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Advances in cellular and molecular 
predatory biology of Bdellovibrio 
bacteriovorus six decades after 
discovery
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Since its discovery six decades ago, the predatory bacterium Bdellovibrio 
bacteriovorus has sparked recent interest as a potential remedy to the antibiotic 
resistance crisis. Here we give a comprehensive historical overview from discovery 
to progressive developments in microscopy and molecular mechanisms. Research 
on B. bacteriovorus has moved from curiosity to a new model organism, revealing 
over time more details on its physiology and fascinating predatory life cycle 
with the help of a variety of methods. Based on recent findings in cryo-electron 
tomography, we  recapitulate on the intricate molecular details known in the 
predatory life cycle including how this predator searches for its prey bacterium, 
to how it attaches, grows, and divides all from within the prey cell. Finally, the 
newly developed B. bacteriovorus progeny leave the prey cell remnants in the 
exit phase. While we end with some unanswered questions remaining in the field, 
new imaging technologies and quantitative, systematic advances will likely help 
to unravel them in the next decades.
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From curiosity to new model organism

What started as a serendipity-based discovery from a soil sample (Stolp and Petzold, 1962) 
was regarded for a long time as a curiosity in the microbial world. Recently, the research field of 
predatory bacteria and Bdellovibrio in particular, is gaining interest as a novel way to fight 
antimicrobial resistant pathogens and is growing rapidly due to methodological and technical 
advances over the last six decades. The number of published articles on Bdellovibrio per year, as 
indicated in Figure 1, has steadily increased in recent years—a trend coinciding with the rise of 
antimicrobial resistance studies.

In 1962, whilst attempting to isolate bacteriophages, Stolp and Petzold discovered a small 
‘parasitic’ organism which showed lytic activity against phytopathogenic Pseudomonas (Stolp 
and Petzold, 1962). But unlike bacteriophages, this new organism, named Bdellovibrio 
bacteriovorus, formed plaques after a longer incubation period and which increased in size 
(Stolp and Starr, 1963). Visualization using phase contrast microscopy showed that only Gram-
negative species were susceptible to B. bacteriovorus (Starr and Baigent, 1966). Interestingly, a 
subset of B. bacteriovorus was shown to be  able to grow independently of prey as host-
independent (HI) strains (Shilo and Bruff, 1965). Further studies on how the predator invades 
bacterial prey cells led to an initial characterization of attachment and invasion (Varon and Shilo, 
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1968, 1969; Abram et al., 1974). Due to the lack of genetic tools and 
methods available, the mechanistic hypotheses proposed could not 
be  investigated further. Early electron microscopy identified the 
morphology of B. bacteriovorus (Abram and Davis, 1970) as well as 
the predator–prey interactions in invasion and intracellular growth 
(Burnham et  al., 1968). These studies set the foundations of the 
predatory life cycle we know today (Figure 2).

Based on this initial work, various aspects of the predator’s 
biology were explored deeper in the 1970s and 80s, prominently by 
three research groups: Samuel Conti’s group performed early 
chemotaxis experiments (LaMarre et al., 1977; Straley and Conti, 
1977; Straley et al., 1979), and Sydney Rittenberg’s group investigated 
the biochemistry and metabolism of B. bacteriovorus—its breakdown 
and uptake of prey nutrients as well as the synthesis of its own 
macromolecules (Hespell et al., 1973, 1975; Kuenen and Rittenberg, 
1975; Nelson and Rittenberg, 1981; Rosson and Rittenberg, 1981; 
Rayner et al., 1985). Furthermore, B. bacteriovorus population studies 
by Mazel Varon spearheaded research on the effect of predator–prey 
and predator-environment interactions on predatory ability (Varon 
and Zeigler, 1978; Varon, 1981; Varon and Shilo, 1981). After the 
initial boom of publications in the first two decades of Bdellovibrio 
research, the following years of the 1980s and 90s saw a decline in the 
number of publications in this field. It was not until the advent of the 
genomics era that re-sparked the interest in Bdellovibrio research. 
Cotter and Thomashow pioneered the first genetic work, successfully 
conjugating DNA from E. coli into B. bacteriovorus and proving 
B. bacteriovorus to be  a genetically tractable model (Cotter and 
Thomashow, 1992). Undoubtedly, one of the most important 
milestones was in 2004, where Rendulic and colleagues published the 
first whole genome sequence of B. bacteriovorus HD100 (Rendulic 
et  al., 2004). While most findings are based on B. bacteriovorus 
strains HD100 and 109J, numerous B. bacteriovorus genomes have 
been sequenced, isolated from a variety of different environments 
(Wurtzel et  al., 2010; Hobley et al., 2012b; Oyedara et al., 2016). 

Recently, the order Bdellovibrionales was reclassified from the 
Deltaproteobacteria into the new class of Oligoflexia (Hahn et al., 
2017). In the past 60 years, other genera and species of obligate 
predatory prokaryotes were discovered, generally referred to as 
BALOs (Bdellovibrio and like organisms). These BALOs have also 
been shown to be efficient against pathogenic bacteria and biofilms, 
but will not be discussed further in this mini review (Chanyi et al., 
2016; Bratanis et al., 2020).

In 2010, the first transcriptomics study in B. bacteriovorus 
identified differentially expressed predatory and HI genes (Lambert 
et al., 2010a). Complementing this was the profiling of differentially 
regulated E. coli genes in response to the predator invasion (Lambert 
et al., 2010b). These genetic and transcriptomic approaches allowed a 
much broader view, thus supporting a deeper understanding of all 
stages of the predatory life cycle. Genetic manipulation coupled with 
early “omics” data and more recent structural determination studies 
of B. bacteriovorus proteins have revealed important functions and 
molecular mechanisms in different aspects of the predator’s biology 
(Lovering et al., 2011; Lerner et al., 2012; Lambert et al., 2015; Meek 
et al., 2019; Harding et al., 2020).

In the last decade, the therapeutic applications of B. bacteriovorus 
have become a prominent field of research including its use against 
antibiotic-resistant pathogens. The unique lifestyle of B. bacteriovorus 
has garnered interest as a predator against an impressive variety of 
pathogens (Dashiff and Kadouri, 2011; Iebba et al., 2014) and efficacy 
against Gram-negative biofilms (Kadouri and O’Toole, 2005; Núñez 
et  al., 2005). Multiple animal models have been used to assess 
predatory ability alongside host safety in vivo (Atterbury et al., 2011; 
Romanowski et al., 2016; Shatzkes et al., 2016, 2017; Willis et al., 2016; 
Findlay et al., 2019). Concurrently, in vitro testing in sera and human 
cell lines has deepened the understanding of the human immune 
response towards B. bacteriovorus (Gupta et al., 2016; Monnappa et al., 
2016; Baker et al., 2017; Raghunathan et al., 2019), a necessary step in 
developing B. bacteriovorus as a potential human therapeutic.

FIGURE 1

Development of Bdellovibrio research field in the last six decades with selected key events. Plot shows the number of articles published per year when 
searching Bdellovibrio on Web of Science™ until 2022.
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Latest methods and technology on 
imaging and quantification

In the last couple of decades, many new methods and technologies, 
especially microscopy, have been essential for the analysis of 
B. bacteriovorus. Combining epifluorescence microscopy with genetic 
manipulations has revealed interesting morphological phenotypes 
alongside molecular mechanisms (Fenton et al., 2010a; Lambert et al., 
2016; Banks et  al., 2022). Further development of fluorescently 
labelled D-amino acids proved to be a useful tool in investigating 
peptidoglycan (PG) modifications by the predator using super-
resolution microscopy (Kuru et al., 2017).

Electron microscopy has been used to resolve key structures like 
the flagellar motor in B. bacteriovorus (Morehouse et  al., 2011; 
Chaban et al., 2018). Further advancements in electron microscopy 
techniques such as cryo-electron tomography (cryo-ET) supported 
the elucidation of novel structures within predator cells, to a 
resolution of individual proteins (Xu et al., 2019; Kaplan et al., 2022, 
Preprint). Alongside visualizing protein structures, the use of X-ray 
crystallography has generated models of individual B. bacteriovorus 
proteins, allowing elucidation of protein functions by evaluating 
interactions (Lambert et  al., 2015; Cho et  al., 2019; Meek 
et al., 2019).

Until recently, the enumeration of Bdellovibrio were based on 
double-layer overlay plates and plaque counting requiring three to 
four days (Rittenberg, 1982; Lambert and Sockett, 2008). Two new 
methods for Bdellovibrio spp. enumeration in under one hour have 
been reported in 2022. The resazurin assay relies on the detection of 

NADH produced by B. bacteriovorus, which transforms weakly 
fluorescent resazurin into the highly fluorescent resorufin (Jang et al., 
2022). Alternatively, the SYBR Green assay quantifies total DNA 
content to determine predator concentration (Remy et al., 2022). The 
same authors developed an independent R-package, CuRveR, to 
analyze the decrease of prey OD600nm opposite to the increase of 
fluorescence in the predator (when expressing a fluorescent 
cytoplasmic protein).

Searching for prey

One major unknown in the B. bacteriovorus life cycle is how 
exactly the predator finds its prey (Figure 2A). Attack phase (AP) 
predator cells move up to 160 μm/s using a single polar flagellum 
(Lambert et al., 2006b), searching for suitable prey. B. bacteriovorus 
can pause swimming in prey limited environments and subsequently 
resume when prey bacteria are reintroduced (Sathyamoorthy et al., 
2021), in a fine balance of energy conservation and prey detection for 
optimal predation.

Fast swimming speeds and altered motion make finding prey 
appear random, with limited evidence of any active sensing towards 
specific prey. A study of hydrodynamic forces from B. bacteriovorus 
movement showed that the self-generated disruption to the local 
liquid environment results in movement away from open spaces 
towards surfaces or obstacles. Prey hydrodynamic forces cause 
localization at surfaces, increasing encounter rate with B. bacteriovorus 
(Jashnsaz et al., 2017).

FIGURE 2

Predatory life cycle of Bdellovibrio bacteriovorus with focus on current advances of research. (i) Free swimming attack phase B. bacteriovorus move to 
regions with high prey density (A) by fast movement and possible chemotaxis (‘?’). (ii) After an initial reversible attachment to the prey, an irreversible 
attachment on suitable prey is formed (B) before entering the prey periplasm with suggested flagellar reabsorption (‘?’). (iii) After sealing the entry site 
behind itself, B. bacteriovorus establishes within the prey cell turning into an osmotically stable bdelloplast. (iv) The predator breaks down the prey cell 
contents to elongate while multiple asynchronous chromosomal replications take place (C). (v) Once nutrient availability is depleted, B. bacteriovorus 
undergoes synchronous septation. (vi) Prey cell lysis releases progeny cells into the environment to repeat the predatory life cycle.
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Combining speed with weak chemotaxis to amino acids (LaMarre 
et  al., 1977) and high bacterial populations (regardless of prey 
suitability; Straley and Conti, 1977), B. bacteriovorus increases the 
chances of colliding with other bacteria. If the prey found is suitable, 
the initial reversible attachment becomes irreversible. Sequencing of 
the B. bacteriovorus HD100 genome (Rendulic et  al., 2004) has 
revealed 20 methyl-accepting chemotaxis proteins (mcps) where 
multiple copies of genes encode the chemotaxis machinery alongside 
an absence of quorum sensing systems (Pasternak et al., 2013; Sester 
et al., 2020). Transposon mutants of mcps took longer to reduce prey 
cell numbers by half in liquid culture (Lambert et al., 2003), were 
unable to produce lytic plaques on prey cell lawns, and also had a 
significantly reduced ability to clear preformed biofilms (Medina et al., 
2008). Cryo-ET data identifies chemosensory arrays at the flagellated 
pole of B. bacteriovorus in the attack and attachment phases (Borgnia 
et al., 2008; Butan et al., 2011; Kaplan et al., 2022, Preprint), which 
seem to be degraded and therefore absent in later stages (Kaplan et al., 
2022, Preprint). While there clearly is a role for chemotaxis, it is not 
yet fully understood which exact part of the predatory cycle it impacts.

Attaching to and entering the prey

During the attachment and invasion stages, several unique 
structures at the invasive pole of B. bacteriovorus are described. 
Abundantly found were fimbriae (Evans et al., 2007; Mahmoud and 
Koval, 2010), thought to be  involved in the adhesion to facilitate 
invasion (Avidan et al., 2017). In nearly all AP cells, novel structures 
dubbed “rose-like complexes” were visualized with piliated and 
non-piliated Type IVa pili (T4aP) basal bodies often neighboring these 
structures (Kaplan et al., 2022, Preprint). It has been predicted that these 
T4aP are used to pull the prey cell closer (Evans et al., 2007; Mahmoud 
and Koval, 2010). Structural comparison (at macromolecular resolution) 
suggested similarities of the rose-like complexes to a tripartite efflux 
pump, possibly a Type I secretion system (Alav et al., 2021) and the 
non-piliated T4aP basal bodies to a Type II secretion system (Ghosal 
et al., 2019). Both structures may be implicated in effector secretion that 
modify the prey during invasion into an osmotically stable structure 
known as the bdelloplast (Rittenberg and Langley, 1975).

Kaplan et al., 2022 (Preprint) seems to detect by cryo-ET, that a 
majority of B. bacteriovorus HD100 cells seem to internalize the flagellum 
via a resorption mechanism once the predator is stably attached to the 
prey (Figure 2B). This differs from mechanisms found in other bacteria, 
which release their flagella under starvation, mechanical stress or by 
programmed ejection (Ferreira et al., 2019; Kaplan et al., 2019, 2021; Zhu 
et al., 2019; Zhuang et al., 2020). Why this occurs can only be speculated, 
perhaps as an energy conservation strategy employed by the predator 
(Smith and Chapman, 2010). However, this newest flagellar resorption 
report is opposed to a study with B. bacteriovorus 109 J, where the 
majority of predatory flagella were unshed (Lambert et al., 2006a).

Development within the prey

Within the bdelloplast B. bacteriovorus transitions into a growth 
phase whereupon the prey contents are used for replication with prey-
derived chemical cues driving the transcriptional changes required 
(Rotem et al., 2015). The genomic DNA of B. bacteriovorus has been 

shown to be tightly packed in a nucleoid, with ribosomes arranged at 
the edge (Borgnia et al., 2008; Butan et al., 2011; Kaplan et al., 2022, 
Preprint). Interestingly, the nucleoid area of 0.25 ± 0.03 μm2 is so dense 
during attack phase, it excludes freely diffusing monomeric proteins 
(Kaljević et al., 2021). Compaction, however, varies throughout the life 
cycle with relaxation of the nucleoid occurring between prey cell entry 
and DNA replication, resulting in multiple highly condensed nucleoids.

Subsequent cell division of B. bacteriovorus is remarkably 
different from typical bacterial cell division. Unlike many bacteria, 
B. bacteriovorus can follow non-binary division by elongating and 
dividing into a variable number of progenies correlating with prey 
cell size (Thomashow and Rittenberg, 1979; Fenton et al., 2010b; 
Kaljević et al., 2021). This filamentous cell division is controlled in 
part by DivIVA, responsible for progeny cell morphology with cell 
division coordinated by ParAB chromosomal partitioning systems 
(Milner et al., 2020). A recent study investigated B. bacteriovorus cell 
division by fluorescently labelling key components of the 
chromosome partitioning system ParABS (Kaljević et  al., 2021). 
Imaging showed multiple asynchronous rounds of replication 
(Figure 2C) first initiated at the invasive pole, which is again different 
compared to the polarity of other monoflagellated bacteria like 
Caulobacter crescentus (Jensen and Shapiro, 1999) or Vibrio cholerae 
(Fogel and Waldor, 2004). The specific cues for staggered initiation of 
DNA replication and subsequent synchronous division are unknown.

Exit phase

The mechanisms behind the exit phase by which the predator 
progeny leave the prey cell are not yet well understood, partially due 
to the technical difficulty of synchronizing B. bacteriovorus that exit 
the prey at a similar time. Initial hints on the exit mechanisms came 
from the study of secondary messenger signaling where cyclic 
GMP-AMP (cGAMP) has been shown to be critical in controlling 
gliding motility, the impairment of which leaves B. bacteriovorus 
HD100 stranded inside of the empty prey cell (Hobley et al., 2012a; 
Lowry et  al., 2022). Furthermore, the deletion of two N-acetyl 
glucosamine (GlcNAc) deacetylase genes (bd0468 and bd3279) left 
a “ghost” structure after predator exit, consisting mainly of PG and 
outer membrane porins (Lambert et  al., 2016). Moreover, this 
predator mutant was delayed in escape time from prey cell remnants 
compared to wild type. While GlcNAc deacetylation of the prey PG 
happens during invasion/establishment by the predator (Lambert 
et al., 2016), this prey PG modification was shown to be important 
for DslA, a lysozyme that specifically acts on the GlcNAc 
deacetylated prey PG facilitating prey cell exit (Harding et al., 2020). 
B. bacteriovorus ΔdslA showed an increased time from division until 
leaving the prey remnants but did not abolish the exit process fully. 
Therefore DslA is likely part of a multifactorial system using different 
enzymes to break through the cell wall and outer membrane for exit 
from the prey cell. Fenton et  al. observed that B. bacteriovorus 
progeny cells that escape through pores of the bdelloplast are 
consistently shorter than AP cells before infection. Further 
maturation/elongation occurs after release into the environment 
(Fenton et al., 2010a). While it was observed that gliding motility in 
B. bacteriovorus HD100 plays an integral part in exit from the prey 
cell, it is yet unknown how this mechanism interacts in the network 
of other established processes like enzyme secretion.
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Prospects for Bdellovibrio 
bacteriovorus research

Six decades after the discovery of B. bacteriovorus, researchers 
from 17 countries came together in virtual space for the first 
anniversary symposium ‘Celebrating sixty years of Bdellovibrio 
research’ to reflect on Bdellovibrio history and exchange the newest 
insights. Reflected by the modern way of meeting in an online format, 
the last six decades have transformed knowledge in many ways.

There are still many key questions on the cellular and molecular 
level to be solved with regards to the fascinating and useful predatory 
life cycle that B. bacteriovorus undergoes: (1) What structures and 
mechanisms gauge the suitability/specificity of the prey? (2) How can 
B. bacteriovorus possess such condensed genomic DNA, yet still 
be highly transcriptionally active and tightly regulated? (3) How does 
B. bacteriovorus gain access to the valuable prey cytoplasmatic 
contents? (4) What is the ultimate key signal that concludes 
B. bacteriovorus growth inside the prey and initiates division? (5) 
What are the multifactorial steps facilitating the exit of predator 
progeny cells from the prey cell remnants?

The expansion of novel technologies and improved methodologies 
has helped to gather data rapidly, expediting the sharing of new insights. 
Moving from light microscopy to fluorescence-assisted methods enabled 
more precise localization of structures, whilst the newest developments 
in cryo-ET enabled imaging at astonishing nm-resolution. While the 
latter resulted in new findings that we review here from Kaplan et al. 
(2022, Preprint), we expect that the coming decade will shed even more 
light into the precise mechanisms of how the predator interacts with its 
bacterial prey. Molecular structures determined by X-ray crystallography, 
fluorescence microscopy and bioassays have allowed a detailed view into 
the mechanistic side. Alphafold (Jumper et al., 2021; Varadi et al., 2022) 
has given researchers an additional powerful tool to help build 
hypotheses to elucidate the function of many uncharacterized predatory 
proteins. New developments in super-resolution microscopy and 
automated intelligence-assisted software help to analyze big microscopy 
data and gain a more in-depth understanding not only at the single cell 
level, but also on the level of different bacterial (prey/predator) 
populations. The newest trend in quantitative research will provide more 
knowledge on B. bacteriovorus behavior and (predator/prey) population 
dynamics with the help of mathematical modelling (de Dios Caballero 
et al., 2017; Hobley et al., 2020; Summers and Kreft, 2022), where models 
that dovetail nicely with wet lab experiments are of special value (Hobley 
et al., 2020). With these new tools in hand, the research community will 
certainly gain a better understanding of the complex interactions within 
microbial communities. The technological advances on different ‘omics’ 
technologies in the last two decades help us to understand the complex 
interactions of bacterial predator and prey. With a multitude of 
transcriptomics studies (Lambert et al., 2010a; Karunker et al., 2013; 
Dwidar et al., 2017), there is certainly much to be gained from applying 
further holistic technologies.

While research on B. bacteriovorus has sometimes learned from 
advances made in the related predator Myxococcus xanthus (Seef 

et al., 2021), it has since developed into a growing research field on 
its own. The newest technologies equip us with valuable tools to 
resolve the many remaining questions in the future, which is an 
important prerequisite to leverage B. bacteriovorus in the fight 
against antimicrobial resistance.
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