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Background: Recent studies had provided evidence that the gut microbiota is 
associated with sepsis. However, the potential causal relationship remained 
unclear.

Methods: The present study aimed to explore the causal effects between gut 
microbiota and sepsis by performing Mendelian randomization (MR) analysis 
utilizing publicly accessible genome-wide association study (GWAS) summary-
level data. Gut microbiota GWAS (N = 18,340) were obtained from the MiBioGen 
study and GWAS-summary-level data for sepsis were gained from the UK Biobank 
(sepsis, 10,154 cases; 452,764 controls). Two strategies were used to select genetic 
variants, i.e., single nucleotide polymorphisms (SNPs) below the locus-wide 
significance level (1 × 10−5) and the genome-wide statistical significance threshold 
(5 × 10−8) were chosen as instrumental variables (IVs). The inverse variance 
weighted (IVW) was used as the primary method for MR study, supplemented 
by a series of other methods. Additionally, a set of sensitivity analysis methods, 
including the MR-Egger intercept test, Mendelian randomized polymorphism 
residual and outlier (MR-PRESSO) test, Cochran’s Q test, and leave-one-out test, 
were carried out to assess the robustness of our findings.

Results: Our study suggested that increased abundance of Deltaproteobacteria, 
Desulfovibrionales, Catenibacterium, and Hungatella were negatively 
associated with sepsis risk, while Clostridiaceae1, Alloprevotella, 
LachnospiraceaeND3007group, and Terrisporobacter were positively correlated 
with the risk of sepsis. Sensitivity analysis revealed no evidence of heterogeneity 
and pleiotropy.

Conclusion: This study firstly found suggestive evidence of beneficial or 
detrimental causal associations of gut microbiota on sepsis risk by applying 
MR approach, which may provide valuable insights into the pathogenesis of 
microbiota-mediated sepsis and strategies for sepsis prevention and treatment.
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1. Background

Sepsis is defined as life-threatening organ dysfunction arising 
from dysregulation of the host inflammatory and immune response 
to infection (Singer et al., 2016). It is regarded as a major cause of 
health loss and a major contributor to the global burden of disease. In 
2017 alone, an estimated 49 million cases of sepsis occurred globally 
and there were 11 million sepsis-related deaths, accounting for 20% of 
all deaths that year worldwide (Rudd et  al., 2020). A global 
epidemiological data shows that intensive care unit (ICU) and hospital 
mortality rates for patients with sepsis are 26 and 35%, respectively 
(Vincent et  al., 2014). Despite the implementation of early goal-
directed therapy and individualized treatment strategies for sepsis, 
which remains one of the leading causes of morbidity and mortality 
worldwide, and the World Health Organization has recognized sepsis 
as a global health priority (Reinhart et  al., 2017). Searching for 
therapeutic or prophylactic targets against sepsis and improving sepsis 
outcomes is a pressing need.

Gut microbiota modulates the physiological homeostasis of the 
host, including intestinal barrier function, immune system, and disease 
vulnerability pathways (Kamada et al., 2013). The role of gut microbiota 
in sepsis has fueled growing interest among researchers. With the 
development and application of technologies such as 16S rRNA and 
metagenomic sequencing (Zoetendal et al., 2008), there is mounting 
proof that gut microbiota plays a significant role in the pathophysiology 
of sepsis. Several observational studies showed that the composition of 
the gut microbiota is heavily affected by sepsis, which may in turn result 
in organ failure (Zaborin et al., 2014; Ojima et al., 2016; Chen et al., 
2022; Deng et  al., 2023a,b). Another observational investigation 
revealed that the percentages of Enterococcus and Klebsiella were 
considerably higher in septic patients than in healthy controls. However, 
compared to healthy controls, septic patients had much lower 
proportions of Faecalibacterium and Blautia (Mu et al., 2022). Some 
pre-clinical models have demonstrated that the application of antibiotics 
disrupts the gut microbiome and raises the risk of bloodstream 
infections and critical conditions (Ubeda et al., 2010; Ayres et al., 2012). 
According to a study of 10,996 participants in the U.S. Health and 
Retirement Study, hospitalizations known to be linked to periods of 
microbiota perturbation were linked to a higher risk of severe sepsis 
after hospital discharge. Events known to cause dysbiosis and 
subsequent admission for severe sepsis were strongly correlated in a 
dose-response fashion (Prescott et  al., 2015). A meta-analysis of 
randomized controlled trials and observational studies revealed that 
probiotic management is beneficial in preventing late-onset sepsis in 
preterm infants (Dermyshi et al., 2017).

A growing body of evidence has demonstrated an association 
between gut microbiota and sepsis. However, causality cannot 
be reliably established in conventional observational studies due to 
confounding and reverse causation, which can lead to biased 
conclusions. These limitations can be  overcome by Mendelian 

randomization (MR), an epidemiological approach that infers 
exposure-outcome causation using genetic variants as instrumental 
variables (IVs). Single nucleotide polymorphisms (SNPs) are allocated 
randomly at conception and are independent of confounding factors, 
making MR comparable to randomized controlled trials and 
circumventing the drawbacks of previous observational studies 
(Lawlor et al., 2008; Davey and Hemani, 2014; Davies et al., 2018; 
Richmond and Davey, 2022). To date, no studies have assessed the role 
of gut microbiota on the risk of sepsis in the framework of 
MR. Therefore, the present study first employed a two-sample MR 
methodology to explore causality between genetically predicted gut 
microbiota and sepsis risk by leveraging summary statistics from large 
genome-wide association studies (GWAS).

2. Methods

2.1. Study design and data sources

MR study was applied to investigate the causal effects between gut 
microbiota and sepsis. The flowchart of our work is presented in 
Figure 1. In brief, genetic variants associated with the exposure were 
extracted from GWAS summary statistics and served as IVs. 
Two-sample MR analysis involving five MR methods was carried out 
sequentially. Ultimately, a set of sensitivity analysis measures including 
the heterogeneity test, pleiotropy test, and leave-one-out test were 
performed for significant associations.

GWAS summary-level data of gut microbiota were obtained from 
the MiBioGen study (Kurilshikov et al., 2021; Mibiogen consortium, 
2022). It was the largest, multiracial, genome-wide meta-analysis of 
the gut microbiota to date, analyzing genome-wide genotyping data 
and 16S fecal microbiota data from 24 cohorts (18,340 individuals). 
Most of the participants surveyed were of European descent 
(N = 13,266). Targeting the V4, V3-V4, and V1-V2 regions of the 16S 
rRNA gene allowed the microbial composition to be profiled. Direct 
taxonomic binning was then used to undertake a taxonomic 
classification. After 16S microbiome data processing, 211 taxa 
involving 131 genera, 35 families, 20 orders, 16 classes, and 9 phyla 
were finally identified. Relevant details about the microbiota data were 
reported in the original study (Kurilshikov et al., 2021). Summary-
level data of GWAS for sepsis were generated from the UK Biobank, 
which included 10,154 sepsis cases and 452,764 controls (Ponsford 
et al., 2020). Women constitute 54% and men represent 46%. The 
median age of all participants was 58 years, and the median age of 
sepsis cases was 60 years. Sepsis is defined by a published list of 
definitive International Classification of Disease-9 and International 
Classification of Disease-10 codes derived by a panel of experts in 
critical care, infectious diseases, pediatrics, and sepsis epidemiology 
(Rudd et al., 2020). More details on the sepsis GWAS were described 
elsewhere (Ponsford et al., 2020).

2.2. Instrumental variables selection

Bacterial taxa were categorized and analyzed at five taxonomic 
levels (phylum, class, order, family, and genus). To guarantee the 
accuracy and validity of conclusions about the causality between gut 
microbiota and sepsis risk, the following quality control procedures 

Abbreviations: MR, Mendelian randomization; GWAS, Genome-wide association 

study; IV, Instrumental variable; SNP, Single nucleotide polymorphism; IVW, Inverse 

variance weighted; MR-PRESSO, MR polymorphism residual sum and outlier; ICU, 

Intensive care unit; FDR, False discovery rate; OR, Odds ratio; CI, Confidence 

interval; SCFAs, Short-chain fatty acids; SIRS, Systemic inflammatory response 

syndrome; CLP, Cecal ligation and puncture.
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were applied to filter IVs. First, single-nucleotide polymorphisms 
(SNPs) with a significant relationship to the gut microbiome were 
chosen as IVs. SNPs were selected using two thresholds. To obtain more 
comprehensive results and increase the explained phenotypic variance, 
a series of SNPs with lower than locus-wide significance level (1 × 10−5) 
were picked as IVs. Another set of SNPs at genome-wide significance 
(p < 5 × 10−8) were chosen as IVs for the secondary analysis. Second, to 
ensure independence among the selected IVs and to minimize the effect 
of linkage disequilibrium that violates random allele assignment, the 
parameters of the clumping procedure were set to r2 < 0.001 and 
kb = 10,000 kb. Third, the proxy SNPs strongly correlated to the target 
variant (r2 > 0.8) were chosen when exposure-related SNPs were missing 
from the outcome GWAS by searching the SNiPA website1 (Arnold 
et al., 2015). For example, rs9813669 for rs9833771, rs62115123 for 
rs75211493, rs809311 for rs789068, more information see 
Supplementary Table S3. Fourth, SNPs for being palindromic and 
incompatible alleles were disqualified from the MR. Fifth, in order to 
satisfy the second key assumption (independent of the confounders), 
i.e., IVs are not significantly correlated with confounding factors, 

1 https://snipa.helmholtz-muenchen.de/snipa3/

we  manually checked and excluded SNPs that were significantly 
associated (p < 5 × 10−8) with confounders through the PhenoScanner 
GWAS database2 (Kamat et al., 2019). SNPs rs1530559 and rs182549 
were eliminated because they were closely (p < 5 × 10−8) associated with 
total cholesterol and body mass index, respectively. The SNP rs12636310 
was removed because it was linked to two potential confounders, type 
II diabetes and body mass index (p < 5 × 10−8) (Mohus et al., 2022). 
Sixth, the minor allele frequency must be above 0.01. Lastly, to avoid 
weak instrumental bias, the F-statistic (Burgess and Thompson, 2011) 
for each SNP was determined, and SNPs with F-statistics lower than 10 
were discarded, if any. The F-statistic is expressed as R2(n-k-1)/k(1-R2). 
In the formula, n, k, and R2 represent the sample size, the number of IVs 
and the variance interpreted by the IVs, correspondingly.

2.3. Effect size estimate

We implemented a two-sample MR to investigate the causal 
relationship between gut microbiome features and the risk of sepsis. 

2 http://www.phenoscanner.medschl.cam.ac.uk/

FIGURE 1

Flowchart of the present MR study and major assumptions. MR, Mendelian randomization; GWAS, genome-wide association study; SNPs, single-
nucleotide polymorphisms; IVW, inverse-variance weighted; LD, linkage disequilibrium; MR-PRESSO, MR pleiotropy residual sum and outlier.
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If the gut microbiota feature contained only one IV, the Wald ratio 
test was applied in the MR analysis (Burgess et al., 2017). If the gut 
microbiota feature contained multiple IVs, the inverse variance 
weighted (IVW) test (Burgess et  al., 2013) was adopted as the 
primary analysis approach, supplemented by other methods 
including MR-Egger, simple mode, weighted median, and weighted 
mode. In order to obtain an overall assessment of the impact of the 
gut microbiome on sepsis risk, the meta-analysis technique known 
as IVW turns the outcome effects of IVs on the exposure effects into 
a weighted regression with the intercept set to zero. In the absence 
of horizontal pleiotropy, IVW can provide estimates that are 
unbiased by avoiding the effects of confounders (Holmes et  al., 
2017). Additionally, the Benjamini and Hochberg false discovery 
rate (FDR) was adopted to correct our results for multiple hypothesis 
testing, with a significance level set at FDR-corrected value of 
p < 0.05 (Benjamini and Hochberg, 1995). Association that had a 
value of p < 0.05 but did not meet the FDR-controlled cutoff were 
considered suggestive (Figure  2). MR-Egger might be  heavily 
impacted by outlier genetic variables, resulting in incorrect 
estimations. Although all of the chosen IVs are invalid, the 
MR-Egger approach could nevertheless produce unbiased 
estimations (Bowden et al., 2016b). Simple mode offers robustness 
for pleiotropy despite being less powerful than IVW (Milne et al., 
2017). The weighted median method is capable of providing precise 
and reliable effect estimates if at least 50% of the data from valid 
instruments are available (Bowden et  al., 2016a). For genetic 
variables that defy the pleiotropy hypothesis, the weighted mode 
method is adaptable (Hartwig et al., 2017).

2.4. Sensitivity analysis

To determine whether heterogeneity and pleiotropy within IVs 
could bias the MR results, a set of sensitivity analyses were conducted 
to verify the robustness of significant results. The Cochran’s Q test and 
funnel plots were utilized to measure the heterogeneity among the 
chosen genetic instruments. As mentioned above, the PhenoScanner 
database was explored to examine if any of the enrolled SNPs were 
significantly linked (p < 5 × 10−8) to other phenotypes that affected 
sepsis risk independently of the gut microbiota, and ultimately 
pleiotropic SNPs would be removed from the MR estimates. To access 
potential horizontal pleiotropic effects of included IVs, we further 
performed the MR Egger intercept and Mendelian randomization 
pleiotropy residual sum and outlier (MR-PRESSO) global test. 
Meanwhile, the leave-one-out sensitivity analysis was conducted to 
confirm the accuracy and robustness of the causal effect estimates and 
to ascertain MR estimates are not driven by strong influence SNPs. 
Furthermore, the MR Steiger directionality test (Hemani et al., 2017) 
was administered to infer causal direction. The identified causal link 
may be regarded as directionally credible if the variance explained by 
the IVs on the exposure is greater than the outcome. Power 
computations were performed depending on the site3 (Brion et al., 
2013) (Supplementary Table S5). All statistical analyses in our work, 
including MR analyses and sensitivity analyses, were carried out by 

3 https://shiny.cnsgenomics.com/mRnd/

applying the R packages “TwoSampleMR” and “MRPRESSO” with the 
publicly available R software (version 4.2.1).

3. Results

Two-sample Mendelian randomization of gut microbiota 
on sepsis.

3.1. Locus-wide significance level

Initially, 14,587 SNPs correlated with 211 gut microbiota traits 
(including 9 phyla, 16 classes, 20 orders, 35 families and 131 genera) 
at locus-wide significance level (p < 1 × 10−5) were determined as 
genetic instruments from large-scale GWAS generated by the 
MiBioGen consortium. Supplementary Table S2 provided detailed 
information on the selected SNPs, including effect allele, other allele, 
beta, SE, value of p, proxy SNP, etc. Following a series of screening 
criteria described above, MR analyses were done for each pair of 
exposure (bacteria taxa) and outcome (sepsis) to investigate causal 
relationship based on five MR methods (IVW, MR Egger, simple 
mode, weighted median, and weighted mode) 
(Supplementary Table S1). The results of reaching the threshold of 
p < 0.05 according to the IVW method are shown in Figure 2. The 
odds ratio (OR), which represented an elevated risk of sepsis per 
standard deviation increase in gut microbiota feature abundance, was 
used to quantify the causal effects. The results of IVW analyses 
demonstrated suggestive causal effects of the genetically predicted 
increased abundance of Deltaproteobacteria at the class level (OR, 
0.85; 95% confidence interval [CI], 0.74–0.97; p  =  0.018) and 
Desulfovibrionales at the order level (OR, 0.86; 95% CI, 0.75–0.99; 
p  =  0.032) had protective effects on sepsis risk, while host-genetic-
driven increased in Clostridiaceae1 at the family level (OR, 1.24; 95% 
CI, 1.03–1.48; p  =  0.023) were associated with higher risk of sepsis. 
We  also found suggestive associations at the genus level that 
Catenibacterium (OR, 0.88; 95% CI, 0.79–0.98; p  =  0.018) and 
Hungatella (OR, 0.84; 95% CI, 0.71–0.98; p  =  0.026) were negatively 
linked to the risk of sepsis and Alloprevotella (OR, 1.14; 95% CI, 1.03–
1.25; p  =  0.010), LachnospiraceaeND3007group (OR, 1.39; 95% CI, 
1.02–1.89; p  =  0.038) and Terrisporobacter (OR, 1.18; 95% CI, 1.02–
1.36; p  =  0.030) were positively correlated with sepsis risk. The results 
of other complementary analytical methods were consistent in 
direction with the primary analysis, which reinforced confidence in 
the true causal association (Table 1). The scatter plot reflects the causal 
effects between gut microbiota and sepsis (Figure 3). However, all 
FDR-corrected p-values were greater than 0.05, indicating no 
significant associations (Figure 2). Detailed statistics for the 211 gut 
microbiota taxa were presented in Supplementary Table S1.

A total of eight causal effects were identified from gut microbiota 
taxa to sepsis. Of these, the F-statistic of the IVs ranged from 21.87 to 
86.45, suggesting that there was no weak IV bias 
(Supplementary Table S4). The results of Cochran’s Q statistic for the 
IVW test showed no significant heterogeneity in these IVs (Table 2). 
Besides, the MR Egger intercept and MR-PRESSO global test were 
utilized to test for horizontal pleiotropy, and all p-values were greater 
than 0.05, indicating no significant directional horizontal pleiotropy 
(Table 2). No outliers were observed by MR-PRESSO analyses. In 
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addition, the forest plots and the leave-one-out test revealed that no 
strong single SNP drives the MR estimation, illustrating the robustness 
of our findings (Supplementary Figures S1, S2). The MR Steiger 
directionality test demonstrated that the eight causal effects identified 
were robust in the direction from the gut microbiota to sepsis 
(Supplementary Table S4). Furthermore, our study had satisfactory 
power (more than 80%) to assess the causal effects of these gut 
microbiome features on sepsis (Supplementary Table S5). Of note, the 
order Desulfovibrionales is a subcategory of the class 
Deltaproteobacteria; therefore, the SNPs of these two sets may heavily 
overlap, as listed in Supplementary Table S4.

3.2. Genome-wide statistical significance 
threshold

1,394 SNPs were identified as instrumental variables at genome-
wide statistical significance threshold (p < 5 × 10−8). MR analyses were 
carried out following the removal of SNPs that had linkage 
disequilibrium effects, were strongly associated with confounders, and 
were palindromic. When the gut microbiota was considered as a 
whole, the IVW results (OR, 1.00; 95% CI, 0.92–1.09; p =  0.950) 
suggested no causal relationship between the gut microbiota and 
sepsis (Table  3). Details of the genetic variants were given in 
Supplementary Table S6. The results of Cochran’s Q test revealed no 
significant heterogeneity (p = 0.684). Additionally, no significant 
horizontal pleiotropy was found for the results of the MR-Egger 
intercept analysis (p = 0.823) and MR-PRESSO analysis (p = 0.712). 
The F-statistic of all selected SNPs was greater than 10. When gut 

microbiota was treated as individual bacterial abundance, MR analysis 
did not detect a causal association between gut microbiota features 
and the risk of sepsis (Table 3). However, as there were not enough IVs 
used in the MR to undertake a sensitivity analysis, the results should 
be interpreted with caution.

4. Discussion

Our MR study firstly assessed the potential causal link between 
gut microbiota and sepsis risk by leveraging large-scale summary 
statistics of microbiota GWAS and sepsis GWAS. A total of eight 
bacterial features (one at class level, one at order level, one at family 
level, and five at genus level) were identified to be suggestively causally 
correlated to the risk of sepsis. This study suggested that increased 
abundance of Deltaproteobacteria, Desulfovibrionales, 
Catenibacterium, and Hungatella were negatively associated with 
sepsis risk, while Clostridiaceae1, Alloprevotella, 
LachnospiraceaeND3007group, and Terrisporobacter may be  risk 
factors for sepsis.

The gut has long been considered to be the motor of sepsis and 
multiple organ failure syndrome (Klingensmith and Coopersmith, 
2015). Trillions of symbiotic gut microbiomes are densely populated 
on the gastrointestinal mucosal surface of the host, and their 
composition regulates the balance between host health and sickness. 
The loss of normal gut microbiota structure and function has been 
linked to a variety of disorders such as inflammatory bowel disease, 
Clostridium difficile infection, and obesity (Shreiner et al., 2015). There 
is growing evidence that disturbance of the gut microbiome 

FIGURE 2

Associations of genetically predicted gut microbiota with sepsis risk using IVW method SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, 
confidence interval; FDR, false discovery rate.
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TABLE 1 MR estimates for the association between gut microbiota and sepsis (p < 1 × 10−5).

Level Microbiota SNPs R2 (%) Methods Beta OR (95% CI) p value

Class Deltaproteobacteria 13 6.0 Inverse variance 

weighted

−0.16 0.85 (0.74, 0.97) 0.018

MR Egger −0.00 1.00 (0.68, 1.46) 0.992

Simple mode −0.26 0.77 (0.56, 1.06) 0.139

Weighted median −0.16 0.85 (0.70, 1.03) 0.097

Weighted mode −0.16 0.85 (0.65, 1.12) 0.262

Order Desulfovibrionales 12 5.6 Inverse variance 

weighted

−0.15 0.86 (0.75, 0.99) 0.032

MR Egger −0.05 0.96 (0.66, 1.38) 0.815

Simple mode −0.24 0.79 (0.58, 1.09) 0.174

Weighted median −0.15 0.86 (0.71, 1.04) 0.129

Weighted mode −0.18 0.84 (0.65, 1.08) 0.191

Family Clostridiaceae1 10 4.5 Inverse variance 

weighted

0.21 1.24 (1.03, 1.48) 0.023

MR Egger 0.22 1.25 (0.72, 2.17) 0.448

Simple mode 0.24 1.27 (0.87, 1.85) 0.249

Weighted median 0.20 1.22 (0.98, 1.54) 0.079

Weighted mode 0.21 1.24 (0.91, 1.68) 0.210

Genus Alloprevotella 6 6.5 Inverse variance 

weighted

0.13 1.14 (1.03, 1.25) 0.010

MR Egger −0.35 0.70 (0.28, 1.74) 0.488

Simple mode 0.13 1.14 (0.95, 1.37) 0.211

Weighted median 0.13 1.14 (1.01, 1.29) 0.036

Weighted mode 0.14 1.15 (0.96, 1.36) 0.187

Catenibacterium 5 5.2 Inverse variance 

weighted

−0.13 0.88 (0.79, 0.98) 0.018

MR Egger 0.13 1.14 (0.40, 3.21) 0.826

Simple mode −0.18 0.84 (0.68, 1.04) 0.182

Weighted median −0.12 0.88 (0.76, 1.03) 0.110

Weighted mode −0.16 0.85 (0.68, 1.06) 0.217

Hungatella 5 4.2 Inverse variance 

weighted

−0.18 0.84 (0.71, 0.98) 0.026

MR Egger −0.27 0.76 (0.24, 2.41) 0.675

Simple mode −0.19 0.82 (0.63, 1.08) 0.227

Weighted median −0.16 0.85 (0.71, 1.02) 0.081

Weighted mode −0.11 0.89 (0.69, 1.15) 0.440

LachnospiraceaeND3007group 3 2.4 Inverse variance 

weighted

0.33 1.39 (1.02, 1.89) 0.038

MR Egger −0.83 0.44 (0.00, 78.11) 0.806

Simple mode 0.23 1.26 (0.82, 1.93) 0.399

Weighted median 0.26 1.30 (0.89, 1.91) 0.175

Weighted mode 0.24 1.27 (0.81, 1.98) 0.404

Terrisporobacter 5 3.5 Inverse variance 

weighted

0.16 1.18 (1.02, 1.36) 0.030

MR Egger 0.27 1.31 (0.88, 1.95) 0.280

(Continued)
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predisposes to sepsis and has a detrimental influence on sepsis 
outcomes, even though the pathophysiology of sepsis is multifaceted 
and insufficiently understood. Studies have shown that the 
composition of the gut microbiota of ICU patients differs dramatically 
from that of healthy controls (Zaborin et al., 2014; Ojima et al., 2016). 
Several pathogenic and antibiotic-resistant microorganisms, such as 
the genera Staphylococcus and Enterococcus, overload the gut during 
sepsis, while the gut loses essential bacterial genera that are a 
significant component of the microbiota in healthy individuals. 
Examples include Prevotella, Blautia, and Ruminococcaceae, which are 
known to generate short-chain fatty acids (SCFAs) (Zaborin et al., 
2014; Ojima et al., 2016). SCFAs strengthen the barrier function of the 
intestinal epithelium and exert anti-inflammatory effects (Kamada 
et al., 2013) on epithelial cells that are partly mediated through histone 
deacetylase (Li et  al., 2018).To protect the host against pathogen 
colonization, the gut microbiota, immune system, and gut epithelial 
barrier are all tightly interlinked (Kamada et al., 2013). The specific 
gut microbiota changes during sepsis are a crucial event in critical care 
research (Schuijt et al., 2013). The gut has been implicated to play a 
significant role in the systemic inflammatory response syndrome 
(SIRS) found in critically ill patients (Taylor, 1998). Due to mucosal 
hypoxia or stress, the intestinal barrier is disrupted and the 
permeability of the epithelial barrier is compromised, leading to 
enhanced bacterial translocation and a role in multi-organ failure and 
sepsis (Taylor, 1998). The composition of the gut microbiota, as well 
as the status of the mucosal barriers, are altered during critical illness. 
In critically ill patients, changes in the composition of the microbiota, 
such as a reduction in total bacterial count and diversity, can lead to 
systemic dysregulation (Schuijt et al., 2013). The ratios of Bacteroidetes 
to Firmicutes in the ICU altered dramatically over time, and it may 
be employed as a prognostic factor in critically ill patients in the future 
(Ojima et al., 2016). In addition, studies have shown that changes in 
the composition of the gut microbiota are associated with morbidity 
and mortality in patients with SIRS (Shimizu et  al., 2006, 2011). 
Modulating the microbiota composition in the gut by supporting the 
microbiota or treating patients with selected microbial products may 
be a promising therapeutic strategy for critically ill or septic patients.

Our work identified eight specific bacterial features with causal 
effects on the risk of sepsis. Among them, Class Deltaproteobacteria 
and order Desulfovibrionales belong to phylum Proteobacteria, while 
family Clostridiaceae1, genus Catenibacterium, Hungatella, 
LachnospiraceaeND3007group, and Terrisporobacter belong to phylum 
Firmicutes. A prospective, observational case–control study showed 
that the percentage of Firmicutes at the phylum level was considerably 
lower in septic patients than in healthy controls, the proportions of 
Proteobacteria and Bacteroidetes, including lipopolysaccharide-
containing bacteria and pathogenic like Klebsiella and Escherichia, 
were considerably higher in septic patients than in healthy controls 
(Mu et al., 2022). However, such specific intestinal flora variations 
varied in different studies. The results of an experimental animal study 

showed that the cecal ligation and puncture (CLP) group had a 
significantly increased Firmicutes/Bacteroidetes ratio and a decreased 
relative abundance of Escherichia and Alloprevotella compared to the 
control group rats (Zhao et al., 2022). It is consistent with another 
animal model analysis, where the abundance of Alloprevotella was 
significantly lower in CLP groups compared to the sham-operated 
group (Li et al., 2022). The gram-negative bacillus, Alloprevotella, is 
related to short-chain fatty acid production and anti-inflammation 
and is often considered a probiotic. However, we  found that 
Alloprevotella at the genus level is a risk factor for sepsis, which is 
contrary to these studies. Though Alloprevotella is typically thought of 
as a helpful bacterium, different species and strains may affect sepsis 
in various ways.

A previous study revealed that the abundance of Catenibacterium, 
an intestinal probiotic, decreased in patients with sepsis-associated 
encephalopathy (Wang et al., 2022). Consistent with this study, our 
findings suggested that the abundance of genus Catenibacterium was 
negatively linked to sepsis risk. The Lachnospiraceae family, which is 
abundant and exclusively anaerobic in the healthy gut, has an impact 
on its hosts by transforming primary bile acids into secondary bile 
acids, producing short-chain fatty acids, and resisting colonization by 
intestinal pathogens. Lachnospiraceae were linked to protective effects 
on metabolic health in sepsis (Sorbara et al., 2020). However, our 
results suggested that the genetically predicted abundance of 
LachnospiraceaeND3007group at the genus level was positively 
correlated with sepsis risk. Our findings were supported by a study’s 
discovery that the family Lachnospiraceae increased in the subacute 
phase (day 7 after CLP) in a murine sepsis model (Muratsu et al., 
2022). Inconsistent results remind us that there is considerable inter- 
and intra-species diversity affecting host health, and that a 
standardized and more specific gut microbiota classification system is 
essential for subsequent mechanistic studies and clinical guidance. 
We  found suggestive evidence of causal effects of class 
Deltaproteobacteria, order Desulfovibrionales, family Clostridiaceae1, 
and genus Hungatella and Terrisporobacter with sepsis, however, no 
relevant result was presented in earlier research. Decades of studies on 
sepsis have made it clear that the pathway and outcome of sepsis are 
greatly impacted by host genetics and environmental factors (Lee and 
Banerjee, 2020). To improve primary prevention and assist the 
development of mechanism-guided treatment, a deeper understanding 
of the host-genetic-driven gut microbiota associated with sepsis is 
critically required. Although our MR steiger results indicated causality 
from gut microbiota to sepsis, it could not be excluded that sepsis also 
affects gut flora ecology; the interplay between gut microbiota and 
sepsis needs further studies.

Our study has multiple strengths. To start with, this is the first 
study to explore the causal effect of gut microbiota on the risk of sepsis 
by MR analysis. Results from MR analysis may be more credible than 
those from conventional observational research because it lessens the 
bias caused by confounders and reverse causality. The identified causal 

TABLE 1 (Continued)

Level Microbiota SNPs R2 (%) Methods Beta OR (95% CI) p value

Simple mode 0.23 1.25 (0.97, 1.61) 0.155

Weighted median 0.20 1.22 (1.01, 1.47) 0.034

Weighted mode 0.22 1.24 (0.97, 1.59) 0.163

SNPs, the number of SNPs being used as IVs; R2, the proportion of phenotypic variation explained by SNPs.
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FIGURE 3

Scatter plots of the causal effect of gut microbiota on sepsis risk (A) class Deltaproteobacteria; (B) order Desulfovibrionales; (C) family Clostridiaceae1; 
(D) genus Alloprevotella; (E) genus Catenibacterium; (F) genus Hungatella; (G) genus LachnospiraceaeND3007group; (H) genus Terrisporobacter. The 
slope of the line represents the causality of the different MR methods.
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TABLE 2 Evaluation of heterogeneity and directional pleiotropy using different methods.

Level Microbiota Heterogeneity Horizontal pleiotropy

Cochran’s Q p MR-Egger 
intercept p

MR-PRESSO 
global test p

Class Deltaproteobacteria 0.566 0.391 0.630

Order Desulfovibrionales 0.708 0.555 0.758

Family Clostridiaceae1 0.177 0.962 0.198

Genus Alloprevotella 0.744 0.354 0.788

Catenibacterium 0.437 0.661 0.480

Hungatella 0.152 0.885 0.212

LachnospiraceaeND3007group 0.694 0.737 /*

Terrisporobacter 0.751 0.613 0.862

*Not enough instrumental variables for MR-PRESSO analysis.

TABLE 3 MR estimates for the association between gut microbiota and sepsis (p < 5 × 10−8).

Level Microbiota SNPs Methods Beta SE OR (95% CI) p value

Total 14 Inverse variance 

weighted

<0.01 0.04 1.00 (0.92, 1.09) 0.950

MR Egger 0.04 0.15 1.04 (0.78, 1.38) 0.815

Simple mode −0.05 0.09 0.95 (0.80, 1.13) 0.581

Weighted median −0.02 0.06 0.98 (0.88, 1.10) 0.730

Weighted mode −0.02 0.07 0.98 (0.84, 1.13) 0.758

Phylum Actinobacteria 1 Wald ratio −0.26 0.20 0.77 (0.52, 1.15) 0.205

Class Actinobacteria 1 Wald ratio −0.20 0.15 0.82 (0.61, 1.11) 0.205

Order Bifidobacteriales 2 Inverse variance 

weighted

−0.13 0.13 0.88 (0.68, 1.14) 0.322

Gastranaerophilales 1 Wald ratio 0.15 0.14 1.17 (0.88, 1.54) 0.282

Family Bifidobacteriaceae 2 Inverse variance 

weighted

−0.13 0.13 0.88 (0.68, 1.14) 0.322

Oxalobacteraceae 1 Wald ratio −0.08 0.14 0.92 (0.71, 1.20) 0.552

Peptostreptococcaceae 1 Wald ratio −0.14 0.21 0.87 (0.58, 1.30) 0.499

Streptococcaceae 1 Wald ratio 0.22 0.22 1.24 (0.80, 1.93) 0.329

unknownfamily.id.1000001214 1 Wald ratio 0.15 0.14 1.17 (0.88, 1.54) 0.282

Genus Allisonella 1 Wald ratio −0.02 0.10 0.98 (0.81, 1.18) 0.835

Bifidobacterium 2 Inverse variance 

weighted

−0.23 0.15 0.80 (0.59, 1.07) 0.135

Enterorhabdus 1 Wald ratio 0.21 0.15 1.23 (0.92, 1.64) 0.165

Erysipelatoclostridium 1 Wald ratio −0.06 0.17 0.94 (0.68, 1.32) 0.740

Eubacteriumcoprostanoligenesgroup 1 Wald ratio −0.25 0.23 0.78 (0.50, 1.22) 0.276

Oxalobacter 1 Wald ratio 0.07 0.12 1.07 (0.84, 1.37) 0.561

Romboutsia 1 Wald ratio −0.14 0.20 0.87 (0.58, 1.30) 0.499

RuminococcaceaeUCG013 1 Wald ratio −0.21 0.23 0.81 (0.52, 1.27) 0.357

Ruminococcus1 1 Wald ratio 0.24 0.22 1.27 (0.82, 1.97) 0.281

Streptococcus 1 Wald ratio 0.21 0.21 1.23 (0.81, 1.87) 0.329

Tyzzerella3 1 Wald ratio −0.02 0.12 0.98 (0.78, 1.24) 0.867

unknowngenus.id.1000001215 1 Wald ratio 0.15 0.14 1.17 (0.88, 1.54) 0.282
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associations may present candidate intestinal bacteria for follow-up 
mechanistic investigations. Secondly, SNPs associated with gut 
microbiota were taken from the largest GWAS meta-analysis up to 
date, guaranteeing the strength of IVs in our study. In addition, the 
enhanced statistical power of the large sample size datasets and the 
application of multiple sensitivity analyses ensure the robustness of 
our findings. Nevertheless, certain limitations warrant consideration. 
First, although the overwhelming majority of individuals in the gut 
microbiota GWAS utilized in our MR analysis were of European 
descent, a small amount of data were obtained from non-European 
descent, which may partially bias our results. In addition, extrapolation 
of our findings to other races may be restricted. Second, our findings 
did not meet the strict FDR correction. However, MR was a 
hypothesis-driven method that can be used to test some causal effects 
without FDR adjustment when there exists some biological plausibility. 
Third, we  were unable to undertake subgroup analyses, such as 
differentiating between early-onset and late-onset sepsis, because our 
study used summary-level data on sepsis rather than raw data. 
Moreover, the non-linear relationship between gut microbiota and 
sepsis cannot be examined on the basis of standard MR. Finally, there 
is a lack of direct mechanistic studies to support our results. To 
elucidate the relationship between gut microbiota and sepsis, more 
efforts are needed to investigate the effects of gut flora on the immune 
system, intestinal barrier, pathogens, and disease 
susceptibility pathways.

5. Conclusion

In summary, our study suggests genetic evidence of causal effects 
of gut microbiota on sepsis. The beneficial or detrimental gut 
microbiota identified in this study for the risk of sepsis may provide 
valuable insights into the pathogenesis of microbiota-mediated sepsis 
and strategies for sepsis prevention and treatment.
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