactions in the GSMM to predict pathways that are potentially context 
specific. The incorporation of the proteomic data in the GSMM in this 
study provided new insights into the metabolic pathways that are 
potentially altered between biofilm and planktonic cells. Further 
experimental studies confirming the changes in metabolism would 
increase confidence in the results identified. Nevertheless, an initial 
glimpse into the potentially active metabolic pathways within 
B. pertussis biofilm cells was established. Parallels with other organisms 
that have similar fluctuations in biofilm pathways reinforce the value 
of the models and help validate the predicted changes identified.

It is important to note that the biofilm cells were grown in an 
artificial media (THIJS media) designed to optimise B. pertussis growth 
(Thalen et al., 1999). Thus, the metabolic models may be reflective of 
growth specifically in this medium. Furthermore, as the media was not 
refreshed, there would be a decrease in the available nutrients over time. 
It would be interesting to see how growth in different media such as 
media more representative of the nutrients available in the respiratory 
environment or co-culture with epithelial cells would affect the 
metabolic models (Palmer et al., 2007). Additionally, the proteomic data 
measures the average protein expression independent of space and time. 
Biofilms are heterogeneous communities with gradients in nutrient 
diffusion and distinct developmental stages (Patel and Bott, 1991; 
Stewart, 2003; Stewart et al., 2016; Díaz-Pascual et al., 2021). Additional 
spatial and temporal metabolic models will further identify changes that 
occur throughout biofilm development (Siriwach et al., 2020). The de 
Gouw et al. (2014) proteomic data was extracted at 72 h compared to 
96 h in this study and may represent biofilms at different stages of 
development. Finally, planktonic cells in the log phase were used for the 
comparison, there may be more similarities between the two conditions 
when planktonic cells are grown for a longer period in stationary phase.

In conclusion, this study compared the proteomic expression of 
biofilm and planktonic B. pertussis cells and identified key changes 
between the conditions including an upregulation of toxins (adenylate 
cyclase toxin and dermonecrotic toxin) and downregulation of 
pertactin and type III secretion system proteins in biofilm cells. 
Incorporation of proteomic data into a genome scale metabolic model 
predicted major metabolic changes that may occur during biofilm 
conditions in B. pertussis. Notably, it was predicted that the biofilm 
model utilised the full TCA cycle while the planktonic model pushed 

FIGURE 8

Aspartate metabolism pathways in B. pertussis biofilm and planktonic iMAT models. This figure relates to Figure 5C. Models were generated using 
proteomic expression data. Red arrows represent downregulated reactions in the biofilm model. Green dashed arrows are unique reactions to the 
biofilm model while red dashed arrows are reactions unique to the planktonic model. Black arrows are common reactions. General metabolic 
pathways are in bold. Key sections of the pathways have also been annotated. (A) There is a decreased flux from oxaloacetate to L-aspartate in the 
biofilm model. (B) In both models, 2-oxobutanoate is eventually degraded through the branched chain amino acid degradation pathway specifically, 
the isoleucine pathway. (C) While biofilm cells convert homoserine through to O-phospho-L-homoserine, planktonic cells convert homoserine to 
O-acetyl-L-homoserine by utilizing acetyl-CoA.
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flux through the glyoxylate shunt. There was a predicted increase in 
PHB accumulation and superoxide dismutase activity which may lead 
to increased persistence of biofilm cells. Our study highlights the 
utility of integrating expression data into metabolic modeling. Overall, 
the changes identified in this study helps lay the groundwork for 
further studies into B. pertussis biofilms and its role in pathogenesis.
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