AUTHOR=Miao Lei , Chen Siyuan , Yang Hua , Hong Yaqi , Sun Liwen , Yang Jie , Sun Guanjun , Liu Yi , Li Chunyan , Zang Hailian , Cheng Yi
TITLE=Enhanced bioremediation of triclocarban-contaminated soil by Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 immobilized on biochar and microbial community response
JOURNAL=Frontiers in Microbiology
VOLUME=14
YEAR=2023
URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1168902
DOI=10.3389/fmicb.2023.1168902
ISSN=1664-302X
ABSTRACT=
Triclocarban (TCC), an emerging organic contaminant (EOC), has become a severe threat to soil microbial communities and ecological security. Here, the TCC-degrading strain Rhodococcus rhodochrous BX2 and DCA-degrading strain Pseudomonas sp. LY-1 (together referred to as TC1) were immobilized on biochar to remove TCC and its intermediates in TCC-contaminated soil. High-throughput sequencing was used to investigate the microbial community structure in TCC-contaminated soil. Analysis of co-occurrence networks was used to explore the mutual relationships among soil microbiome members. The results showed that the immobilized TC1 significantly increased the removal efficiency of TCC from 84.7 to 92.7% compared to CK (no TC1 cells on biochar) in 10 mg/L TCC liquid medium. The utilization of immobilized TC1 also significantly accelerated the removal of TCC from contaminated soil. Microbial community analysis revealed the crucial microorganisms and their functional enzymes participating in TCC degradation in soil. Moreover, the internal labor division patterns and connections of TCC-degrading microbes, with a focus on strains BX2 and LY-1, were unraveled by co-occurrence networks analysis. This work provides a promising strategy to facilitate the bioremediation of TCC in soil, which has potential application value for sustainable biobased economies.