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Crop straw contains huge amounts of exploitable energy, and efficient biomass 
degradation measures have attracted worldwide attention. Mining strains 
with high yields of cellulose-degrading enzymes is of great significance for 
developing clean energy and industrial production of related enzymes. In this 
study, we reported a high-quality genome sequence of Bacillus velezensis SSF6 
strain using high-throughput sequencing technology (Illumina PE150 and PacBio) 
and assessed its lignocellulose degradation potential. The results demonstrated 
that the genome of B. velezensis SSF6 was 3.89  Mb and contained 4,015 genes, 
of which 2,972, 3,831 and 158 genes were annotated in the COGs (Clusters of 
Orthologous Groups), KEGG (Kyoto Encyclopedia of Genes and Genomes) and 
CAZyme (Carbohydrate-Active enZymes) databases, respectively, and contained 
a large number of genes related to carbohydrate metabolism. Furthermore, B. 
velezensis SSF6 has a high cellulose degradation capacity, with a filter paper 
assay (FPA) and an exoglucanase activity of 64.48  ±  0.28 and 78.59  ±  0.42  U/mL, 
respectively. Comparative genomic analysis depicted that B. velezensis SSF6 was 
richer in carbohydrate hydrolase gene. In conclusion, the cellulose-degrading 
ability of B. velezensis SSF6 was revealed by genome sequencing and the 
determination of cellulase activity, which laid a foundation for further cellulose 
degradation and bioconversion.
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1. Introduction

Crop straw is one of the most abundant biological sources on Earth (Menshawy et al., 2022; 
Yang et al., 2022). At present, owing to the problems of abundant straw varieties and large yields, 
complex straw composition and structure, and low conversion rate of the straw industry 
(Marriott et al., 2016), as well as the influence of rough treatment methods such as straw 
incineration and burial, a large amount of straw resources are wasted and accompanied by 
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serious environmental pollution. he return of straw to the field is a 
crucial step in the innocuous treatment of straw, which can 
significantly increase soil nitrogen (Ahmed et al., 2020), phosphorus 
(Bai et al., 2015), potassium (Ma et al., 2010), and other nutrients, 
which are advantageous for crop growth and development (Chen 
et al., 2022b), and improve soil nutrients. Therefore, developing quick 
and efficient techniques for straw treatment is essential.

Agricultural straw primarily comprises of lignocellulosic biomass 
(LCB) (Ragauskas et al., 2006). Microbial degradation of lignocellulose 
is a biological treatment method with ecological benefits, compared 
to physical and chemical methods. By utilizing a variety of members 
of the carbohydrate-active enzyme (CAZyme) family in concert, 
cellulose-degrading microorganisms, which act as an intrinsic driving 
force for the degradation and transformation of biomass, such as 
straw, degrade carbohydrates into reducing sugars (Sharma et  al., 
2016), and at the same time degraded lignocellulose is advantageous 
for microbial growth (Dar et  al., 2018). Enzymatic hydrolysis of 
lignocellulose is a key strategy for the degradation of cellulose because 
of its specificity, high conversion rate, and ecological character 
(Pollegioni et al., 2015; Fatani et  al., 2021). The ability to rapidly 
degrade biomass depends on the successful identification of novel 
strains that generate cellulases, for example, fungi, bacteria and other 
microorganisms (Abd Elhameed et al., 2020) that can produce highly 
active cellulases isolated from soil, decaying branches and leaves, 
animal intestines, and other stuff (Alonso-Pernas et al., 2017; Tian 
et al., 2017; Ayumi et al., 2018; Wang et al., 2022).

Bacillus velezensis, an endospore-forming gram-positive 
bacterium belonging to the phylum Firmicutes, is widespread in 
waterway dregs, soils, and plants, indicating its high ecological 
adaptability (Balderas-Ruíz et  al., 2020; Xu et  al., 2020). To date, 
B. velezensis has been widely studied for its ability to efficiently express 
hydrolases, antibacterial proteins, lipopeptides, and plant hormones, 
to promote plant growth, and to inhibit plant diseases caused by 
bacteria and fungi. It has also been reported that B. velezensis has a 
good ability to produce cellulase (Pereira et al., 2019; Lu et al., 2020; 
Shin et  al., 2021; Song et  al., 2022). High-throughput sequencing 
technology is an effective method to analyze the whole genome of 
B. velezensis and mine its related functional genes is an effective 
method for studying the characteristics of the strain, clarifying its 
enzyme activity characteristics for degrading lignocellulose, and 
further increasing the application value of the strain in 
biomass transformation.

2. Materials and methods

2.1. Sampling, screening, and detection of 
strains

Humic soil samples were collected from Qingshuihe County (E 
111° 0.68′, N 39° 0.92′), Hohhot City, Inner Mongolia Autonomous 
Region, China. We weighed 5 g of soil into 45 mL of sterile water and 
diluted it to different concentration of 10−1 - 10−9 g/mL. Then, 200 μL 
of 10−7 to 10−9 dilutions was applied to carboxymethylcellulose sodium 
culture (CMC) agar medium (K2HPO4 2.5 g/L, Na2HPO4 2.5 g/L, 
peptone 2 g/L, yeast extract 0.5 g/L, carboxymethylcellulose sodium 
20 g/L, agar 20 g/L), cultured at 37°C for 24 h. According to the 
method in Teather and Wood (1982), cellulose degrading bacteria 

were screened by 0.2% (W/V) Congo red dye. Meanwhile, the selected 
strains were stained with 1% (W/V) iodine solution (Anand et al., 
2010). The isolated strains were inoculated into microcrystalline 
cellulose (Avicel) agar medium (Avicel 10 g/L, (NH4)2SO4 1.4 g/L, 
K2HPO4 2.5 g/L, CaCl•2H2O 0.3 g/L, MgSO4•7H2O 0.3 g/L, peptone 
2 g/L, yeast extract 0.5 g/L, agar 20 g/L), CMC agar medium and starch 
agar medium (beef extract 5 g/L, peptone 10 g/L, NaCl 5 g/L, starch 
2 g/L, agar 20 g/L). The hydrolytic capacity ratio (HCR) of each strain 
was determined and expressed as a transparent circle diameter ratio. 
The screened colonies were confirmed to be  single colonies by 
multiple purification cultures and microscopic examinations, and they 
were stored in liquid Luria-Bertani (LB) medium (tryptone 10 g/L, 
yeast extract 5 g/L, NaCl 10 g/L) with 30% glycerol at −80°C.

The morphology of the strain was observed by scanning electron 
microscope (SEM). The cultures were placed on sterile glass covers in 
a petri dish. After gently rinsing with PBS, fixation with electron 
microscope solution (No: G1102, Servicebio, China) was fixed at 
room temperature for 2 h. The fixed samples were rinsed three times 
with 0.1 M phosphate-buffered saline (PBS) at pH 7.4, with each rinse 
lasting 15 min Dehydration with 50, 70, 80, 90, and 100% ethanol for 
15 min, respectively, and each concentration was repeated three times. 
Finally, the sample is dried in a critical point dryer (K850, Quorum, 
England), coated with gold by an ion sputtering apparatus (No: 
MC1000, HITACHI, Japan), and observed under a scanning electron 
microscope (No: SU8100, HITACHI, Japan).

2.2. Molecular identification of bacteria

After the activation of the candidate strains, genomic DNA was 
extracted according to the instructions of the bacterial whole-genome 
extraction kit (No: DP302, Tiangen Biochemical Technology Co., Ltd., 
China). Subsequently, 16S ribosomal ribonucleic acid (rRNA) genes 
was amplified by polymerase chain reaction (PCR) using sequence-
specific primers: 27F (5’-AGAGTTTGATCCTGGCTCA-3′) and 
1492R (5’-GGTTACCTTGTTACGACTT-3′) (Dobrzyński et  al., 
2022) in a thermal cycler (Bole T100, United States). The reaction 
conditions were as follows: 94°C predenaturation (5 min), followed by 
35 denaturation cycles (94°C for 30 s), annealing (55°C for 45 s), and 
extension (72°C for 2 min), and the final repair extension was set at 
72°C for 10 min. PCR products were characterized by 1% agarose gel 
electrophoresis and quantified using a NanoDrop™ One ultra-micro 
spectrophotometer (Thermo Scientific, USA). The PCR products were 
sequenced using the Sanger method. Blastn was used to search 16S 
rRNA gene fragment sequences in the National Center for 
Biotechnology Information (NCBI) nucleotide database to determine 
their closest taxonomic relatives (Dashtban et al., 2010). The sequences 
were used to construct a phylogenetic tree along with other reference 
genes obtained from NCBI GenBank. A phylogenetic tree was 
constructed using the MEGA X software neighbor-joining method 
(1000 bootstrap replications; Kumar et al., 2018).

2.3. Cellulase activity assay

Before being placed in liquid CMC medium for culturing, the 
isolated strains were cultured in liquid LB medium for 18 h. 
Endocellulase, exocellulase, and glucanase tests were conducted using 
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sodium carboxymethyl cellulose, microcrystalline cellulose, and 
salicin solutions, and the total cellulase activity was determined using 
the FPA (Wang et al., 2020). The dinitrosalicylic acid method was used 
to estimate the reducing sugars released during hydrolysis (Mansour 
et al., 2016; Yadav and Dubey, 2018). One unit (U) of enzyme activity 
was defined as the amount of enzyme required to release 1 μmol of 
reducing sugars per milliliter per minute. The Michaelis–Menten 
equation was used to calculate the kinetic parameters of the enzymatic 
reaction of cellulose from strain SSF6. The cellulase activity was 
calculated using the following formula:

 
Enzyme Activity U mL

Glucose production mg

Enzyme do
/( ) = ( )×1000

ssage mL time( )× ( )min

2.4. Genome sequencing, species 
assignment and annotation

The extracted genomic DNA was entrusted to Beijing Novogene 
Bioinformatics Technology Co., Ltd. using an Illumina PE150 system 
and PacBio high-throughput sequencing technology. Genome 
assembly was performed using the SMRT Link (version 5.0.1).1 The 
initially assembled data were subjected to low-quality read filtering 
(less than 500 bp), error correction (selection of long read sequences 
over 6,000 bp), correction (minimum mass value filtering result 20, 
minimum read depth 4, maximum read depth 1,000), and cyclization 
starting checkpoint correction to obtain the final completed map 
sequence (Ardui et al., 2018; Reiner et al., 2018). GeneMarkS software 
(version 4.17)2 was used for coding gene prediction and filtering 
(Besemer et al., 2001). Repeat Masker software (version 4.0.5) (Saha 
et al., 2008) was used for scattered repetitive sequence prediction, and 
the TRF (Tandem Repeats Finder, version 4.07b) (Benson, 1999) was 
used to search for tandem repeats in DNA sequences. Transfer RNA 
(tRNA) genes were predicted using tRNAscan-SE (Lowe and Eddy, 
1997). Ribosomal RNA (rRNA) genes were analyzed using the 
rRNAmmer software (version 1.2) (Lagesen et al., 2007), and small 
nuclear RNAs (sRNAs) were predicted using the Rfam database 
software (Nawrocki et al., 2015). The PhiSpy tool (version 2.3) (Zhou 
et al., 2011) was used to predict prophages.

The genome sequence of Bacillus was queried and downloaded 
from the GenBank genome database.3 Typing of the SSF6 genome 
assembly was determined by calculating Average nucleotide identity 
(ANI) values through the NCBI Prokaryotic Genome Annotation 
Pipeline (PGAP) (Tatusova et al., 2016). Meanwhile, orthologous ANI 
(OrthoANI) was calculated using the orthologous Average Nucleotide 
Identity Tool (version 1.40) (Lee et al., 2016). The digital DNA–DNA 
hybridization (dDDH) analysis was carried out using the Genome-to-
Genome Distance Calculator (GGDC version 2.1) (Li et al., 2002). 
BLAST was used to compare the identified genes to the commonly 
used databases of the NR (NonRedundant Protein), KEGG (Kanehisa 
et al., 2004, 2006), and the COGs of Proteins (Galperin et al., 2015). 

1 https://www.pacb.com/support/software-downloads/

2 http://topaz.gatech.edu/

3 https://www.ncbi.nlm.nih.gov/genome/

For gene function annotation, the CAZy was used (Cantarel 
et al., 2009).

2.5. Comparative genomics analysis

The complete genome sequence of the B. velezensis FZB42 
(NC_009725) (Fan et al., 2017, 2018) strain was downloaded from the 
NCBI Genome for comparative genomics analysis with B. velezensis 
SSF6. MUMmer alignment software (version 3.23) was used to detect 
individual SNPs (Kurtz et  al., 2004), and SNP functions were 
annotated according to positional relationships and interactions 
between SNPs and genes. Protein sequences of multiple samples to 
be analyzed were clustered using CD-hit software (version 4.6.1) and 
plotted using R software (version 3.2.4).

2.6. Statistical analysis

GraphPad Prism 9 was used to make glucose standard curves and 
characteristic enzyme curves. SPSS 20.0 software (IBM SPSS, Chicago, 
IL) was used for one-way ANOVA analysis of variance for statistical 
analysis. The data are expressed as the mean ± standard deviation, and 
a p < 0.05 was considered statistically significant.

3. Results

3.1. Isolation of cellulose-degrading 
bacteria

Four strains with good cellulose degradation function, SSF1, SSF4, 
SSF6, and SSF15, were screened from soil using a CMC selective 
medium. These four isolated strains, when stained with Congo red 
solution, produced clear hydrolysis circles around the colonies, the 
hydrolysis diameters are 4.82 ± 0.13, 7.92 ± 0.16, 26.20 ± 0.44, and 
11.56 ± 0.45 mm, respectively, indicating that they have cellulose 
hydrolysis ability (Table  1). Cellulose-degrading bacteria were 
screened based on the HCR ratio (Kang et  al., 2022), and the 
hydrolysis ratios of the four isolated strains in the two media were 
compared. The hydrolysis ratios of each strain were 1.50 ± 0.07, 
1.36 ± 0.11, 3.61 ± 0.05, and 3.57 ± 0.32, respectively. Comprehensive 
analysis revealed that the strain SSF6 had a higher cellulose hydrolysis 
ratio (Table  2; Figures  1Aa,b) and exhibited excellent cellulose 

TABLE 1 HCR determination for the diameter of the degradation circle of 
the isolated strain on CMC medium.

Strain

Clearing 
zone 

diameter (D, 
mm)

Colony 
diameter (d, 

mm)

HCR (D/d 
value)

SSF1 4.82 ± 0.13 3.71 ± 0.15 1.30 ± 0.07c

SSF4 7.92 ± 0.16 6.48 ± 0.05 1.22 ± 0.03d

SSF6 26.20 ± 0.44 6.06 ± 0.08 4.32 ± 0.16a

SSF15 11.56 ± 0.45 5.49 ± 0.12 2.11 ± 0.10b

Different lowercase letters mean the significance at p < 0.05. D, The diameter of the hydrolysis 
circle; d, The diameter of the colony; HCR (D/d value), The hydrolysis ratio of the strain.
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degradation ability. At the same time, we found that the strain SSF6 
also had a strong starch degradation ability (3.20 ± 0.12; Table 3; 
Figures 1Ac), while the other three strains could not degrade starch 
(Table 3). After comprehensive consideration, strain SSF6 was selected 
for subsequent experiment and analysis.

3.2. Identification of strain SSF6

The results of morphological identification demonstrated that the 
SSF6 colony had a smooth and gray surface surrounded by wrinkles, 
aerobic growth, positive Gram staining, and microscopic rod-shaped 
bacteria with spores (Figures 1Ad,e, B). Physiological and biochemical 
analyzes of strain SSF6 were performed using the Biolog GEN III 
MicroStation automated microbial identification system. There were 
24 positive reactions in the carbon source utilization test, including 
the ability to use cellobiose, sucrose, and fructose as substrates 
(Supplementary Table S1). Strain SSF6 displayed sensitivity to 
L-alanine, L-aspartate, L-glutamic acid, and D-aspartate substrates 
(Supplementary Table S2) and sodium butyrate, sodium sulfite, 
lithium chloride, and sodium lactate (Supplementary Table S3). 
Amplified 16S rRNA fragment from strain SSF6 genomic DNA, a 
1,500 bp fragment was obtained and submitted to NCBI and 
performed sequence blast analysis to construct a phylogenetic tree. 
The results showed that strain SSF6 was closely related to 
B. amyloliquefaciens strain BV2007 (MT613661.1), B. velezensis strain 
2630 (MT611652.1), and B. velezensis strain FZB42 (ON041103.1; 
Supplementary Figure S1). Therefore, strain SSF6 was identified as 
Bacillus sp.

3.3. Determination of cellulase activity in 
the isolated strains

To further confirm the cellulose degradation ability of bacterial 
SSF6, the cellulase activity of the strain in CMC medium was 
determined, including filter paper activity (FPA), endoglucanase, 
exoglucanase, and β-glucosidase activities. The results illustrated that 
the filter paper cellulase activity of B. velezensis SSF6 was 
64.48 ± 0.28 U/mL, endoglucanase activity was 54.39 ± 0.46 U/mL, 
exoglucanase activity was 78.59 ± 0.42 U/mL, and β-glucosidase 
activity was 58.96 ± 0.05 U/mL (Figure  1C). The results of the 
enzymatic reaction demonstrated that the rate of enzymatic reaction 
was influenced by the substrate concentration. Exoglucanase was most 

obviously impacted by the microcrystalline cellulose concentration, 
and it had the highest reaction rate when the substrate concentration 
was saturated, followed by endoglucanase and β-glucosidase 
(Supplementary Table S4).

3.4. Characterization of the whole genome 
of strain SSF6

Bacterial lignocellulolytic activity can be better understood using 
genomic information. In this study, the genome of strain SSF6 was 
sequenced and the functional genes involved in lignocellulosic 
degradation were analyzed. Strain SSF6 was assembled into a circular 
genome after steps of assembly, correction and optimization 
(Figure 2A). Strain SSF6 had a genome size of 3,891,780 bp, contained 
46.67% GC content, three contigs, and N50 contig length 3,893,584 bp 
(Supplementary Figure S2).

Through genomic analysis of the strain, 4,015 genes with a 
combined size of 3,499,518 bp were predicted in strain SSF6. The total 
number of repeats was 380,205 of which were scattered repeats (132 
LTR, 19 DNA, 38 LINE, 13 SINE, 2 RC, and 1 unknown), and 175 
were tandem repeats. The noncoding RNAs included 86 tRNAs, 27 
rRNAs (9 16S rRNAs, 9 5S rRNAs, and 9 23S rRNAs), and 10 sRNAs. 
Eighteen prophages were predicted, with a total fragment length of 
628,164 bp.

The ANI (95–96%) and DNA–DNA hybridization value 
(DDH,70%) calculated based on genomic nucleic acid sequences have 
become the gold standard for species classification (Choi et al., 2021). 
According to ANI calculation by PGAP, strain SSF6 was predicted to 
be B. velezensis with high confidence. The results showed that the top 8 
were all B. velezensis, with ANI values greater than 97% 
(Supplementary Table S5). At the same time, OrthoANI values were 
calculated with five genomic sequences, including SSF6, and the 
results showed that strain SSF6 had the highest value compared with 
B. velezensis FZB42 (97.59%), followed by B. siamensis KCTC 13613 
(94.34%) and B. amyloliquefaciens DSM 7 (94.02%; Figure  1D). 
Further calculation of OrthoANI values for 100 selected B. velezensis 
genomes showed that all B. velezensis genomes had OrthoANI values 
greater than 97% (Supplementary Table S6). The dDDH values of 
strain SSF6 and 100 strains B. velezensis genome sequences ranged 
from 96.32 to 99.1%, where the probability of DDH value ≥70% was 
greater than 90% (Supplementary Table S6). In summary, strain SSF6 
was identified as B. velezensis and named B. velezensis SSF6.

3.5. Gene function annotation

According to the NR database, the number of B. velezensis genes 
annotated by B. velezensis SSF6 was the highest (1846), followed by 
B. amyloliquefaciens (1090). This further confirmed that the strain 
SSF6 was B. velezensis (Figure 2B). COG database annotation revealed 
that the most enriched genes were those involved in the transport and 
metabolism of amino acids (302 genes) and carbohydrates (249 genes; 
Supplementary Figure S3). A total of 112 COGs were annotated as 
being involved in carbohydrate metabolism, including COG2814 
(predicted arabinose efflux permease AraJ, MFS family), COG0726 
(Peptidoglycan/xylan/chitin deacetylase, PgdA/NodB/CDA1 family), 
COG1349 (DNA-binding transcriptional regulator of sugar 

TABLE 2 HCR determination for the diameter of the degradation circle of 
the isolated strain on Avicel medium.

Strain

Clearing 
zone 

diameter (D, 
mm)

Colony 
diameter (d, 

mm)

HCR (D/d 
value)

SSF1 7.48 ± 0.21 4.99 ± 0.13 1.50 ± 0.07b

SSF4 3.16 ± 0.15 2.33 ± 0.16 1.36 ± 0.11b

SSF6 22.82 ± 0.36 6.32 ± 0.15 3.61 ± 0.05a

SSF15 10.87 ± 0.81 3.05 ± 0.08 3.57 ± 0.32a

Different lowercase letters mean the significance at p < 0.05. D, The diameter of the hydrolysis 
circle; d, The diameter of the colony; HCR (D/d value), The hydrolysis ratio of the strain.
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metabolism, DeoR/GlpR family), and COG0697 (Permease of the 
drug/metabolite transporter (DMT) superfamily).

KEGG integrates genomic, chemical, and system function 
information and can graphically represent many metabolic pathways 
and the relationship between various pathways to comprehensively 
elucidate metabolic pathways. A total of 375 genes related to 
carbohydrate metabolism were annotated in KEGG 
(Supplementary Figure S4). Amino sugar and nucleotide sugar 
metabolism (ko00520, 41 genes), pyruvate metabolism (ko00620, 39 
genes), glycolysis/gluconeogenesis (ko00010, 36 genes), starch and 
sucrose metabolism (ko00500, 34 genes), and the pentose phosphate 
pathway (ko00030, 25 genes) were the dominant energy metabolism 
pathways that play a key role in cellulose degradation 

(Supplementary Table S7). These findings suggested that the 
B. velezensis SSF6 genome contained many genes necessary for 
metabolizing of carbohydrates and other nutrients, indicating that the 
strain SSF6 had a significant capacity for carbohydrate 
polysaccharide degradation.

The genome contained 158 CAZyme genes (3.9% of the total 
number of genes) with five major classifications: glycoside hydrolases 
(GHs), glycosyl transferases (GTs), polysaccharide lyases (PLs), 
carbohydrate esterases (CEs), and auxiliary activities (AAs) 
(Figure 2C). A total of 67 GH genes were annotated in the genome and 
assigned to 36 GH families, with the GH1, GH23, GH13-3, and GH4 
having the most members. Additionally, carbohydrate-binding 
module (CBM) genes were identified and assigned to 6 CBM families, 
which enhanced the catalytic activity by targeting enzymes associated 
with specific cell wall components (Duan et al., 2017). Moreover, 34 
glycosyl transferase (GT) genes were assigned to 9 GT families, along 
with 3 polysaccharide lyase (PL) genes, and 1 auxiliary activity 
(AA) gene.

3.6. Comparative genomic analysis

The results of genome comparison between B. velezensis SSF6 and 
B. velezensis FZB42 showed that the number of genes of the former 
was greater than that of the latter. In addition to providing molecular 
evidence for phenotypic differences and similarities, the study of the 
core genome is of great significance for determining functional 

TABLE 3 HCR determination for the diameter of the degradation circle of 
the isolated strain on Avicel medium.

Strain

Clearing 
zone 

diameter (D, 
mm)

Colony 
diameter (d 

mm)

HCR (D/d 
value)

SSF1 - - -

SSF4 - - -

SSF6 21.37 ± 0.32 6.70 ± 0.16 3.20 ± 0.12

SSF15 - - -

Different lowercase letters mean the significance at p < 0.05. D, The diameter of the hydrolysis 
circle; d, The diameter of the colony; HCR (D/d value), The hydrolysis ratio of the strain.

FIGURE 1

Isolation and Identification of Cellulose Degrading Bacteria. (A) Species identification of strain SSF6: (a) Cellulose-Degrading Active Regions of Strain 
SSF6 on CMC Medium; (b) Cellulose-Degrading Active Regions of Strain SSF6 on Avicel Medium; (c) Cellulose-Degrading Active Regions of Strain SSF6 
on Starch Medium; (d) Gram staining of strain SSF6; (e) Colony morphology of strain SSF6 on LB agar medium. (B) Scanning electron microscopy 
(SEM) observation of strain morphology. (C) Characteristics of cellulase activity produced by strain SSF6. (D) OrthoANI values were calculated using the 
genomic sequences of strain SSF6 with other Bacillus SPP.
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differences and similarities between the strains. Core genome analyzes 
of 2 Bacillus genomes were performed. The total number of core genes 
was 3,341. SSF6-specific genes (557) were more abundant than 
FZB42-specific genes (340). A total of 156 genes were annotated as 
having unknown functions (Figure 2D). The core genes related to 

carbohydrates were annotated to 27 GH (46 genes), 6 CE (13 genes), 
8 GT (29 genes), 1 AA (1 gene), 6 CBM (32 genes), and 3 PL (3 genes) 
families. However, no CAZyme-encoding genes were detected in 
FZB42, such as the GH13-5 and GH43-8 families. There were 16,027 
nonsynonymous SNPs in the SSF6 genome, distributed among 24 

FIGURE 2

Genomic Analysis of B. velezensis SSF6. (A) Whole genome completion map. The outermost circle is the position coordinates of the genome 
sequence, from the outside to the inside, which are the coding genes, gene function annotation results [according to the actual project situation, it 
may include the annotation result information of COG (KOG), KEGG, GO database], ncRNA, genome GC content: Use window (chromosome 
length/1000) bp, step size (chromosome length/1000) bp to count GC content, the inward red part indicates that the GC content in this region is 
lower than the average GC content of the whole genome, and the outward green part is the opposite, and the higher the peak indicates the greater 
the difference from the average GC content, genome GC skew value: window (staining) Body length/1000 bp, step size (chromosome length/1000) 
bp, the specific algorithm is G-C/G  +  C, the inward pink part indicates that the content of G in this region is lower than that of C. The outward light 
green part is the opposite. (B) Non-redundant (NR) protein database annotation. (C) Annotated functional classification map of the genome CAZy of B. 
velezensis SSF6. Above is the individual sample ID, the horizontal coordinate is the CAZy database classification type, and the vertical coordinate is the 
number of genes on the annotation. (D) Cycle diagram of structural variation. The inner circle is the sample genome and the outer circle is the 
reference genome. Collinear: homologous region; Translocation: translocation region; Inversion: inverted region; Tran + Inver: translocation and 
inverted region; Insertion: insertion region with a length greater than or equal to 50  bp; Deletion: deletion region with a length greater than or equal to 
50  bp; ComplexInDel: regions that cannot be aligned but correspond to the position; Forward chain: the forward chain of the genome sequence, the 
gene coordinates increase clockwise at this time; Reverse chain: the reverse chain of the genome sequence, the gene coordinates increase 
counterclockwise at this time; Forward CDS: CDS translated on the forward chain of the genome sequence; Reverse CDS: CDS translated on the 
reverse chain of the genome sequence; Subjoin Forward CDS: Supplementary genome sequence on the forward chain Translated CDS; Subjoin 
Reverse CDS: CDS translated on the backlink of the complementary genomic sequence, with the paired sequence of DeleteGene or InsertGene as the 
complementary CDS.
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glycoside hydrolase families, including GH1, GH4, and GH23 
(Supplementary Table S8).

3.7. Lignocellulose gene analysis

Genes involved in lignocellulose degradation have been detected 
in the genome of B. velezensis SSF6. A total of 26 cellulase genes were 
annotated in the B. velezensis SSF6 genome, including 2 endoglucanase 
genes, 10 exoglucanase genes, and 14 β-glucosidase genes (Table 4). 
The proteins encoded by the endoglucanase, exoglucanase, 
β-glucosidase genes belong to the GH51, GH1, and GH3 and GH4 
families. The number of cellulase genes and family species was similar 
in SSF6 and FZB42, indicating that B. velezensis SSF6 has a strong 
cellulose degradation potential.

Bacillus velezensis SSF6 contained 28 genes encoding 
hemicellulases, including 12 β-xylosidase genes, 9 xylanase genes, and 
7 additional enzyme genes (mannosidase, α-L-arabinofuranosidase, 
and polyarabinose exonuclease genes; Table 4). The β-Xylosidases 
primarily belong to the GH1, GH3, and GH51 families, the xylanases 
to the CE4 and CE7 families, and the mannosidases, 
α-L-arabinofuranosidases, and polyarabinose exonucleases to the 
GH1, GH3, and GH53 families (Table 4).

4. Discussion

Recently, a range of microbes capable of degrading lignin, 
hemicellulose, and cellulose have been identified in microecological 

settings, such as soil, compost, anaerobic sludge, and plants, including 
Serratia marcescens (Tang et al., 2022), B. velezensis (Li Y. et al., 2020), 
Paenibacillus (Yadav and Dubey, 2018), Cellulomonas, Cytophaga (Tan 
et al., 2022) and other microorganisms. Based on different cellulose 
degradation mechanisms, these microorganisms produce a variety of 
cellulase with industrial value, resulting in huge economic value. The 
examination of B. velezensis focused primarily on the improvement in 
enzyme production conditions. At present, the related research of 
B. velezensis mainly focuses on the screening of strains, the 
optimization of fermentation conditions (Nair et al., 2018; Li F. et al., 
2020; Djelid et  al., 2022), and the prediction of lignocellulosic 
degradation function of strains by high-throughput sequencing 
technology and the mining of corresponding genes (Chen et al., 2018; 
Tang et al., 2021). As a member of a class of microorganisms with 
cellulose degradation potential, the B. velezensis genome contains 
abundant carbohydrase genes. They can secrete various cellulases. In 
this study, genome-wide and comparative genomic analyzes were 
performed for B. velezensis SSF6 to uncover functional genes involved 
in cellulose degradation. This study will benefit the mining of 
cellulose-degrading enzyme resources and the development and 
utilization of B. velezensis strains.

Bacillus velezensis SSF6 had a total cellulose enzyme activity of 
64.48 ± 0.28 U/mL, which was higher than that of B. velezensis M2 
(33.03 U/mL) (Li F. et  al., 2020) and B. licheniformis KY962963 
(6.19 IU/mL) (Shah and Mishra, 2020). Endoglucanase activity was 
54.39 ± 0.46 U/mL, exoglucanase activity was 78.59 ± 0.42 U/mL, and 
β-glucosidase activity was 58.96 ± 0.05 U/mL, which was higher than 
that of B. stratosphericus BHUJPV-H5 (0.35, 0.02, and 1.33 U/mL, 
respectively), B. subtilis BHUJPV-H12 (0.21, 0.03, and 1.24 U/mL, 

TABLE 4 Annotated common genes encoding lignocellulose degrading enzymes of B. velezensis SSF6 strains.

Classifcation CAZy Count Predicted function EC numbers

Cellulose-related GH1 8 beta-glucosidase EC 3.2.1.21

GH1 8 6-phospho-beta-glucosidase EC 3.2.1.86

GH1 8 6-phospho-beta-galactosidase EC 3.2.1.85

GH3 2 beta-glucosidase EC 3.2.1.21

GH4 4 6-phospho-beta-glucosidase EC 3.2.1.86

GH4 4 α-glucosidase EC 3.2.1.20

GH5 1 endo-1,4-β-glucanase EC 3.2.1.4

GH32 3 endo-levanase EC 3.2.1.65

GH51 1 endoglucanase EC 3.2.1.4

Hemicellulose-related GH1 8 beta-mannosidase EC 3.2.1.25

GH1 8 beta-glycosidase EC 3.2.1.-

GH1 8 beta-xylosidase EC 3.2.1.37

GH3 2 beta-xylosidase EC 3.2.1.37

GH3 2 alpha-L-arabinofuranosidase EC 3.2.1.55

GH26 1 beta-mannanase EC 3.2.1.78

GH51 2 beta-xylosidase EC 3.2.1.37

GH51 2 alpha-L-arabinofuranosidase EC 3.2.1.55

GH53 1 endo-beta-1,4-galactanase EC 3.2.1.89

CE4 8 acetyl xylan esterase EC 3.2.1.72

CE7 1 acetyl xylan esterase EC 3.2.1.72
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respectively), B. subtilis BHUJPV-H19 (0.23, 0.01, and 2.55 U/mL, 
respectively), and B. subtilis BHUJPV-H23 (0.26, 0.02, and 1.87 U/mL, 
respectively) (Singh et al., 2019). Normally, cellulose is exploited by 
the synergistic action of three enzymes, endoglucanase, exoglucanase, 
and β-glucosidase, which hydrolyze cellulose to glucose monomers 
(Horn et al., 2012). Comparative analysis revealed that B. velezensis 
SSF6 has a strong comprehensive cellulose degradation ability and 
may be widely used in agriculture in the future. In the future, enzyme 
production conditions can be  further improved and large-scale 
cellulase production can be achieved through biotechnology, thereby 
creating significant economic value (Chen et  al., 2018; Zhang 
et al., 2018).

Genomics can provide information about the functional potential 
of microorganisms. Similar to B. velezensis FZB42, the genome size of 
B. velezensis SSF6 was estimated to be 3,891,780 bp with a 46.67% GC 
content. Through various database annotations, a significant number 
of amino acid transport, carbohydrate, and metabolic activities have 
been anticipated. Additionally, many glycoside hydrolases (GHs) are 
involved in carbohydrate metabolism (An et al., 2021). It contains 
various hydrolases that act on glycosidic linkages and can hydrolyse 
polysaccharide substances, such as cellulose, starch, xylan, and 
mannose (Du et  al., 2021). The GH13 family has 36 members, 
including α-amylase (EC 3.2.1.1) (Janeček et al., 2014), cyclodextrin 
glucosyltransferase (EC 2.4.1.19), and α-glucosidase (EC 3.2.1.20) 
(Zhou et al., 2015), and can hydrolyse starch. Both GH1 and GH4 
have the potential for cellulose degradation and can effectively degrade 
lignocellulosic biomass. GH43 is an important component of xylan 
degradation and is related to hemicellulose degradation.

In conclusion, these carbohydrases catalyze carbohydrate 
degradation, modification, and biosynthesis and have many applications. 
The CBM family enhances the catalytic activity by targeting enzymes 
linked to specific cell wall components (Duan et al., 2017). The CBM5 
module improves the affinity of enzymes, such as endoglucanase, 
chitinase, and lytic polysaccharide monooxygenase (LPMO), for 
crystalline cellulose and chitin, improving their efficiency in binding to 
substrates over a wider pH range (Manjeet et al., 2019). In Bcl PMO10A, 
CBM5 promotes substrate binding and protects the enzyme from 
deactivation (Mutahir et al., 2018). CE7 contains acetyl xylan esterase and 
cephalosporin C deacetylase, which are important catalytic enzymes for 
synthesizing cephalosporin antibiotics (Vincent et al., 2003). CE4 and 
CE7 promote xylan dissolution and are involved in hemicellulose 
degradation. The AA10 family’s LPMOs catalyze the oxidative 
degradation of crystalline polysaccharides, such as cellulose and chitin. 
Additionally, they act on the xylan, mannan, and cellulose structures of 
lignocellulosic biomass to provide more binding checkpoints for 
glycoside hydrolases, thereby enhancing the accessibility of cellulases to 
substrates and promoting substrate degradation (Pierce et al., 2017).

Several researchers have highlighted the lignocellulose 
degradation capabilities of B. velezensis and predicted cellulase 
interactions by elucidating the related capabilities of carbohydrases in 
the genome (Chen et al., 2022a). Furthermore, abundant cellulases 
and xylanases increase the release of monosaccharides during straw 
saccharification through synergistic effects (Zeng et al., 2021), which 
promotes the conversion of cellulose and hemicellulose into soluble 
sugar. The genome of B. velezensis SSF6 used in this study was rich in 
cellulase and hemicellulase genes. Compared with B. velezensis FZB42, 
strain SSF6 had more GT4 and GH28 genes. GT4 had the most genes 
among the GT families. These enzymes utilize not only nucleotide 
sugar donors but also simple phosphosaccharide and lipid 

phosphosaccharide donors and have potential therapeutic 
implications. The GH28 and CE8 families are classified as pectinases 
and play important roles in pectin degradation. These results indicated 
that B. velezensis SSF6 can as the potential to degrade lignocellulose. 
However, some genes still have not been annotated, and it is still 
unclear whether the anticipated gene-phenotype can obtain through 
expression of these genes, so further investigation and inquiry are still 
required in future scientific research efforts.

5. Conclusion

Owing to its potential to offer additional value, such as sustainable 
energy from biomass and leftover agricultural resources, cellulose 
conversion is a topic of interest in biotechnology. The results of the 
present study showed that B. velezensis strain SSF6 has an efficient 
capacity for cellulose degradation. Whole genome sequencing and 
comparative genomics analysis of B. velezensis SSF6 revealed that it 
contained a large number of genes from different glycosyl hydrolase 
(GH) families that are essential for cellulose and hemicellulose 
biodegradation, indicating that strain SSF6 has broad application 
prospects for industrial enzyme production in the future. In this study, 
the genetic basis of lignocellulosic degradation was revealed through 
genome sequencing and analysis, which provided a new microbial 
resource for lignocellulosic degradation.
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