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Soil salinity is one of the main problems that affects global crop yield. Researchers 
have attempted to alleviate the effects of salt stress on plant growth using a 
variety of approaches, including genetic modification of salt-tolerant plants, 
screening the higher salt-tolerant genotypes, and the inoculation of beneficial 
plant microbiome, such as plant growth-promoting bacteria (PGPB). PGPB 
mainly exists in the rhizosphere soil, plant tissues and on the surfaces of leaves 
or stems, and can promote plant growth and increase plant tolerance to abiotic 
stress. Many halophytes recruit salt-resistant microorganisms, and therefore 
endophytic bacteria isolated from halophytes can help enhance plant stress 
responses. Beneficial plant-microbe interactions are widespread in nature, and 
microbial communities provide an opportunity to understand these beneficial 
interactions. In this study, we provide a brief overview of the current state of plant 
microbiomes and give particular emphasis on its influence factors and discuss 
various mechanisms used by PGPB in alleviating salt stress for plants. Then, 
we also describe the relationship between bacterial Type VI secretion system and 
plant growth promotion.
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1. Introduction

Plants have relationships with various members of an ecosystem and can grow well in their 
natural environments. Plant microbiome refers to all microorganisms that survive in a specific 
environmental niche at a given time, and is one of the most important organisms that can have 
beneficial effects for plants, such as improving nutrient uptake, disease resistance, and stress 
tolerance (Santoyo et al., 2016; Trivedi et al., 2022; Xiong and Lu, 2022). Microbial communities 
can improve plant tolerance to biotic and abiotic stresses, and increase plant growth and yield 
by improving bioavailability for transporting nutrients from the soil. Microbial communities 
vary across different environments and are generally thought to be tissue-specific; they mainly 
colonize in root and tissues of plants or around roots in the soil. Bacteria that colonize and 
survive in the host plant are called endophytes (Bohra et al., 2022). However, the beneficial 
effects of endophytic bacteria on host plants are generally greater than those of plant growth 
promoting rhizosphere (PGPR), and these effects may be enhanced especially when plants are 
under stress (Miliute et al., 2015; Malik and Arora, 2022).
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Plants start to establish their microbial community system, known 
as the seed-borne microbiome that is transmitted from the seed to the 
plant (Nelson, 2018; Abdelfattah et al., 2022), from the seed stage. The 
interplay between plants and their endophytes during the plant’s entire 
life cycle may have profound impacts on plant ecology, health, and 
productivity. The niche differentiation of microbial communities at 
the soil-root interface has attracted the most attention, due to different 
plant compartments provide different ecological niches for microbes 
living in them (Edwards et al., 2015). Plant roots (in the rhizosphere) 
act as a bridge connecting plants and soil microbes and secrete many 
photosynthates to the surrounding soil environment, providing a very 
attractive and nutrient-rich niche for microbes and making the 
rhizosphere have the highest microbial diversity (Singh and 
Mukerji, 2006).

Salt stress is one of the main factors limiting agricultural 
productivity and causing a significant loss of global crop yields (Ha-
Tran et al., 2021). In order to cope with harsh environments, many 
strategies have been implemented, such as plant breeding, plant 
genetic engineering and climate-smart agriculture (Upadhyaya et al., 
2021). Plant growth promoting bacteria (PGPB) have been shown to 
effectively improve plant tolerance to abiotic stress and increase crop 
yield, making them promising biofertilizers (Das et al., 2022; Zilaie 
et  al., 2022). However, its unstable growth-promoting effect and 
unclear mechanism seriously hinder the use of microbial agents. In 
this review, we provide a brief overview of the current state of plant 
microbiomes and give particular emphasis on its influence factors and 
discuss various mechanisms used by PGPB in alleviating salt stress for 
plants. Then, we also describe the relationship between bacterial Type 
VI secretion system and plant growth promotion.

2. Effects of salt stress on plant 
growth

Soil salinity is one of the main abiotic stresses that limit plant 
growth and yield. Plants under salt stress have significantly reduced 
productivity, and the extent of these effects depends on salt content, 
plant type, and the stage of plant growth and development. Many 
studies have reported that high levels of soil salinity can inhibit see 
germination, significantly reduce root and shoot growth, as well as 
decrease plant photosynthesis, stomatal conductance, chlorophyll 
content, and mineral uptake (Laghmouchi et al., 2017; Sánchez-García 
et al., 2017). Currently, the mechanisms by which salt stress affects 
plant growth mainly include disturbances in plant hormone balance, 
changes in protein metabolism, inhibition of enzyme activity involved 
in nucleic acid metabolism, and nutrient uptake disorders, which are 
caused by osmotic effects and salt ion toxicity (Zhu, 2001; Amirjani, 
2011). In addition, studies have also found that salt can inhibit cell 
membrane and cell wall maturation (Ismail and Horie, 2017).

The high salt concentration around the plant roots increases 
osmotic stress, which in turn leads to ion toxicity. Osmotic stress 
mainly affects water and nutrient uptake, seed germination, cell 
elongation, leaf development, lateral bud development, 
photosynthetic rate, transport from root to stem, and the supply of 
carbohydrates to meristematic tissues (Van Zelm et al., 2020). The 
ion toxicity of Na+ and Cl− hinders the absorption of nutrients such 
as Ca+ and K+, causing an imbalance in plant nutrition (Acosta-
Motos et al., 2017). Soil salinity prevents the absorption of Ca+ by 

plants, affecting the growth of roots, root tips, and root hairs, 
reducing the areas where rhizobia can invade and the development 
of nodules (Bouhmouch et al., 2005). In addition, the increase in 
Na+ and Cl− content reduces the absorption and utilization of some 
elements (N, P, K, Mg) by plants. The imbalance of minerals usually 
changes the structure and chemical composition of the lipid bilayer 
of the membrane, and controls the selective transport of solutes 
and affects the ability of ions to transport inward, causing solute 
leakage and forming super-osmotic phenomena (Lodhi 
et al., 2009).

Ion toxicity also destroys the photosynthetic apparatus by 
blocking the photosystem II reaction center, oxygen-evolving 
complex, and electron transport chain, thereby inhibiting 
photosynthesis (Kan et al., 2017). The accumulation of a large amount 
of Na+ in plant tissues suppresses photosynthesis, resulting in the 
accumulation of reactive oxygen species, which have many adverse 
effects on plants, such as accelerating toxic reactions, DNA mutations, 
protein degradation, and membrane damage (Islam et al., 2015). Salt 
also has a negative effect on plant height and root length, causing 
stomatal closure, increasing leaf temperature, and reducing elongation 
(Yavaş and Hussain, 2022). As salt concentration increases, plant 
height and root length tend to decrease, and these negative results are 
related to changes in osmotic potential and the decreased ability of 
rice to absorb water and nutrients (Gain et al., 2004). Furthermore, 
stomatal closure can increase plant CO2 deficiency, leading to a 
decrease in enzyme activity in the Calvin cycle (Ashraf et al., 2020). In 
addition to the effects on plant organs and structures mentioned 
above, root zone salinization also hinders the developmental stages of 
individual plants. Overall, from seed germination to seed formation 
stages, salt has a serious impact on the physiological and biochemical 
activities of plants.

3. Plant microbiome

In natural ecosystems, organisms do not live alone, but in close 
association with a wide variety of microorganisms. In nature, plants 
do not grow like axenic organisms, but host a diverse microbial 
community named the plant microbiome (Müller et al., 2016). The 
plant microbiome plays an essential role in plant growth, improving 
the bioavailability of nutrients and increasing the host’s tolerance to 
biotic and abiotic stresses. In turn, host plants provide habitat and 
nutrients for microbes (Trivedi et  al., 2020). In fact, microbial 
communities exist in almost all plant tissues, such as the soil-root 
interface (rhizosphere), the interior of plant tissues (endophyte), and 
the air-plant interface (phyllosphere) (de Medeiros Azevedo et al., 
2021). All these microenvironments provide specific biotic and 
abiotic conditions for microbial communities to survive. 
Understanding plant-microbe interactions not only provides a better 
understanding of the role of microbes in plant growth and 
development, but also allows the use of their relationships for 
phytoremediation, sustainable crop production, and secondary 
metabolite production. However, it is important to note that the plant 
microbiome can be influenced by various environmental factors, host 
and other biotic and abiotic conditions. The plant microbiome 
contains mixed populations of taxa from diverse phyla, in which each 
member adapts to the host microenvironment in some way and 
co-exists with other members. Nonetheless, determining 
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plant-microbiome interactions can be  challenging due to the 
complexity of microbial community assembly mechanisms.

3.1. Phylogenetic structure of the plant 
microbiome

Healthy plants host taxonomically diverse microbial communities 
(Trivedi et al., 2020). Terrestrial plants are colonized by a huge variety 
of microorganisms that affect plant health and growth in beneficial, 
harmful, or neutral ways. Previous studies have confirmed that the host-
microbial communities are not generally random assemblages, but show 
defined phylogenetic structures, and only a few major groups constitute 
the plant microbial communities with high abundance, including 
Proteobacteria, Actinobacteria and Bacteroidetes (Müller et al., 2016).

Many studies aimed to identify the core microbiome by 
phylogenetically distinct plant species or compartments. Yeoh et al. 
(2016) determined the core root microbes of sugarcane, including 
Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and 
Firmicutes, which were found to overlap with those of Arabidopsis 
thaliana, suggesting that some bacterial families may have a long-term 
association with plants (Yeoh et  al., 2016). The study of core 
phyllosphere microbiomes of Arabidopsis, soybean and clover found 
that a high consistency of communities in leaves of these different 
plants (Delmotte et  al., 2009). Proteobacteria, Actinobacteria and 
Bacteroidetes were the core phyllosphere microbiota in these three 
plants (Delmotte et  al., 2009). Kembel et  al. (2014) tested the 
relationships between the phyllosphere bacterial biodiversity and the 
functional traits, taxonomy and phylogeny of their plant host, and 
confirmed that the structure of phyllosphere bacterial community was 
highly correlated with the evolutionary relatedness of hosts and a 
series of plant functional traits related to host ecological strategies 
(Kembel et al., 2014). Similarly, Leff et al. (2015) observed the bacterial 
community composition is highly variable, but this variability is 
predictable and dependent on plant compartments (Leff et al., 2015). 
This work highlights the importance of considering plant spatial 
structure when studying plant-associated microbial communities and 
their effects on plant hosts.

The plant microbiome interacts with its host in a variety of 
manners and affect host’s growth. However, relatively little information 
is available on the composition and diversity of bacterial communities 
in different aboveground plant organs, especially those associated with 
flowers. Zarraonaindia et  al. (2015) revealed some unique plant-
associated microbiota by comparing the bacterial communities in 
grapevine leaves and flowers; the flower-associated microbiota almost 
entirely composed of Proteobacteria (Zarraonaindia et  al., 2015). 
Junker and Keller (2015) determined that the leaves microbiome of 
Metrosideros polymorpha hosts a unique indicator community 
composed of relatively abundant bacterial groups; these indicator 
communities are accompanied by a large number of ubiquitous or rare 
bacteria with lower abundances.

3.2. Plant-associated microbiome assembly 
and driving factors

Microorganisms colonizing the host plant benefit from nutrients 
provided by the plant and form taxonomically consistent community 

patterns (Müller et al., 2016). This mechanism consists of two aspects: 
on the one hand, plants provide unoccupied niches for invading 
microorganisms, which are able to take advantage of the provided 
niche or nutrients, resulting in stochastic colonization events; on the 
other hand, plant-microbe coevolution might provide the basis for 
plant-driven selection processes, leading to key species that actively 
recruit microbial members or at least provide functions to plant hosts, 
which contribute to the shaping of the ultimate microbial community 
during plant development (Müller et al., 2016).

Plants act as environmental filters to shape the microbial 
communities, and there are many studies about the effects of microbial 
communities on their hosts (Adair and Douglas, 2017). However, the 
study of the mechanisms underlying the assembly of the plant 
microbiome is still in its infancy. Based on microbial communities and 
genetic evidence, Reinhold-Hurek et al. (2015) proposed a enrichment 
model of root-related microbiomes, explaining the reasons for the 
decreased diversity and increased specificity of microbial communities 
from the bulk soil to the root interior (Reinhold-Hurek et al., 2015). 
Soils provide a highly diverse microbiome that is influenced by soil 
physicochemical factors, environmental factors, and vegetation types. 
This process is mainly divided into three steps. In the first step, in the 
rhizosphere, the community may be refined due to the influence of 
roots, such as carbon source, oxygen, pH or nutrient consumption. In 
the second step, the community shows more obvious refinement in 
close contact with the host on the root surface, and plant genotype has 
a significant influence. Biofilm formation or specific adhesion 
mechanisms may be involved in this enrichment step. Third, in the 
least complex community, Proteobacteria is a fast-growing bacterium 
with high metabolic activity, which dominates the endosphere 
bacterial community. For endophytic bacteria, specific bacterial traits 
are required to colonize in plant tissues, such as community sensing, 
plant polysaccharide degradation or resistance to reactive oxygen 
species. Compared with other plant compartments, host genotype 
may have the greatest influence on community structure in 
this habitat.

The establishment of plant microbiome is a dynamic process, 
reflecting the changes of community composition over time in 
response to environmental changes. Among them, environmental 
conditions, root exudates, microbe-microbe and plant-microbe 
interactions, and various stages of plant development all affect the 
assembly of microbial communities (Huang et al., 2014). It is not clear 
whether bacteria establish a founding community early in plant 
development, and then constantly colonize in the new habitat by 
clonal propagation (Müller et al., 2016). Therefore, it is very difficult 
to understand a system as complex as the plant microbiome and to 
distinguish between co-evolving interactions and stochastic processes.

So far, little is known about the source of microbial communities 
and how plants shape their specific microbial communities. Although 
the initial bacterial communities are similar to their respective seed 
banks, they become more specific and more diverse as plants grow and 
develop (Chaparro et al., 2014; Müller et al., 2016). Hardoim et al. 
(2012) found that about 45% of the bacterial communities in rice 
progeny seeds were similar to the parental plant, indicating that the 
rice microbiome could be  directly obtained from seeds and 
transmitted in the form of endophyte (Hardoim et al., 2012). The 
diversity and dynamics of seed microbiota represent the culmination 
of a complex process of microbial interactions mediated by the plant 
throughout its life cycle (Nelson, 2018). Microbes associated with 
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endosperm are more likely to vertically spread, while those associated 
with seed coat are more likely to horizontally transmit (Barret 
et al., 2016).

Soil represents an extremely rich microbial pool on Earth, serving 
as a major seed bank for the microbiota of the rhizosphere and root, 
and a driving force for community formation (Müller et al., 2016). In 
many studies, it has been confirmed that soil type has a significant 
impact on rhizosphere microbial communities (Gottel et al., 2011; 
Lundberg et al., 2012; Edwards et al., 2015). In addition, under the 
same environmental and soil conditions, plant species and genotype 
are one of the driving factors for the structural and functional diversity 
of plant microbiomes (Matthews et al., 2019). The functional diversity 
of the microbiome is also affected by plant varieties or cultivars. Even 
the sister lines of the same hybrid had different root-associated 
diazotrophs in rice (Knauth et al., 2005). Moreover, the influence of 
plants on microbial communities seems to be heritable, reflected in 
the finding that the gene expression of the microbiota in interspecific 
hybrid rice showed the intermediate level between the parental species 
(Knauth et al., 2005). These studies suggest that plants act as filters for 
their microbiome. However, quantitative analysis of microbial 
community composition between ecotypes or plant varieties showed 
that differences in microbial diversity related to genotypes were 
relatively small compared with environmental factors (Edwards 
et al., 2015).

Finally, microorganisms themselves can also influence the 
establishment of microbial communities, which can be mediated via 
either directly at the microbial-microbial interaction or indirectly 
through host-microbial interactions. This feature has been confirmed 
in many studies. For example, Chapelle et al. (2016) analyzed the 
rhizosphere microbiome of sugar beet seedlings, and found that 
invasive pathogenic fungi could induce stress responses in 
rhizobacterial communities, leading to shifts in microbial community 
composition (Chapelle et al., 2016). Han et al. (2020) determined that 
some rhizosphere microbes in nodules were related to the composition 
of rhizobia, and confirmed that bacterial communities played a crucial 
role in the interaction between soybean rhizobia and host (Han et al., 
2020). Niu et  al. (2017) assembled a simple and representative 
synthetic bacterial model and studied the community assembly 
process of maize seedlings. The abundance of representative strains 
was monitored by selective culture-dependent method, and the role 
of each strain in community assembly was studied. When Enterobacter 
cloacae was removed, the community structure was completely lossed, 
indicating that E. cloacae plays the role of key species in this model 
ecosystem (Niu et al., 2017). In summary, current studies indicate that 
microbe-microbe-host interactions are one of the factors affecting the 
assembly of the plant microbiome.

4. PGPB mediated salinity-tolerance in 
plants

Plant growth-promoting bacteria (PGPB) is a kind of beneficial 
free-living bacteria in soil or colonized in plant tissue, which can 
promote plant growth and nutrient uptake, improve plant disease 
resistance, and suppress harmful microbes (Hoque et  al., 2022; 
Khatoon et al., 2022). The most important thing is that PGPB is safe 
for the environment, humans and animals (Khabbaz et al., 2019). 
PGPB includes microorganisms isolated from different ecosystems 

such as soil, plants, and oceans, which can colonize the internal plant 
tissues and have several beneficial effects on the host directly or 
indirectly under salinity stress (Figure  1). Although thousands of 
PGPB species have been isolated over the past few decades, the 
mechanism of plant-growth promotion is still uncertain. Once 
successfully colonized in the rhizosphere as well as plant tissues, PGPB 
can help to facilitate plant growth through various mechanisms, such 
as regulating plant hormones and nutrient acquisition, and reducing 
ethylene production (Afzal et al., 2019). PGPB can also indirectly 
control plant health by suppressing infectious diseases (e.g., 
production of antibiotics and lyases, inhibition of nutrient uptake by 
pathogens, and activation of plant defense mechanisms), thereby 
protecting plants from pathogen attack (Miliute et al., 2015). Because 
of their extensive properties in maintaining crop health, as well as 
their environmentally friendly nature, PGPB have become an 
important component of sustainable agricultural development (Das 
et al., 2022).

PGPB includes two groups of bacteria, namely, rhizospheric 
bacteria near plant roots and endophytic bacteria in plant tissues. 
In most cases, rhizospheric and endophytic PGPB use similar 
mechanisms to promote plant growth, and the main difference is 
that endophytic PGPB once colonizes the tissues of the host plant 
and is no longer affected by the vagaries of soil environmental 
conditions (Akhtar et al., 2022). These changing soil conditions may 
inhibit the function and proliferation of PGPB in the rhizosphere, 
and other soil bacteria may compete for the same invasive sites in 
the root surface of host plants. PGPB have been found as a 
promising way of boosting the yield and growth of salinity-stressed 
plants (Table 1).

4.1. Availability of plant nutrients

Many agricultural soils are of poor quality due to deficiency 
of one or more plant nutrients, so plant growth in this condition 
is suboptimal. In order to solve this problem and achieve higher 
crop yields, cultivators increasingly rely heavily on inorganic 
chemical-based fertilizers of nitrogen and phosphorus. The 
production of chemical fertilizers is not only costly, but also 
depletes non-renewable resources, such as oil and gas, and causes 
harmful effects to humans and the environment (Shirokov and 
Tikhnenko, 2021). It is clearly beneficial and sustainable if 
effective biological means of providing nitrogen and phosphorus 
to plants could be used to replace part of the chemical nitrogen 
and phosphorus usage (Glick, 2012). PGPB can help host plants 
to uptake nutrients, including nitrogen, iron, and phosphorus, 
which is considered a direct mechanism of plant growth 
promotion (Figure 2).

4.1.1. Nitrogen fixation
PGPB may prevent nutrient loss by fixing soil nutrients to 

increase the concentration and availability of nutrients in the 
rhizosphere. Common bacteria with biological nitrogen fixation 
are rhizobia and nitrogen-fixing bacteria, such as Rhizobia spp., 
Azospirillum brasilense, Burkholderia spp., Gluconacetobacter 
diazotrophicus, and Herbaspirillum seropedicae have been 
reported to increase host plant biomass by fixing atmospheric 
nitrogen (Bhattacharjee et al., 2008). In non-leguminous plants, 
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PGPB has nitrogen-fixing effects by inducing the formation of 
nodules and secretes a unique nitrogenase that converts 
atmospheric nitrogen into ammonia (Aasfar et  al., 2021). 
Endophytic bacteria are inferior to rhizobia in nitrogen fixation, 
while endophytic diazotrophic are very good in this respect. It 
has been found that G. diazotrophicus co-exists with plants such 
as spruce and pine, helping the conifers to grow in soils with 
severe nitrogen deficiency (Carrell and Frank, 2014).

4.1.2. Inorganic phosphorus solubilization
Although the content of phosphorus in soil is generally quite 

high, it occurs mostly in insoluble form and cannot be used by plants 
(Etesami, 2020). In addition, much of the soluble inorganic 
phosphorus used as fertilizer can form insoluble P-complexes with 
soil particles (Elhaissoufi et al., 2021). The limited bioavailability of 
phosphorus in soil, coupled with the importance of this element for 
plant growth, limits plant growth. Therefore, phosphate solubilizing 
PGPB can promote plant growth by the solubilization and 
mineralization of phosphorus, which is achieved by the release of 
phosphate from inorganic phosphorus and organic phosphorus by 
organic acids such as acetate, succinate, citrate and gluconate, or by 
phosphatases (Rebi et al., 2022). Endophytic bacteria can use many 
mechanisms such as acidification, chelation, ion exchange, and 
production of organic acids and phosphatases to increase the 
availability of soil phosphorus (Walia et al., 2017). Recent studies 
have proposed a new mechanism of phosphorus solubilization, 
which 2, 3-dimethyl fumaric acid, gluconic acid and butylamine 
secreted by Pseudomonas prosekii can dissolve phosphate by 
providing H+ ions and organic anions (Yu et  al., 2019). The 
phosphate-solubilizing bacterium Burkholderia cepacia can secrete 
gluconic, formic acids and an unknown acid, which might be an 
important mechanism for phosphate solubilization (Pande 
et al., 2019).

4.1.3. Siderophore
Like phosphorus, a great amount of insoluble iron in soil is not 

available for plants. In iron-deficient conditions, bacteria can 
effectively bind iron through two strategies, including releasing 
protons and organic acids to reduce soil pH, or secreting iron-
chelating complexes (siderophore) that bind ferric ions. Plants can 
obtain iron from siderophore through root chelation degradation or 
ligand exchange (Albelda-Berenguer et al., 2019). PGPB prevents the 
proliferation of plant pathogens by secreting siderophores with an 
extremely high affinity for ferric iron, and the mechanism is that these 
siderophores bind tightly to most of the Fe3+ present in the rhizosphere 
and absorb the bound iron into the PGPB or host plant, preventing 
any fungal and bacterial pathogens from obtaining enough iron for 
their growth (Olanrewaju et  al., 2017). As a result, pathogens are 
unable to reproduce due to iron deficiency, causing them to lose their 
ability to act as pathogens. The effectiveness of this biological control 
approach is based on the fact that the siderophores secreted by PGPB 
have a much higher affinity for iron than fungal siderophores (usually 
by many orders of magnitude) (Olanrewaju et al., 2017). Siderophores 
as iron chelators have been shown to promote plant growth 
significantly in many studies. When iron is not available, PGPB 
G. diazotrophicus and A. brasilense could produce hydroxamate and 
catechol type siderophores, respectively, to chelate iron and promote 
host absorption (Delaporte-Quintana et al., 2020). Another study has 
shown that some bacteria secrete growth-inhibitory siderophores that 
alter the interaction between the microbiome and pathogens. 
Rhizosphere microbiome members secreting growth-inhibiting 
siderophores could inhibit pathogens in vitro as well as in natural and 
greenhouse soils. Conversely, rhizosphere microbiome members with 
growth-promotive siderophores are often at a disadvantage in the 
competition and easily facilitate plant infection by the pathogen (Gu 
et al., 2020). This is one of the reasons why plants inoculated with 
PGPB show less of a growth promotion effect than expected.

FIGURE 1

PGPB mediate direct or indirect mechanism to improve salt tolerance in plants.
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TABLE 1 Impact of PGPB in alleviating salinity stress in plants.

Plant species PGPB species Effect or mechanism References

Canola Enterobacter sp. S16-3

Pseudomonas sp. C16-2O

Production and accumulation of reactive 

oxygen species

Neshat et al. (2022)

Zea mays L. Metabacillus dongyingensis BY2G20 cation-proton antiporters, cation 

transporters, osmoprotectant synthesis and 

transport, H+-transporting F1F0-ATPase, 

indole-3-acetic acid production

Yin et al. (2022)

Coriandrum sativum Pseudomonas pseudoalcaligenes KB-10

P. putida (KB-25)

Increase relative water content, 

concentrations of photosynthetic pigments, 

peroxidase activity, total biomass, salt 

tolerance index, and reduced salt-induced 

total phenolic contents

Al-Garni et al. (2019)

Lotus japonicus cv. Gifu Bacillus amyloliquefaciens RHF6 Induce a plant antioxidant response, secrete 

the osmoprotectant proline and reduce 

ethylene level via the enzymatic ACC 

deaminase activity

Castaldi et al. (2023)

Phaseolus vulgaris L. Bacillus proteolyticus Cyn1 and B. 

safensis Cyn2

ACC deaminase production, phosphate 

solubilization, and catalase enzyme secretion

Meza et al. (2022)

Iranian licorice (Glycyrrhiza glabra 

L.)

Azotobacter sp. Increase polyphenol oxidase, peroxidase, and 

phenylalanine ammonia-lyase activity

Mousavi et al. (2022)

Spinach and Soybean Stenotrophomonas sp. Accumulate osmolytes, increase enzymatic 

and non-enzymatic antioxidants

Nigam et al. (2022)

Tomato Pseudomonas sp. UW4 Production of ACC deaminase and trehalose Orozco-Mosqueda et al. (2019)

Soybean (Glycine max (L.) Merr; 

Leguminosae)

Bacillus cereus (B1), B. megaterium (B2), 

Trichoderma longibrachiatum (F1) and 

T. simmonsii (F2)

Improve germination, seedling growth and 

potassium uptake

Bakhshandeh et al. (2020)

Rice (Oryza sativa) Bacillus sp., Exiguobacterium sp., 

Lysinibacillus sp., Stenotrophomonas sp., 

Microbacterium sp., and Achromobacter 

sp.

Enhance total chlorophyll, proline, total 

phenol, and oxidative damage such as 

electrolyte leakage and membrane stability 

index

Prittesh et al. (2020)

Rice (Oryza sativa) Bacillus pumilus strain JPVS11 Promote photosynthetic pigments, proline 

and antioxidant production

Kumar et al. (2021)

Rice (Oryza sativa) Brevibacterium linens RS16 Increase in total proline and glycine betaine 

accumulation

Ahmed et al. (2021)

Amaranthus Viridis Bacillus safensis

Bacillus haynesii

Produce gibberellic acid, indole-3-acetic acid, 

hydrogen cyanide, ammonia, 1-amino 

cyclopropane-1-carboxylic acid deaminase, 

exopolysaccharides, protease, chitinase, 

amylase, cellulase, and solubilized minerals 

such as phosphorous, zinc, and potassium

Patel et al. (2023)

Wheat Bacillus megaterium, B. tequilensis, and 

Pseudomonas putida

Decrease concentration of malondialdehyde 

and hydrogen peroxide

Reduce electrolytic leakage and enhance 

enzymatic activity for the scavenging of 

reactive oxygen species (ROS);

Increase the production of proline and total 

soluble sugar

Haroon et al. (2021)

Pea (Pisum sativum) Acinetobacter bereziniae IG2, 

Enterobacter ludwigii IG 10, Alcaligenes 

faecalis IG 27

Increase chlorophyll content, proline content, 

total soluble sugar, electrolyte leakage, and 

activities of antioxidant enzymes;

Decrease the levels of electrolyte leakage and 

H2O2 content

Sapre et al. (2022)

(Continued)
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4.2. Production and regulation of plant 
hormones

The physiological activities of most plants are regulated by one or 
more plant hormones. In addition to plants, many beneficial microbes 
can also synthesize plant hormones (Figure 2) (Khan et al., 2020). 
PGPB can promote nutrient uptake and metabolism of host plants by 
producing plant hormones (Stegelmeier et al., 2022). Studies have 
found that PGPB can secrete plant hormones, resulting in facilitated 
seed germination, accelerated root growth, changed root morphology, 
and increased root biomass (Olanrewaju et  al., 2017). At present, 

many studies found that PGPB Azospirillum, Aeromonas, Azotobacter, 
Bacillus, Paenibacillus, Burkholderia, Enterobacter, Pantoea, 
Pseudomonas and Rhizobium are able to secrete plant hormones 
(Khabbaz et al., 2019). Plant hormones generally include abscisic acid, 
cytokinin, ethylene, gibberellin and indole-3-acetic acid (IAA); among 
them, IAA and ethylene are the two classical phytohormones in the 
plant-bacteria interaction (Stegelmeier et al., 2022).

4.2.1. IAA regulation
As a major plant hormone, IAA is involved in plant development and 

physiological processes, including intercellular signal transduction, 

TABLE 1 (Continued)

Plant species PGPB species Effect or mechanism References

Cucumis sativus L Serratia fonticola S1T1 Decrease in malondialdehyde content, H2O2 

content and superoxide anion, increase in 

antioxidant enzymes such as catalase and 

superoxide dismutase;

up-regulate the transcript accumulation of 

ion transporter genes HKT1, NHX and SOS1

Moon et al. (2023)

Metasequoia glyptostroboides Bacillus paramycoides JYZ-SD5 Increase the activities of superoxide 

dismutase (SOD), peroxidase (POD), Na+–

K+-ATPase and Ca2+–Mg2+-ATPase

Kong et al. (2022)

Oat (Avena sativa L.) Bacillus sp. LrM2 Inhibit the accumulation of H2O2 and 

malondialdehyde; enhance the activities of 

catalase, ascorbate peroxidase, glutathione 

reductase, and monodehydroascorbate 

reductase were enhanced, and the levels of 

the non–enzymatic antioxidants, ascorbate 

and glutathione

Zhang et al. (2022)

Lathyrus cicera Rhizobium laguerreae

Rhizophagus irregularis

Bacillus subtilus, Bacillus simplex and 

Bacillus megaterium

Upregulate the expression of two marker 

genes (LcHKT1 and LcNHX7) related to 

salinity tolerance

Gritli et al. (2022)

Soybean (Glycine max) Enterobacter Delta PSK and 

Bradyrhizobium japonicum

Decrease electrolyte leakage, the amounts of 

malondialdehyde and hydrogen peroxide

Agha et al. (2023)

Sugarcane (Saccharum sp. Hybrids) Acinetobacter sp. RSC9 Produce IAA, solubilize phosphate, 

potassium and zinc and fix atmospheric 

nitrogen

Patel et al. (2022)

Sweet potato (Ipomoea batatas L.) Klebsiella sp. San01 Enhance 2,2-diphenyl-1-picrylhydrazyl 

radical scavenging ability and elevate 

activities of ascorbate peroxidase and 

superoxide dismutase

Li et al. (2022)

Musa acuminata cv. Berangan Bacillus sp., Pseudomonas sp. Enhance levels of plant chlorophyll, 

carotenoid and proline, reduce MDA content, 

ROS and electrolyte leakage

Kaleh et al. (2022)

Rice (Oryza sativa) Bacillus megaterium Affect K+ uptake not by solubilizing it but 

changing K+ transporters expression

Romero-Munar and Aroca (2023)

Lima bean (Phaseolus lunatus) Bradyrhizobium and Azospirillum 

baldaniorum

Increase nitrogen compounds (nitrate, free 

ammonia, free amino acids, proline, and 

soluble protein); increase in sodium and the 

highest potassium content values, nitrogen 

derived from the atmosphere, and nitrogen 

fixation efficiency

de Oliveira Lopes et al. (2022)
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regulation of plant growth, and induction of plant defense system (Tian 
et al., 2018). It can also facilitate the formation of lateral and adventive 
roots, affect photosynthesis and biosynthesis of metabolites, and mediate 
resistance to stress conditions (Li et al., 2021). IAA produced by PGPB 
and the plant’s endogenous IAA stimulate auxin signal transduction 
pathways, including various auxin response factors, thus resulting in 
stimulation of cell growth and proliferation (Ilangumaran and 
Smith, 2017).

IAA synthesized by bacteria may be involved in plant-bacteria 
interaction at different levels, especially in plant growth and 
nodule formation (Lobo et al., 2023). IAA produced by PGPB can 
either stimulate root development when the plant inherent IAA 
is suboptimal, or inhibit root growth when the concentration of 
IAA is already optimal (Munir et al., 2022). In addition, a plant’s 
endogenous IAA levels can also determine whether bacterial IAA 
promotes or inhibits plant growth, since bacterial IAA production 
generally favors plants with low endogenous IAA levels. Overall, 
bacterial IAA increases plant’s root surface area and length, thus 
providing the plant more access to soil nutrients (Yadav et al., 
2022). In addition, bacterial IAA can loosen the plant cell walls, 
thus promoting an increase in the amount of root exudation that 
provide additional nutrients to support the growth of rhizosphere 
bacteria (Ahmad et al., 2022).

4.2.2. ACC deaminase
Ethylene is an important plant hormone involved in different 

developmental and physiological processes such as aging, shedding, 

and pathogen defense signals (Bayanati et al., 2021). Some PGPB 
possess 1-aminocyclopropane-1-carboxylate (ACC) deaminase 
activity, which hydrolyzes the ethylene precursor, ACC, into 
α-ketobutyric acid and ammonia (Yadav et al., 2022). Therefore, 
hydrolysis of ACC can alleviate ethylene stress on plants and 
improve plant growth under stress conditions. Many PGPB can 
utilize ACC as a sole nitrogen source, indicating that these strains 
contain ACC deaminase (del Carmen Orozco-Mosqueda et  al., 
2020). So far, ACC deaminase in PGPB has proven to be a very 
effective mechanism to counter stress conditions in plants. However, 
these studies are limited to greenhouses and growing chambers.

Studies have shown that IAA promotes the transcription of 
genes encoding ACC synthase, thereby increasing ACC 
concentration and ultimately leading to ethylene accumulation 
(Glick, 2014). After environmental stress, PGPB containing ACC 
deaminase hydrolyzes ACC and reduces the ethylene level of plants, 
thus reducing the stress response of plants. In the absence of ACC 
deaminase-producing bacteria, ethylene restricts cell growth and 
proliferation by restricting auxin response factor transcription and 
stimulating IAA to produce additional ethylene (Khabbaz et al., 
2019). Thus, in the presence of ACC deaminase, auxin response 
factor transcription is not inhibited, and IAA can stimulate cell 
growth and proliferation without causing ethylene accumulation. 
Therefore, ACC deaminase can not only reduce the inhibitory effect 
of ethylene on plant growth, but also enable IAA to promote plant 
growth to the maximum extent in the presence or absence of 
plant stress.

FIGURE 2

The potential mechanism of bacteria-mediated plant growth promotion under salt stress. Plant Growth Promoting Bacteria (PGPB) serve as a 
biofertilizer promote plant growth by enhancing nutrient availability, regulating plant hormones, and increasing plant stress tolerance. They increase 
the concentrations of growth hormones, such as gibberellins, cytokinins, while decreasing ethylene levels through ACC deaminase. Moreover, PGPB 
also produce volatile organic compounds (VOCs) that induce disease resistance and abiotic stress tolerance. In addition, PGPB alleviates stress by 
augmenting extracellular polysaccharides, osmoregulants, and antioxidants, thereby reducing reactive oxygen species and oxidative stress.
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4.2.3. Cytokinin and gibberellin
In addition to IAA, many PGPB also produce cytokinin and 

gibberellin (Kumar et al., 2020). Cytokinin influences not only many 
aspects of plant growth, development and physiology, including cell 
division, chloroplast differentiation and delay of senescence, but also 
numerous plant-biotic interactions (Akhtar et al., 2019). It is worth 
noting that cytokinins are produced by both pathogenic and beneficial 
microbes and improve the resistance of plants against pathogen 
infections. Transgenic plants that overproduce cytokinins, especially 
during abiotic stress, can significantly mitigate the harmful effects of 
stress (Rivero et al., 2007). PGPB R. leguminosarum, Bacillus, and 
Pseudomonas can produce cytokinin, promote cell division and 
growth, enhance the absorption efficiency of nutrients, and thus as a 
result improve plant yield (Olanrewaju et al., 2017). In terms of biotic 
stress, studies have confirmed that cytokinin can initiate plant 
responses to trauma and insect pests by activating the expression of 
trauma-inducing genes and by inducing the increase of compounds 
against insect (Giron et  al., 2013), which indicates that the 
physiological and metabolic signals of cytokinin may interfere on anti-
herbivore defense in foliage (Akhtar et al., 2019).

Gibberellin is a plant growth regulator mainly involved in seed 
germination, leaf and stem growth, flowering, fruit formation and 
plant senescence (Desta and Amare, 2021). Bacteria that have been 
shown to produce a variety of gibberellins include: Acetobacter 
diazotrophicus, H. seropedicae, A. lipoferum, Rhizobium phaseoli, 
Enterococcus faecium, Sphingomonas, etc. (Ali et al., 2017). Compared 
with the research on cytokinins, relatively limited research has been 
done on the interactions among gibberellins and plants and microbes. 
In most cases, gibberellin produced by PGPB also exhibits other 
mechanisms that promote plant growth, and the phenotypic changes 
of different plant varieties are related to changes in plant growth 
hormone biosynthesis (Kurepin et al., 2015).

4.3. Inhibition of plant pathogens

Endophytic bacteria indirectly promote the growth of host plants 
by inhibiting plant pathogens and pests with the production of 
antagonistic compounds such as antibiotics, toxins, siderophores, lytic 
enzymes, and antimicrobial volatile organic compounds (Figure 2) 
(Elnahal et  al., 2022). Among them, Actinobacteria, Bacillus, 
Enterobacter, Paenibacillus, Pseudomonas and other bacteria are 
common genera with antibacterial activity against plant pathogens 
(Afzal et al., 2019). Some of the enzymes produced by PGPB, including 
chitinase, cellulase, glucanase, protease and lipase, can lyse a portion 
of the cell walls of pathogens (Ghosh et al., 2021). PGPB that secrete 
one or more of these enzymes have been shown to have biocontrol 
activities against a wide range of competitor pathogens (Selari et al., 
2023). Naama-Amar et al. (2022) reported that a candidate biocontrol 
agent Frateuria defendens could inhibit Spiroplasma melliferum growth 
by secreting antimicrobial metabolites (Naama-Amar et al., 2022). A 
plant growth-promoting endophytic bacterium Pseudomonas 
protegens MP12 can produce important antifungal compounds (2, 
4-diacetylphloroglucinol, pyoluteorin and pyrrolnitrin), and exhibits 
inhibitory effects on the mycelial growth of phytopathogens such as 
Botrytis cinerea, Alternaria alternata, Aspergillus niger, Penicillium 
expansum and Neofusicoccum parvum (Andreolli et al., 2019). Bacillus 
produced antibiotic lipopeptides, such as iturin, bacillomycin, 

bacilysin, fengycin, surfactin, and zwittermycin, which have broad 
spectrum of action against pathogens (Saravanakumar et al., 2019).

PGPB can also activate plant-induced systemic resistance (ISR) 
against a broad spectrum of pathogens (Datta et al., 2022). ISR is 
phenotypically similar to systemic acquired resistance (SAR) that 
occurs when plants activate their defense mechanisms in response to 
pathogen infection (Meena et al., 2020). The prime function of ISR is 
to activate plant defense mechanisms and protect unexposed parts of 
plants against pathogenic microbe and herbivorous insect invasions 
(Sardar et al., 2021). PGPB-mediated ISR depones on jasmonic acid 
and ethylene signaling pathways in plants (Abid and Karim, 2021). 
These hormones stimulate the host plant’s defense responses to a range 
of pathogens without the need for PGPB to interact directly with 
pathogens. In addition to involvement in jasmonate and ethylene 
signaling pathways, ISR also plays a crucial role in host resistance by 
enhancing the activity of pattern recognition receptors through 
cellular or hormonal defenses (Hossain and Chung, 2019).

PGPB can also emit volatile organic compounds (VOCs) as 
biocontrol factors or deterrents against pathogens (Choub et al., 2022). 
Recently, many studies have reported the production of VOCs 
secreted by PGPB that disrupted cell membrane integrity, spore 
germination and mycelial growth of plant pathogenic fungi and other 
competing bacteria species (Chatterjee and Niinemets, 2022). Recent 
advances in analytical science such as the headspace solid-phase 
microextraction/gas chromatography–mass spectrometry (HS-SPME/
GC–MS), have been used for extraction, identification, and 
characterization of VOCs emitted by PGPB and other bacterial species 
(Drabińska et  al., 2022; Tabbal et  al., 2022; Wu et  al., 2022). 
Additionally, some VOCs can repress the expression of virulence traits 
involved in host colonization, such as motility, root colonization, and 
biofilm formation, thus, for example, effectively controlling tomato 
wilt (Raza et al., 2016). In summary, VOCs produced by PGPB help 
plants cope with abiotic and biotic stresses by inducing systemic 
resistance or inhibiting the growth of a wide range of pathogen.

In addition to producing substances that harm or inhibit plant 
pathogens, some PGPB may compete for nutrients or niches with 
pathogens (Selari et al., 2023). In fact, it is widely believed that this 
competitiveness of PGPB works together with other biocontrol 
mechanisms to repress the growth of plant pathogens (Olanrewaju 
et al., 2017). It is important to note that the effectiveness of PGPB 
depends on their versatility and adaptation to new niches as well as 
their ability to colonize and compete with other members of plant 
microbiome (Rilling et  al., 2019). Root exudates contain chemo-
attractants like amino acids, organic acids and specific sugars that are 
good carbon sources for PGPB activity and competitive colonization 
(Feng et al., 2021). Additionally, the mutual signal exchange between 
plants and microsymbionts, along with flagellar motility, further 
enhances the affinity of PGPB in root surface (Raina et al., 2019).

4.4. Osmoregulation

In addition to beneficial traits such as IAA production, nitrogen 
fixation and phosphate dissolution, PGPB can accumulate osmotic 
adjustment substances under stressful conditions (Figure 2) (Feng 
et al., 2023). Under drought and salt stress conditions, plant cells can 
improve the water activity of cells and maintain normal metabolic 
activities by accumulating compatible solutes (soluble sugars, polyols, 
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glycine betaine, proline, free amino acids) (Ali et al., 2022). Under 
abiotic stress, one of the most significant changes is the accumulation 
of plant proline that can improve the activity of various enzymes, 
stabilize intracellular pH and remove reactive oxygen species, thereby 
maintaining antioxidant activity (Abdelaal et al., 2021). Many PGPB 
can induce plant proline synthesis under stress conditions, which 
helps to maintain cell osmotic pressure and improve plant salt 
tolerance (Khabbaz et al., 2019).

Trehalose, a non-reducing disaccharide, can act as a protective 
agent to alleviate a variety of environmental stresses, including 
drought, salinity and extreme temperatures (Greco et al., 2021). When 
cells are dehydrated, trehalose can form a gel phase to bind with 
surrounding macromolecules and membranes thereby replacing water 
loss and decreasing the damage to cells (del Carmen Orozco-
Mosqueda et  al., 2022). In addition, trehalose prevents the 
degradation, denaturation and aggregation of proteins under high and 
low temperature stress (Vinciguerra et  al., 2022). Under stress 
conditions, trehalose and ACC deaminase synergistically protect 
crops from stress by stabilizing biological structures and lowering 
ethylene levels, respectively (del Carmen Orozco-Mosqueda et al., 
2022). Compared with wild type Rhizobium etli, the number of 
nodules, nitrogenase activity and biomass of Phaseolus vulgaris 
increased when inoculated with R. etli overexpressing trehalose 
synthase, and the host plant inoculated with mutants recovered more 
strongly under drought stress (Suárez et al., 2008). Although it is also 
possible to overexpress trehalose genes in transgenic plants, it is much 
simpler to achieve the same goal through co-inoculation with 
PGPB. Moreover, since most strains have no specific host, therefore, 
the same strain can effectively help different plants mitigate stress.

5. Relationship between bacterial Type 
VI secretion system and plant growth 
promotion

Many bacteria have evolved specialized protein secretion systems 
to transport proteins out of the bacterial cells and even directly into 
the host target cells. Bacterial secretory systems are divided into at 
least nine classes (Tat system, type I-VII, and type IX) based on their 
structure, function, and specific effects, with each system transporting 
a specific subset of proteins, known as effectors (Green and Mecsas, 
2016). Among them, Type VI Secretion System (T6SS) is a 
sophisticated nano-weapon to inject toxic effectors into eukaryotic or 
prokaryotic cells, and presents in nearly 25% of all Gram-negative 
bacteria, including many plant symbiotic bacteria (Salinero-Lanzarote 
et  al., 2019). Bacteria can use T6SS to manipulate and destroy 
eukaryotic cells and/or fight other bacteria to gain a dominant status 
in the ecological niche (Kim et al., 2020). Indeed, bacteria with T6SS 
appear to have a significant adaptive advantage in the microbial 
community. Bacteria containing T6SS synthesize both immune 
proteins and T6SS effectors to ensure against self-poisoning or 
targeting by sister-cells (Steele et  al., 2017). Functional T6SS 
contributes to the virulence of the host, improves bacterial robustness, 
and enhances environmental adaptation through bacterial 
competition (Russell et al., 2014; Kim et al., 2020). Although T6SS is 
ubiquitous, its general mechanism and physiological role are still not 
fully understood. To date, the studies related to T6SS and plant growth 
promotion characteristics are very few and mainly focus on biological 

control agents, antagonism, biofilm formation and environmental 
adaptability (Bernal et al., 2018).

5.1. Biofilm formation

Biofilms are structurally complex microbial communities attached 
to living or abiotic surfaces and surrounded by complex extracellular 
polymers. Microbial colonization of plant roots can be promoted by 
the formation of biofilms (Niu et al., 2020). Gallique et al. (2017) 
reported that mutations in three T6SS-related genes (hcp1, hcp2, or 
hcp3) of Pseudomonas fluorescens MFE01 did not reduce biofilm 
formation, but these three Hcp proteins are essential for the formation 
of mature biofilm structures. However, in another similar study, these 
three T6SS-related gene mutants of P. aeruginosa PAO1 had no impact 
on biofilm formation or environmental adaptation ability, but 
swarming motility was reduced, which is another important aspect of 
biofilm formation ability, suggesting that T6SS is associated with 
biofilm formation but not environmental adaptation (Chen et  al., 
2020). The T6SS gene cluster present in the Acidovorax citrulli was 
confirmed to be involved in multiple biological processes, including 
colonization, competition and biofilm formation (Fei et al., 2022).

5.2. Antibacterial activity

Evidence is also emerging that T6SSs could contribute to inter-
bacterial competition. Interestingly, many PGPB harbor one or more 
T6SS, however, the function of T6SS in PGPB is poorly understand. 
In a previous study, it was found that the T6SS of PGPB Azospirillum 
brasilense provides antibacterial activities against a number of plant 
pathogens in vitro, and might confer T6SS-dependent bio-control 
protection to microalgae and plants against bacterial pathogens 
(Cassan et al., 2021). However, Lin et al. (2018) found instead of being 
an antihost or antibacterial weapon of the bacterium, the T6SS in 
Azorhizobium caulinodans ORS571 seems to participate specifically in 
symbiosis by increasing its symbiotic competitiveness.

5.3. Colonization

Most organisms with T6SS are not pathogenic and are found in 
diverse environments as symbionts. Although the secretory system 
was thought to be  involved in the interaction between PGPB and 
plants, only recently research has been functionally dissected in 
nitrogen-fixing Azoarcus olearius, in which T6SS positively affected 
plant colonization efficiency (Jiang et al., 2019). The T6SS effector 
Hcp1 up-regulated in rice inoculated with a well-known growth-
promoting rhizobacteria Herbaspirillum rubrisubalbicans, suggesting 
that T6SS plays a role in rice colonization (Valdameri et al., 2017). 
Similarly, the T6SS mutant of PGPB Enterobacter sp. J49 showed a 
significant decrease in the epiphytic and endophytic colonization, 
indicating that although T6SS is not essential, it may participate in 
bacterial colonization (Lucero et al., 2022). Salinero-Lanzarote et al. 
(2019) described the growth-promoting trait of T6SS in Rhizobium 
etli Mim1, which can effectively increase nodule size in legumes, 
suggesting that T6SS plays an active role in the Rhizobium-legumes 
symbiosis. The knockout mutant of T6SS gene cluster in rice 
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endophyte Kosakonia showed a decreased ability to colonize the 
rhizoplane and endosphere, suggesting that T6SS is involved in the 
colonization process of plant-bacteria interaction (Mosquito et al., 
2020). Another plant-associated microbe, P. taiwanensis, has been 
shown to use its T6SS to mediate colonization resistance against 
bacterial plant pathogens through T6SS-mediated secretion of 
pyoverdine, an iron chelator (Chen et al., 2016). These results suggest 
that there may be  a relationship between T6SS and plant growth 
promoting properties.

6. Conclusion and future prospects

Soil salinity is expected to increase dramatically in the coming 
years and will hinder agricultural production. Various conventional 
reclamation methods of saline-alkali land are found to be unsustainable 
and economically difficult to achieve. The use of PGPB to inoculate 
plants has become an important method to alleviate soil salt stress and 
improve crop yield, but better results have only been obtained in 
laboratory or greenhouse conditions, not in the field. To effectively 
utilize PGPB in salinized agroecosystems, a bottom-up approach is 
necessary, starting with the screening of halotolerant PGPB strains and 
careful formulation design for field application. Additionally, more 
molecular studies of plant-microbe interactions are needed to better 
understand the mechanisms involved in inducing systemic tolerance 
and performing rhizosphere engineering under salt stress. Studying the 
metabolic and genetic behavior of halotolerant PGPB is also important 
to understand how they work and adapt to high salt environments. 
This will provide a reference for the development of reliable biological 
inoculants in saline soils.

Although PGPB has various mechanisms to improve plant 
growth and biological control against plant pathogens under 
saline conditions, there are still many constraints to its wide 
application in different agro-ecosystems. Our understanding of 
the molecular mechanism by which halotolerant PGPB alleviates 
salt stress is also in its infancy, but it offers a sustainable way to 
increase the productivity of saline soils and contribute to the 
goals of food security and controlling desertification of 

agro-ecosystems. Improving our understanding of the mechanism 
of PGPB regulating plant stress resistance and restricting 
bacterial activity under stress conditions can enhance the 
effectiveness of using bacterial inoculants.
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Glossary

PGPB Plant growth-promoting bacteria

PGPR Plant growth promoting rhizosphere

IAA Indole-3-acetic acid

ACC 1-aminocyclopropane-1-carboxylate

ISR Induced systemic resistance

VOCs Volatile organic compounds

HS-SPME/GC–MS Headspace solid-phase microextraction/gas chromatography–mass spectrometry

T6SS Type VI Secretion System

APX Ascorbate peroxidase

SOD Superoxide dismutase

CAT Catalase

SOS Salt overly sensitive

ETH Ethylene

HKT High-affinity potassium transporter

SAM S-adenosylmethionine

CK Cytokinin
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