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Dark septate endophyte Exophiala 
pisciphila promotes maize growth 
and alleviates cadmium toxicity
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Dark septate endophytes (DSE) are typical root endophytes with the ability 
to enhance plant growth and tolerance to heavy metals, but the underlying 
mechanisms are unclear. Here, the physiological and molecular mechanisms 
of a DSE strain, Exophiala pisciphila, in mitigating cadmium (Cd, 20 mg/kg) 
toxicity in maize were investigated. Our results showed, under Cd stress, 
E. pisciphila inoculation enhanced the biomass of maize and reduced both 
inorganic and soluble forms of Cd (high toxicity) by 52.6% in maize leaves, which 
may be  potentially contributing to Cd toxicity mitigation. Besides, E. pisciphila 
inoculation significantly affected the expression of genes involved in the signal 
transduction and polar transport of phytohormone, and then affected abscisic 
acid (ABA) and indole-3-acetic acid (IAA) contents in maize roots, which was the 
main reason for promoting maize growth. In addition, E. pisciphila also made a 
27% increase in lignin content by regulating the expression of genes involved 
in the synthesis of it, which was beneficial to hinder the transport of Cd. In 
addition, E. pisciphila inoculation also activated glutathione metabolism by the 
up-regulation of genes related to glutathione S-transferase. This study helps 
to elucidate the functions of E. pisciphila under Cd stress, sheds light on the 
mechanism of detoxifying Cd and provides new insights into the protection of 
crops from heavy metals.
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1. Introduction

The heavy metal contamination of soils is a pressing issue worldwide (Marrugo-Negrete 
et al., 2017; Yang et al., 2018; Han et al., 2020; Qin et al., 2021). The continued increase of heavy 
metal levels in the soil system leads to toxicity symptoms and inhibits plant growth directly or 
indirectly (Jaiswal et al., 2018; Ghori et al., 2019). As a typical heavy metal, cadmium (Cd) has 
attracted particular concern as it is highly toxic to most organisms (Liu et al., 2018; Yang et al., 
2018; Wang et al., 2021a). The rapid development of the chemical industry has exacerbated Cd 
pollution in the soil (Sodango et al., 2018; Zhao et al., 2019; Wang et al., 2021b). Notably, 
increasing amounts of Cd have entered arable soils with fertilization and wastewater irrigation 
(Rezapour et al., 2019; Hou, D. et al., 2020; Fu et al., 2021). Once Cd enters the arable soils, it is 
readily absorbed by food crops (primary producers) due to its high-water solubility, thereby 
causing toxicity to humans through the food chain (McLaughlin et al., 1999; Nkwunonwo et al., 
2020; Suhani et al., 2021). Therefore, it is necessary to take ecological security and sustainable 
development approaches to reduce the accumulation of Cd in food crops.
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Most plants establish symbiotic relationships with microbes in 
natural ecosystems (He et al., 2020; Su et al., 2021). Plant responses to 
environmental stresses induced by microbial symbionts have received 
increasing attention in recent years (Shen et al., 2020; Riaz et al., 2021; 
Su et al., 2021). Studies have found the association between plants and 
their rhizosphere microbes, particularly root-associated endophytic 
microbes, which reside in the internal tissues of plants, and may have 
positive effects on plant growth and improve the tolerance of plants to 
stressful environments (Rodriguez et al., 2009; Bedini et al., 2018; 
Zhan et  al., 2018; White et  al., 2019). Therefore, the endophytic 
microbe is considered an efficient strategy for the remediation of 
contaminated plants. Dark septate endophytes (DSEs) are well-known 
for dematiaceous septate hyphae and melanized microsclerotia, which 
are one of the most studied groups of root fungal endophytes 
(Jumpponen and Trappe, 1998). DSEs are ubiquitous colonists of plant 
roots in a wide range of terrestrial ecosystems and frequently 
distributed in stressful environments, particularly in heavy metal-
polluted soils (Newsham, 2011; He et al., 2017; Hou, L. et al., 2020; Su 
et al., 2021).

Accumulating evidence supports that DSEs can influence the 
metal tolerance of plants and improve the resistance of plants to heavy 
metal stress (Shen et al., 2020; Wu et al., 2020; Hou, L. et al., 2020). It 
was demonstrated that DSE inoculation activates the glutathione 
(GSH) metabolism and protects the plants against heavy metal stress, 
because of the significant enhancement of glutathione reductase (GR) 
and GSH (Zhan et al., 2017). Moreover, DSE inoculation can alter the 
contents of various phytohormones, such as indoleacetic acid (IAA) 
and abscisic acid (ABA) and improve plant growth by promoting plant 
nutrient uptake (He et al., 2017; Wu et al., 2020; Xu et al., 2020). DSEs 
are closely associated with the roots of many host plants. It colonizes 
the root cortex of the host plants, induces changes in root traits, and 
promotes root growth of the host plant (e.g., root length, surface area, 
and biomass) (He et al., 2017). DSE inoculation can also contribute to 
impeding Cd transport from roots to shoots, decrease the Cd content 
in shoots and retain Cd in the DSE-inoculated roots (Hou, L. et al., 
2020; Su et al., 2021; Xiao et al., 2021). For example, DSE has been 
reported to increase the root mass density (root mass per root 
volume), favoring the mineral nutrients storage of roots, and possibly 
contributing to the storage of Cd ions in the roots (Kramer-Walter 
et  al., 2016). In addition, fungal melanin in DSE is thought to 
be involved in enhancing the structural rigidity of cell walls, which 
may contribute to the tolerance of fungus to stress (Eisenman and 
Casadevall, 2012; Berthelot et al., 2017). These outstanding researches 
have expounded the important role of DSE in improving plant 
tolerance from different perspectives, but there is no comprehensive 
investigation of it, and the corresponding molecular mechanism has 
not yet been elucidated.

In this study, a specific DSE strain with a high resistance to Cd 
stress, Exophiala pisciphila H93 (accession number ACCC32496, 
China Agricultural Culture Collection), was selected as the model 
DSE-association to investigate the growth, physiology, and molecular 
mechanisms of DSE-alleviated Cd stress in maize. The effect of DSE 
on the biomass, root morphological traits, phytohormone, sulfhydryl 
compounds, and Cd content of maize planted in Cd-contaminated 
soils was investigated. In addition, we  applied transcriptome 
sequencing to explore the molecular mechanism underlying Cd 
detoxification by E. pisciphila. We  focus on: (i) how E. pisciphila 
colonization reduces Cd toxicity to maize seedlings by altering 

morphological and physiological traits: (ii) how E. pisciphila 
colonization enhances plant tolerance of maize seedlings to Cd stress; 
and (iii) the transcriptomic mechanism of E. pisciphila associated with 
Cd detoxification in maize.

2. Materials and methods

2.1. Experimental design

2.1.1. Materials preparation
Exophiala pisciphila was isolated from the roots of a gramineous 

species (Arundinella bengalensis) growing naturally at an abandoned 
mining area in Huize County, Yunnan Province, China (103°36′ E, 
26°55′ N) (Li et al., 2011). This fungus was preserved in the China 
Agricultural Culture Collection as accession No. ACCC32496. The 
E. pisciphila strain was cultivated in the potato dextrose agar (PDA) 
medium (potato 200 g, dextrose 20 g, agar 18 g, and water 1,000 mL) 
at 28°C for 2 weeks for its activation. A main locally cultivated maize 
variety, Huidan No. 4, was chosen as the host plant, which was a 
variety with high Cd tolerance and low Cd accumulation screened by 
the research group (Chen et al., 2014). The seeds were soaked in 10% 
sodium hypochlorite for 2 min, and 75% ethanol for 1 min for 
sterilization, then rinsed 3 times with sterile water and placed in a 
petri dish with water agar medium (agar 8 g L−1) for aseptic 
germination (25°C for 3 days).

2.1.2. Preparation of inoculated/non-inoculated 
maize seedlings

Cylinder glass bottles (6.5 cm in diameter, 40 cm in height) 
containing 0.4 kg quartz sand (autoclaved at 121°C for 2 h) and 40 mL 
50% Hoagland medium for fungal inoculation. For the treatment with 
E. pisciphila inoculation, 10 g PDA containing E. pisciphila and 2 
maize seedlings were transferred to the bottles. During the growth of 
the maize seedlings, the roots attached to the E. pisciphila colonies, 
E. pisciphila mycelium subsequently infected the roots. For the 
treatment without E. pisciphila inoculation, 10 g PDA without 
E. pisciphila colonies and 2 maize seedlings were used. All the bottles 
were covered with sterile AeraSeal films (150 × 150 mm) (Mycomebio 
Bio-medical Science Technology Center, China) and cultivated in a 
glasshouse with a 10 h photoperiod (1,000–8,000 lx) at 28°C/15°C 
(daytime /nighttime) and 75% humidity for 14 days.

After 14 days, the E. pisciphila-inoculated seedlings were checked 
for DSE colonization by observing the presence of microsclerotia or 
hyphae in the root cells with a compound microscope (Olympus-BX51, 
Japan). Five 0.5 cm root fragments for each seedling were randomly 
collected and washed with deionized water, softened in a water bath 
with 10% (w/v) KOH at 90°C for 2 h and then stained with 0.5% acid 
fuchsin (Berch and Kendrick, 1982). The stained roots were pressed 
onto slides and observed under a compound light microscope 
(Olympus-BX51, 200 magnification) to determine the fungal 
colonization intensity with the magnified intersection method 
(McGonigle et al., 1990).

2.1.3. Greenhouse pot cultivation
Quartz sand (0.4 kg), 50% Hoagland medium (40 mL), and PDA 

(10 g) with/without E. pisciphila colonies were used as the culture 
substrate filled into cylinder glass bottles, and the Cd 2+ (CdCl2·2.5H2O 
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was added to the Hoagland medium to achieve a Cd 2+ concentration 
of 200 mg/L, resulting Cd 2+ concentration in the quartz sand was 
20 mg/kg) was supplemented to half of the bottles. Based on our 
previous study, under 20 mg/kg Cd stress, E. pisciphila colonization in 
maize roots significantly increased maize (Huidan No. 4) biomass, 
plant height and Cd accumulation in the roots (He et al., 2017; Xiao 
et al., 2021). The four treatments were the Control (non-inoculated 
E. pisciphila, 0 mg/kg Cd 2+), DSE treatment (inoculated E. pisciphila, 
0 mg/kg Cd 2+), Cd treatment (non-inoculated E. pisciphila, 20 mg/kg 
Cd 2+), Cd + DSE treatment (inoculated E. pisciphila, 20 mg/kg Cd 2+), 
respectively. Two non-inoculated maize seedlings of similar sizes were 
carefully planted in each of the glass bottles of the Control and Cd 
treatments, while DSE-inoculated maize seedlings were used for the 
DSE and Cd + DSE treatments, with 6 replicates for each treatment 
(half replicates were used to measure biomass, root morphology, and 
the other half were used for tolerance physiology and transcriptome). 
All inoculated treatments were successfully colonized by E. pisciphila, 
the average colonization intensity of DSE and Cd + DSE treatment was 
34.80 and 42.56%, respectively, but DSE structures were not observed 
in noninoculated treatments. All glass bottles were placed in a 
glasshouse with a day temperature 28°C and night temperature 15°C 
for 28 days, irrigated the maize seedlings with deionized water until 
the plants were harvested.

2.2. Indicator determination

2.2.1. Biomass, root morphological traits and 
anatomical structure

The maize seedlings were divided into shoots and roots to 
determine the biomass and morphological traits. The roots were 
scanned with a scanner (Perfection V700 Photo) and analyzed the 
root morphological traits with the WinRHIZO Pro root system 
analyzer. The shoots and roots were dried at 70°C for 72 h to determine 
the biomass. In order to observe the root structure, root samples were 
prepared following the method used by Wu et  al. (2018) with 
modifications. Root apical segments (8 mm from the root apex) were 
fixed in a Formalin-Aceto-Alcohol (FAA) solution (formalin: acetic 
acid: 70% alcohol = 1:1:16) for 24 h (Yue et al., 2019). Subsequently, the 
samples were dehydrated in ethanol and embedded in paraffin. Cross-
sections (thick 8–12 μm) were sectioned with a Rotary Microtome 
(RM 2016, Leica, Germany), and stained with water-soluble safranin 
and fast green to detect the xylem (Wu et al., 2018). The sections were 
observed with a microscope (DM2000 LED, Leica, Germany), and 
documented using Motic Images analyzer (Motic China Group 
Co., Ltd.).

2.2.2. Cadmium content and chemical forms
The dried leaves and roots (0.1 g) of maize seedling were digested 

with a mixture of HNO3 and HClO4 (v/v 3:1) and diluted into a 
volumetric flask (50 mL) using 0.2% HNO3 to measure the content of 
Cd by an Atomic Absorption Spectrometer (TAS-990, Beijing Puxi, 
China) (Zhan et al., 2015). Three replicates per treatment.

According to the methods mentioned in Luo et al. (2017) with 
minor modifications, 80% ethanol, 1 mol/L NaCl and 2% acetic acid 
were used to extract ethanol-extracted state Cd ions (FE-Cd), sodium 
chloride state Cd ions (FNaCl-Cd), acetic acid state Cd ions (FHAc-Cd), 
respectively. Fresh maize sample (0.5 g) was ground into homogenate 

in extraction solution, then transferred to a 50 mL centrifuge tube 
[diluted to 1:50 (w/v)] and shaken at 25°C for 22 h. The first 
supernatant solution was obtained by centrifuging the homogenate at 
5,000 g for 10 min. The sedimentation was resuspended in extraction 
solution and shaken for 1 h at 25°C, centrifuged at 5,000 g for 10 min, 
then the supernatants of two times suspensions and centrifugation 
steps were combined to obtain different chemical forms Cd. 
Supernatant solutions were evaporated on an electric plate at 70°C to 
a constant weight and digested with an acid oxidative mixture of 
HNO3/HClO4 (3:1, v/v) at 145°C, then determined the concentrations 
of Cd associated with different chemical forms by an Atomic 
Absorption Spectrometer (TAS-990, Beijing Puxi, China).

2.2.3. Phytohormone
Abscisic acid (ABA) and indole-3-acetic acid (IAA) contents were 

estimated according to double-antibody method with ELISA kits 
(Shanghai Huyu Biotechnology Co. Ltd., Shanghai, China) (Hedden, 
1993), each sample was examined in triplicate Approximately 0.5 g of 
roots were ground in a mortar with 10 mL phosphate buffer solution 
at 4°C. Sample solution (10 μL) was added to the specificity antibody 
plate (40 μL of 0.15 M phosphate buffer solution per well), and 
conjugate reagent (50 μL with HRP labeled) was added to each well. 
Then the color-developing agent was added and stored in the dark for 
10 min. Finally, the absorbance was measured at 450 nm after adding 
the stop solution (H2SO4) (Chen, X. et al., 2017).

2.2.4. Lignin contents and key enzymes of lignin 
synthesis

Root samples (0.1 g) from each treatment were used to test the 
lignin content, 4-coumarate CoA ligase (4CL), cinnamyl-alcohol 
dehydrogenase (CAD), and peroxidase (POD) activities, determined 
using commercial kits (Suzhou Grace Bio-technology Co. Ltd., 
Suzhou, China) according to the previous methods (Cheng et al., 
2020). The lignin was determined by the acetylation method, the 
acetylated lignin had a characteristic absorption peak at 280 nm, and 
the absorbance value at 280 nm was recorded to calculate the lignin 
content (Fan et al., 2021). 4CL can catalyze 4-coumarate and CoA to 
generate 4-coumarate CoA, and the 4CL activity can be reflected by 
measuring the 4-coumarate CoA generation rate at 333 nm. CAD can 
catalyze Cinnamyl alcohol to generate Cinnamic aldehyde, and then 
react with a specific chromogen, and calculate the CAD enzyme 
activity by detecting the increased rate of colored substances. Under 
the catalysis of peroxidase, H2O2 oxidizes specific substrates with 
maximum light absorption at 470 nm, and the POD activity is 
determined by measuring the change of absorbance at 470 nm.

2.2.5. Sulfhydryl compounds
The homogenate was centrifuged at 10,000 × g at 4°C for 20 min 

to obtain a supernatant. The glutathione synthetase (GSS), γ-glutamyl 
cysteine synthetase (γ-GCS), glutathione reductase (GR) and 
glutathione (GSH) contents were assessed using the methods 
described in the commercial assay kits from Nanjing Jiancheng 
Bioengineering Institute (Nanjing, China) according to the previous 
methods (Zhan et al., 2017). The γ-GCS and GR assay kit was designed 
using principles described by Seelig and Meister (1985) and Foster and 
Hess (1980), respectively. NADH and NADPH oxidation were 
assessed by measuring the decrease in absorbance at 340 nm at 
37°C. The activity of γ-GCS was determined as the amount of enzyme 
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necessary for the consumption of 1 μ mol of NADH per minute, while 
the activity of GR was defined as the oxidation of 1 nmol of NADPH 
per minute (Zhan et al., 2017). The content of glutathione (GSH) was 
determined using a colorimetric microplate assay following the 
instructions provided by Nanjing Jiancheng Bioengineering Institute. 
After washing the plant tissue with pre-cooled PBS, the supernatant 
obtained from centrifugation was used to measure the absorbance 
values at 405 nm, which were then used to determine the GSH content. 
GSS activities were determined by measuring the ATP-dependent 
formation of -glutamyl hydroxamate from L-glutamate and 
hydroxylamine in the supernatant. GSS activity was defined as nmol 
of -glutamyl hydroxamate produced per second with absorbance 
measured at 550 nm at 37°C (Yajun et al., 2008).

2.3. Transcriptome sequencing

Three root sub-samples (0.5 g) for RNA extraction were obtained 
from well-growing roots of maize seedling, each treatment was 
examined in triplicate. Total RNA was extracted by Trizol-extraction 
methods with TRIzol RNA reagent (Invitrogen Inc., United States). 
The RNA concentration and integrity were determined and assessed 
using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific Inc., 
United  States) and Agilent 2100 Bioanalyzer Instrument (Agilent 
Technologies, Inc., United States, only RNA Integrity Number ≥ 7 was 
used for RNA-Seq analysis). Genes with false discovery rate 
(FDR) < 0.05 and absolute fold change ≥2 were defined as differentially 
expressed genes (DEGs), transcripts were considered significantly 
differentially expressed. For details, please refer to the section 1 of 
Supplementary material. Four genes were randomly selected to 
confirm the accuracy of RNA-Seq through qRT-PCR. There was a 
significant correlation between the RNA-Seq and qPCR data 
(p < 0.001; Supplementary Figure S1).

2.4. Statistical analyses

All data analyses were performed in R version 3.6.1 (Team, 2020) 
and SPSS 25.0 (SPSS, Inc.), the data were log-transformed when needed. 
The t-test was performed in SPSS 25.0 to test the differences in Cd 
accumulation and chemical forms between Cd and Cd + DSE treatments. 
One-way analysis of variance was used to test the responses of maize 
traits to DSE inoculation and Cd stress (“multcomp” package, Tukey’s 
HSD, checking for homogeneity of variances with Levene’s test). Plots 
were generated using GraphPad Prism 8.0. DEGs for each pairwise 
comparison was analyzed with the “edgeR” package. Visualization of GO 
terms were generated by using the “REVIGO” web service.

3. Results

3.1. Biomass and root morphological traits 
of maize seedlings

In this study, E. pisciphila inoculation (without Cd stress) induced 
a significant increase in the shoot biomass of maize seedlings by 43.2%, 
relative to the control. The shoot biomass under Cd stress treatment 
(non-inoculated E. pisciphila) did not demonstrate any significant 

differences from the control, however, the root biomass exhibited 
significant decreases by 39.3%. In addition, Cd stress inoculated with 
E. pisciphila (Cd + DSE treatment) significantly increased shoot and 
root biomass of maize seedlings by 68.8 and 16.8%, respectively, relative 
to the biomass under Cd stress (Figure  1A). In addition, the root 
length, volume, and surface area of DSE treatment (E. pisciphila 
inoculation only) significantly increased by 76.4%, 35.2% and 34.0% 
relative to the control, respectively, but the average diameter exhibited 
a significant decrease of 13.3% on average (Figures 1B–E). Cd stress 
with E. pisciphila inoculation resulted in a significant increase in the 
root length, volume, and surface area relative to the Cd stress treatment 
by 24.4%, 9.5%, and 9.5%, respectively. However, there was a significant 
decrease in the average diameter by an average of 12.7% (Figures 1B–E).

3.2. Cd content and chemical forms of 
maize seedlings

As the E. pisciphila was inoculated (Cd + DSE treatment), the Cd 
contents of both the leaves and roots of the maize significantly 
decreased by 23.6 and 35.3% relative to the Cd stress (Cd treatment, 
Figure 2A). Compared with the Cd treatment, the Cd stress with 
E. pisciphila inoculation (Cd + DSE treatment) significantly increased 
the FHAc-Cd and FNaCl-Cd contents of the maize leaves by 98.8 and 
14.5%, respectively, but significantly reduced the FE-Cd contents by 
52.6% (Figures 2B–D).

3.3. Phytohormone contents, lignin 
content, sulfhydryl compounds and related 
enzyme activities of maize seedlings

In the current study, with DSE inoculation (without Cd stress), 
the content of ABA showed a significant increase relative to the 
control by 65.2% (Figure 3A). The ABA content significant increased 
by 60.1%, while IAA content significantly decreased by 22.3% with 
the Cd treatment, relative to the control. Moreover, compared with 
the Cd stress, DSE inoculation under Cd stress (Cd + DSE treatment) 
resulted in a significant increase in the IAA content, with an average 
increase of 51.5%, whereas ABA content was significantly decreased 
by 37.4% (Figures 3A,B). Compared with the control, Cd treatment, 
DSE treatment and Cd stress with DSE inoculation (Cd + DSE) 
treatments resulted in a significant increase in lignin content, 4CL, 
CAD, and POD activities (Figures 3C–F). Moreover, compared with 
the Cd treatment, DSE inoculation under Cd stress (Cd + DSE) 
resulted in a significant increase in the lignin content by 27.7%, as 
well as the 4CL, CAD and POD activities by 27.1, 68.2 and 28.8%. In 
the present study, we found that the GR and γ-GCS activities in the 
maize leaves increased significantly under Cd treatment 
(Figures 4C,D). Moreover, DSE inoculation resulted in a significant 
increase in the GSH content, GSS, and GR activities in the leaves of 
maize under Cd stress (Cd + DSE, Figures 4A–C).

3.4. Transcriptome sequencing

DSE treatment resulted in differences in 433 differentially 
expressed genes (DEGs). More specifically, 287 DEGs were 
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up-regulated and 146 DEGs were down-regulated, relative to the 
control. In addition, compared with the Cd stress treatment, 948 
DEGs were different after DSE inoculation, among which 529 DEGs 
were up-regulated and 419 DEGs were down-regulated 
(Supplementary Table S1). A higher number of GO enriched 
biological process (BPs) was recognized in the ‘Cd versus Cd + DSE.’ 
Among these, the most significant BPs (FDR < 0.01) were the 
hydrogen peroxide catabolic process, the hydrogen peroxide 
metabolic process, the reactive oxygen species metabolic process, the 
oxidation–reduction process and response to oxidative stress 
(FDR < 0.01, Figure 5A). GO enriched BPs in ‘Control versus DSE’ 

included the nicotianamine metabolic process, the nicotianamine 
biosynthetic process, the tricarboxylic acid biosynthetic process, 
transmembrane transport and the oxidation–reduction process 
(FDR < 0.01, Figure 5B). Among the enriched KEGG pathways of ‘Cd 
versus Cd + DSE’, the most significant pathways were identified as 
phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, 
metabolic pathways, sesquiterpenoid and triterpenoid biosynthesis, 
and the nitrogen metabolism (Figure  6A). The enriched KEGG 
pathways of ‘Control versus DSE’ included the nitrogen metabolism, 
thiamine metabolism, cutin, suberine and wax biosynthesis, zeatin 
biosynthesis and biosynthesis of unsaturated fatty acids (Figure 6B).

A

B C

D E

FIGURE 1

Responses of shoots and roots biomass (A) and morphological traits, including root length (B), root volume (C), root surface area (D) and root average 
diameter (E) of maize to E. pisciphila inoculation and Cd stress. Data were mean values (n = 3) and error bars represent the standard deviation. Different 
letters indicate significant differences between treatments.
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The transcriptomic analysis revealed that the expression of early 
auxin-responsive genes such as IAA24 and GH3.6 in the plant hormone 
signal transduction pathway were significantly reduced under Cd stress 
with DSE inoculation compared with Cd stress (Figure  7 and 
Supplementary Table S3). Moreover, DSE inoculation significantly 
down-regulated the gene expression in E3 ubiquitin-protein ligase 
(regulate the ubiquitination of IAA) under Cd stress. DSE inoculation 
under Cd stress significantly up-regulated the expression of 
ABA-responsive genes (Abscisic acid stress ripening), as well as 
ABA-related protein genes (Pathogenesis-related protein) (Figure 7 and 
Supplementary Table S4), which regulated ABA content in maize. In 
addition, transcriptomic analysis revealed that DSE inoculation under 
Cd stress significantly affected the synthesis of p-hydroxyphenyl (H), 
guaiacyl (G), and syringyl (S) lignin in the phenylpropanoid 
biosynthesis pathway (Figure 7). DSE inoculation under Cd stress also 
led to the up-regulation of glutathione S-transferase related genes in 
the Glutathione metabolism pathway (Figure 7).

4. Discussion

In the present study, maize seedlings were subjected to Cd 
stress, and those treated with E. pisciphila inoculation exhibited a 
significant increase in both shoot and root biomass. The results are 
consistent with those reported by Wu et al. (2020), Su et al. (2021), 
and Xiao et al. (2021), who found that the shoot and root biomass 
of maize, rice, and blueberry seedlings increased after inoculation 
with DSE. In addition, with E. pisciphila inoculation, the root 
length, surface area, and volume of the maize seedlings were 
significantly increased regardless of the presence of Cd stress. Hou, 

L. et al. (2020) also reported that DSE inoculation enhanced the 
root length and surface area of Medicago sativa, which facilitated 
plant growth and improved Cd tolerance. Ban et al. (2017) found 
that DSE inoculation increased the root length of maize seedlings 
subjected to stress induced by exposure to different Pb 
concentrations, indicating that DSE inoculation can improve the 
growth of maize roots. Thus, the research indicates that E. pisciphila 
inoculation affects the root morphological traits of maize seedlings 
in such a way that is conducive to plant growth.

In addition to the above results, we also observed a significant shift 
in the chemical forms of Cd in the E. pisciphila-colonized maize. 
We argue that these chemical forms of Cd are closely related to their 
biological toxicity, as they determine their reactivity and solubility. 
Among the various chemical forms of Cd, the Cd-phosphate complex 
extracted by 2% acetic acid (FHAc-Cd) is important for plant tolerance 
to Cd due to its insolubility, low mobility, and low toxicity (Qiu et al., 
2011). Compared with Cd stress without inoculation, Cd stress with 
DSE inoculation significantly increased the FHAc-Cd and FNaCl-Cd 
contents of the maize leaves but reduced their FE-Cd contents. Similarly, 
studies on Poa pratensis and Festuca arundinacea have shown that an 
increased level of undissolved Cd-phosphate complexes (extracted by 
2% acetic acid, FHAc-Cd) favored Cd tolerance (Xu and Wang, 2013). 
The inorganic, water-soluble form of Cd (FE-Cd, which can 
be extracted with 80% ethanol) has a greater negative effect on plants 
than the effect caused by Cd complexed with phosphate and 
undissolved (FHAc-Cd, extracted with 2% acetic acid). Wang et al. 
(2016) found that DSE increased the amount of inactive Cd in maize 
and reduced both the soluble and inorganic content of Cd, however, 
there were no similar effects noted in the maize roots. In this study, 
E. pisciphila inoculation reduced the FE-Cd content in maize leaves, 
which helped to alleviate the toxicity of Cd to plants.

Phytohormones are important regulators of heavy metal 
tolerance in plants, which enhance plant adaptation to environmental 
stress by regulating adaptive responses. In the current study, 
E. pisciphila inoculation prior to Cd stress resulted in a significant 
increase in the IAA content and decreased the ABA content in plant 
roots compared with the Cd stress without inoculation. This finding 
is consistent with those reported by He et al. (2017), whereby DSE 
inoculation significantly increase in the IAA content in maize 
exposed to a Cd concentration of 20 mg/kg, whereas ABA content 
significantly decreased under the same treatment. Similarly, Khan 
and Lee (2013) found that root colonization by endophytes resulted 
in a significant decrease in the ABA content of Glycine max L. under 
heavy metal stress. Furthermore, increased root volume may 
be associated with the activation of the IAA in the roots of maize, 
which is induced by E. pisciphila colonization. IAA can effectively 
stimulate the growth of host plant roots, improve nutrient uptake, 
and promote plant growth (Khan et al., 2012; Chen, B. et al., 2017). 
Furthermore, studies have shown that endophytic bacteria can 
promote plant growth under Cd stress by producing IAA and directly 
regulating the expression of genes involved in Cd uptake and 
transport and that IAA may help plants alleviate the toxicity of Cd to 
cells (Sukumar et  al., 2013; Chen, B. et  al., 2017). Therefore, 
E. pisciphila can improve plant growth by regulating the 
phytohormone contents in response to Cd stress.

As the outer barrier of plants, the Casparian strip functions as 
a physiological fence and valve, which can control the entry of water 
and mineral ions into vascular tissues, protect against abiotic stress, 
and defend against the infiltration of toxic compounds. Lignin, 
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FIGURE 2

Responses of Cd accumulation (A) and chemical forms, including 
acetic acid state Cd (B), sodium chloride state Cd (C) and ethanol-
extracted state Cd (D) of maize to E. pisciphila inoculation. Data were 
mean values (n = 3) and error bars represent the standard deviation. 
“NS,” “*,” “**,” and “***” mean no significance, p < 0.05, p < 0.01, and 
p < 0.001, respectively.
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which is the main component of the Casparian strip, was found to 
be significantly increased under Cd stress both with and without 
E. pisciphila inoculation. Líška et al. (2016) demonstrated that Cd 
exposure resulted in the asymmetric development of the exodermis 
and endodermis structures of maize roots, while the cell wall of the 
exodermis was significantly thickened to reduce the uptake and 
transport of harmful ions by the roots. Moreover, compared with 
maize subjected to Cd stress, those treated with E. pisciphila 
inoculation prior to Cd stress exhibited a significant increase in the 
lignin content as well as the activities of 4CL, CAD and POD, which 
were positively associated with lignin synthesis. Additionally, lignin 
is reported to be an ideal site for metal ion binding via the various 
functional groups (Guo et al., 2008). Our results showed, under Cd 

stress of DSE-inoculated maize promoted the Cd tolerance of host, 
including the Cd compartmentation by Casparian strip. We argue 
that E. pisciphila can significantly increase the lignin content, 
inhibit the migration of Cd from the cortex into the central column, 
and hinder the transport of Cd.

Sulfhydryl compounds play an important role in the response of 
plants to heavy metal stress. Among the various heavy metal tolerance 
mechanisms employed by plants, sulfhydryl compounds act by 
chelating heavy metal ions to form low-toxicity products (Wang et al., 
2019; Chen et al., 2021). In the present study, under Cd stress, the 
activities of GR and γ-GCS activities in the maize leaves significantly 
increased. Similarly, the activity of GR was significantly increased in 
two mustard cultivars after exposure to Cd stress (Iqbal et al., 2010). 

A
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E F

FIGURE 3

Responses of phytohormone and lignin contents and related enzyme activities of maize roots to E. pisciphila inoculation and Cd stress. A: abscisic 
acid, B: Indole-3-acetic acid, C: Lignin; D: 4-coumarate CoA ligase, E: Cinnamyl-alcohol dehydrogenase, F: Peroxidase. Data were mean values (n = 3) 
and error bars represent the standard deviation. Different letters indicate significant differences between treatments.
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Moreover, under Cd stress, the GSH content, GSS activity, and GR 
activity in the leaves of maize increased significantly following 
E. pisciphila inoculation. Similar to our results, DSE colonization 
increased the GSH content and enhanced the GR activity of maize 
under the Cd treatment, while also decreasing the Cd content in maize 
leaves (Zhan et al., 2017). Pan et al. (2016) also determined the positive 
effects conferred by endophytic inoculation and observed an increase 
in the GSH concentration, Cd tolerance, and accumulation of Cd in 
the roots of Sedum alfredii. Studies on tobacco have also shown that 
endophytes significantly increased the expression of genes related to 
the GSH metabolism and promoted the retention of Cd in tobacco 
roots (Hui et al., 2015). These results suggest that sulfhydryl compounds 
and enzymes respond positively to Cd stress and tolerance.

The transcriptome was analyzed to explore the underlying 
mechanisms of the above results. Under Cd stress, gene expression 
related to the early auxin- response and the ubiquitination of IAA were 
significantly downregulated following E. pisciphila inoculation compared 
to the condition of Cd stress non-inoculation, which are crucial for 
maintaining IAA homeostasis in plants (Yue et al., 2016; Li et al., 2017). 
E. pisciphila inoculation also significantly upregulated the genetic 

expression of ABA-responsive and ABA-related proteins, which 
regulated ABA content in maize. In addition, under Cd stress, 
E. pisciphila inoculation significantly affected the expression of genes 
related to the synthesis of lignin. This is attributed to the significant 
changes in the expression of 4CL, CAD, and POD induced by 
E. pisciphila. E. pisciphila inoculation under Cd stress also led to the 
upregulation of glutathione S-transferase-related genes in the glutathione 
metabolism pathway. This indicates that the phytohormones, lignin 
content, sulfhydryl compounds and related enzymes may be involved in 
the promotion of plant growth induced by E. pisciphila inoculation.

In this study, the biological function and molecular mechanism 
of the DSE strain E. pisciphila in mitigating Cd toxicity in maize were 
investigated. The results demonstrated that E. pisciphila inoculation 
induced a significantly upregulated tolerance to Cd, with a significant 
decrease in phytotoxicity and an increase in maize root and shoot 
biomass. E. pisciphila promoted maize growth by regulating the 
expression of phytohormone-related genes to affect phytohormone 
contents in maize roots, alleviating Cd toxicity by regulating the 
expression of genes related to lignin synthesis and glutathione 
S-transferase, increasing lignin contents, and activating glutathione 
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FIGURE 4

Responses of sulfhydryl compounds of maize leaves and roots to E. pisciphila inoculation and Cd stress. A: glutathione, B: glutathione synthetase, C: 
glutathione reductase; D: γ-glutamyl cysteine synthetase. Data were mean values (n = 3) and error bars represent the standard deviation. Different 
letters indicate significant differences between treatments.
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FIGURE 5

Graphical depiction of enriched GO-BPs in (A) Cd vs. Cd + DSE and (B) Control vs. DSE (FDR < 0.05). GO-BP terms are colored by semantic similarity to 
other GO terms and bubble size reflects the abs_log10_pvalue of the GO-term in the Fisher test. The two-dimensional semantic space was generated 
by the REVIGO web service.
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FIGURE 6

Top 20 of KEGG enrichment pathway in (A) Cd vs. Cd + DSE and (B) Control vs. DSE treatments.
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metabolism to reduce the levels of highly toxic forms of Cd. The 
results of this study help to elucidate the mechanism by which 
E. pisciphila colonization enhances heavy metal resistance in plants 
and provide a basis for improving plant growth performance at the 
morphological, physiological, toxicological, and transcriptional levels.
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