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with rhizobium inoculation 
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China

Microbial diversity is an important indicator of soil fertility and plays an 
indispensable role in farmland ecosystem sustainability. The short-term effects of 
fertilization and rhizobium inoculation on soil microbial diversity and community 
structure have been explored extensively; however, few studies have evaluated 
their long-term effects. Here, we applied quantitative polymerase chain reaction 
(qPCR) and amplicon sequencing to characterize the effect of 10-year fertilizer 
and rhizobium inoculation on bacterial communities in soybean bulk and 
rhizosphere soils at the flowering–podding and maturity stages. Four treatments 
were examined: non-fertilization control (CK), phosphorus and potassium 
fertilization (PK), nitrogen and PK fertilization (PK + N), and PK fertilization and 
Bradyrhizobium japonicum 5821 (PK + R). Long-term co-application of rhizobium 
and PK promoted soybean nodule dry weight by 33.94% compared with PK + N, 
and increased soybean yield by average of 32.25%, 5.90%, and 5.00% compared 
with CK, PK, and PK + N, respectively. The pH of PK + R was significantly higher than 
that of PK and PK + N at the flowering–podding stage. The bacterial abundance 
at the flowering–podding stage was positively correlated with soybean yield, but 
not at the maturity stage. The significant different class Gemmatimonadetes, and 
the genera Gemmatimonas, and Ellin6067 in soil at the flowering–podding stage 
were negatively correlated with soybean yield. However, the bacterial community 
at class and genus levels at maturity had no significant effect on soybean yield. 
The key bacterial communities that determine soybean yield were concentrated 
in the flowering–podding stage, not at maturity stage. Rhizosphere effect, growth 
period, and treatment synergies resulted in significant differences in soil bacterial 
community composition. Soil organic matter (OM), total nitrogen (TN), pH, and 
available phosphorus (AP) were the main variables affecting bacterial community 
structure. Overall, long-term co-application of rhizobium and fertilizer not only 
increased soybean yield, but also altered soil bacterial community structure 
through niche reconstruction and microbial interaction. Rhizobium inoculation 
plays key role in reducing nitrogen fertilizer application and promoting sustainable 
agriculture practices.
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1. Introduction

Chemical fertilizer application is a common strategy for 
enhancing soil fertility and crop yield in agricultural production. 
Effective fertilization can promote soil ecosystem health. However, 
irrational fertilization can lead to a series of environmental problems, 
including soil biodiversity and productivity reduction (Guo et al., 
2010; Yang et al., 2018), environmental pollution (Probert et al., 1998; 
Drijber et al., 2000), and soil acidification (Ahmad et al., 2013; Xiao 
et al., 2021; Xie et al., 2021). At present, measures such as fallowing, 
organic substitution (Dai et al., 2019; Ji et al., 2020; Zhang et al., 2021), 
green manure planting (Zhang et  al., 2017; Ma et  al., 2021), and 
biofertilizer promotion (Wu et al., 2005; Castro et al., 2020; Zhou et al., 
2021) have been implemented in agriculture to reduce the detrimental 
impacts of fertilization. Biofertilizers have become a research hotspot 
because of their environmental friendliness and effectiveness. They 
can activate fixed nutrients in the soil, stimulate growth and 
absorption by the root system, and reduce fertilization rates with the 
corresponding nutrient elements (Abd-Alla et al., 2014; Koskey et al., 
2017). With such soil adjustments, beneficial bacteria can be increased, 
harmful bacteria eliminated, and crop diseases reduced (Igiehon and 
Babalola, 2017; Schütz et al., 2018). Soybean rhizobia are biofertilizers 
and facilitate nitrogen fixation and emission reduction (Soumare 
et al., 2020).

The Gram-negative soil bacterium rhizobium is widely 
distributed and can stimulate legumes to produce root nodules and 
symbiotic nitrogen fixation (Ditta et al., 1980; Quandt and Hynes, 
1993; Han et  al., 2020). Rhizobium has positive effects on crop 
growth and nutrient absorption, including promoting the 
absorption of phosphorus and iron, and enhancing the production 
of plant hormones that promote crop growth. They can additionally 
enlarge the abundance of beneficial microorganisms, minimize the 
prevalence of pests and diseases, and expand crop yield (Zhuang 
et  al., 2007; Ahemad and Kibret, 2014). Trabelsi and Mhamdi 
(2013) reported that inoculation with two local rhizobia strains 
increased potato yield by 32% and decreased potato wireworm 
infestation by 56%. The plant hormone gibberellin produced by 
rhizobia enlarges the size of nodules in host legumes (Nett et al., 
2022). Furthermore, inoculation with rhizobia can promote yields 
in crops, such as soybean (Ronner et al., 2016), milk vetch (Liu 
et al., 2022), faba bean (Pereira et al., 2019), maize (Marks et al., 
2015), wheat (Yanni et al., 2016), and rice (Mehboob et al., 2009). 
In addition, the effect of rhizobia inoculum alone is reportedly 
weaker than that of rhizobia combined with other strains or 
chemical fertilizer. The nodulation rate and yield of soybean could 
be improved by co-inoculation of Bradyrhizobium japonicum and 
Azospirillum brasilense (Hungria et al., 2013; Barbosa et al., 2021; 
Moretti et al., 2021). Combination of Rhizobium sp. and chemical 
fertilizer (N15P15K15) achieved the best peanut nutrition and 
production parameters (Adjile et al., 2020). Rhizobium has been 
demonstrated to be  an environmentally friendly substitute to 
nitrogen fertilizer based on the positive effects above (Gitonga et al., 
2021; Halwani et al., 2021; Pires et al., 2021; Kumawat et al., 2022). 
Although rhizobium can form symbiotic relationships with 
legumes, and provide a considerable number of nitrogen to plant, 
continuous inoculation ensures the long-term availability of 
nitrogen in the soil. Therefore, it is an ecologically manageable 

choice for enhancing agricultural soil environment (Korir et al., 
2017; Thilakarathna and Raizada, 2017; Zilli et al., 2021).

Several long-term studies have reported that fertilization alters 
soil microbial community composition. Zhou et al. (2015) observed 
that 34 years of fertilization decreased bacterial diversity. Long-term 
fertilization enhanced bacterial abundance and modified bacterial 
composition in rhizosphere soil (Wang et al., 2018). Inoculation with 
rhizobia can alter soil microbial community structure; however, most 
of the current studies are based on short-term time scales. One-year 
inoculation of rhizobia and application of appropriate nitrogen 
fertilizer in the field increased the bacterial richness in the rhizosphere 
soil (Trabelsi et al., 2011). Furthermore, rhizobium inoculation may 
contribute to the rotational benefits of legumes in potato cropping 
systems not only by providing fixed nitrogen, but also by increasing 
microbial diversity and structure, potentially stimulating plant growth 
promoting rhizobacteria and enhancing disease control (Trabelsi 
et al., 2012). The effects of Achillea millefolium EO (Essential oils) and 
three different rhizobia on soybean were studied in a greenhouse 
experiment. The results showed that compared with the control, the 
bacterial colony forming units decreased after EO application and 
increased after inoculation with rhizobia (Turan et al., 2019).

Soybeans [Glycine max (L.) Merr.] are native to China and their 
seeds are rich in protein (64%) and oil (30%; Niwińska et al., 2020; 
Kumawat et al., 2022). Inoculating soybean crop soil with appropriate 
rhizobia can supplement a high number of effective rhizobia. This can 
further enhance the soil fertility and increase soybean yields (Hungria 
et al., 2013; Igiehon et al., 2021). Microbe is a vital indicator of soil 
fertility and performs an integral function in farmland ecosystem 
sustainability. To date, the short-term effects of fertilization and 
rhizobium inoculation on soil bacterial diversity and community 
composition have been explored extensively; however, few studies 
have evaluated their long-term effects. In the present study, a soybean 
field in Northeast China with a history of 10 years of chemical 
fertilization and inoculation with rhizobium was examined to 
determine the effects of the unique fertilization strategies on bacterial 
community abundance and composition at the flowering–podding 
and maturity stages, combined with amplicon sequencing and 
quantitative PCR (qPCR). We  hypothesized that long-term 
fertilization and co-inoculation with rhizobium would alter the soil 
bacterial community structure. Inoculation with rhizobia would 
improve soybean yield by increasing nodule dry weight. Our results 
would provide novel insights into the effects of long-term fertilization 
and rhizobium inoculation on soybean yield and soil bacterial 
community structure, and provide a theoretical basis for microbial 
fertilizer development and utilization.

2. Materials and methods

2.1. Experimental site and soil sampling

Since 2011, a long-term fertilization experiment was carried out 
in the modern agricultural industrial technology demonstration base, 
located at the Jilin Academy of Agricultural Sciences, Gongzhuling 
County, Jilin Province, China (43° 52′ 88′′ N, 124° 80′ 55′′ E, 42 m 
elevation) with typical chernozem. The cropping system was an 
annual rain-fed rotation system and the main crop was soybean, 
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which was planted continuously throughout the year. Bradyrhizobium 
japonicum 5821 was isolated from the soybean root nodule of 
Kenjiandou 28, Jiusan Farm, Nenjiang. 5 ml of rhizobia solution 
(concentration was 5 × 109 CFU ml−1) was mixed with 1 kg soybean 
seeds. Sow 45 kg of soybean seeds per hectare. The soybean variety 
used was Jiyu 86.

Soil samples were collected at the flowering–podding (16 July), 
and maturity (29 September) stages in 2021. In this study, four 
treatments with three replicates were examined, and each replicate 
contained five random soybean plants. Namely (1) CK, 
non-fertilization control; (2) PK, phosphorus (75 kg P2O5 ha−1), and 
potassium fertilization (75 kg K2O ha−1); (3) PK + N, PK chemical 
fertilizers plus urea (60 kg N ha−1); and (4) PK + R, PK chemical 
fertilizers plus B. japonicum 5821. Topsoil (0–20 cm) and borrowed 
approximately 30 cm from the plants was collected as bulk soil. The 
rhizosphere soil of five plants was randomly collected, the excess soil 
was shaken off, and the soil close to the roots was gently collected with 
a brush and mixed into a composite sample. The soil sample was 
thoroughly homogenized by removing the weeds and gravel with a 
2-mm sieve. Part of the soil samples were naturally air-dried and 
stored at 4 degrees, respectively, for physicochemical detection, and 
the rest were stored at −80 degrees for molecular experiments. 
Soybean nodules were collected from soybean roots at the flowering–
podding stage, and the nodules were placed in an 80°C oven until 
reaching constant weight.

2.2. Soil physicochemical analysis

The ratio of soil to distilled water was 1:2.5 (weight/volume) was 
used to determine soil pH. Organic matter (OM) was measured 
according to loss on ignition of dried weight in a muffle furnace at 
550°C for 6 h. CNS-2000 analyzer (LECO, St. Joseph, MI, USA) was 
used to estimate the TN content by burning of air-dried soil which was 
passed through a 0.15 mm sieve. Soil available N (AN) was measured 
by the diffusion plate alkaline hydrolysis method, and H2SO4 titration 
was used to determine its content (Zhou et  al., 2019). Available 
phosphorus (AP) was extracted by 0.5 M NaHCO3 and the 
molybdenum blue colorimetric method was used for analysis (Olsen 
et  al., 1954). Available potassium (AK) was extracted with 1 M 
ammonium acetate and determined by flame photometer (FP640, 
INASA, China).

2.3. Extraction of soil DNA and 16S rRNA 
gene quantitation

Soil DNA (1 g of fresh sample) was extracted using the DNeasy® 
PowerSoil® Kit (Qiagen, Hilden, Germany). The DNA concentration 
and purity were evaluated using a NanoDrop ND-1000 UV–Vis 
Spectrophotometer (Thermo Fisher Scientific, Rockwood, TN, USA) 
and 1% (w/v) agarose gel electrophoresis. The copy number of 16S 
rRNA gene (V4 fragment) was determined by qPCR using an ABI 
7500 thermal cycler (Applied Biosystems, Waltham, MA, USA) with 
the primers 515FmodF (5′-GTGYCAGCMGCCGCGGTAA-3′) and 
806RmodR (5′-GGACTACNVGGGTWTCTAAT-3′; Wang et  al., 
2018). The construction of reaction system and extraction of plasmids 

refer to Zhou et al. (2015). Three replicates of qPCR were performed 
in each group. The specificity of the amplified 16S rRNA gene was 
evaluated using melt curve with fluorescence measurement at 
temperatures ranging from 60 to 95°C. The parameter Ct (threshold 
period) received by ABI 7500 (version 1.0.6) was used to determine 
the copies of 16S rRNA gene (Zhou et al., 2019).

2.4. Amplicon sequencing of 16S rRNA 
gene

The purified DNA was amplified using primers 338F 
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTAC 
HVGGGTWTCTAAT-3′; Ding et al., 2020). They were sequenced on 
the MiSeq PE300 platform (Illumina, San Diego, CA, USA) at the 
Sanger Biotech Co., Ltd., Shanghai, China. In the reads of the original 
16S rRNA gene, shorter sequences and those with ambiguous bases 
were discarded. QIIME (v. 1.9.1) was used to identify and remove 
chimeric and noisy sequences. Use UPARSE (v. 11) to cluster 
operational taxonomic units (OTUs) at 97% similarity cut-off points. 
A unique classification of OTUs was confirmed based on a comparison 
with the SILVA database (Release 138, http://www.arb-silva.de). Total 
potential OTUs and bacterial diversity were estimated using Mothur 
software (1.30.2). The original sequences were uploaded to the NCBI 
Sequence Read Archive under study PRJNA859097 (Chen et al., 2021; 
Zhang et al., 2022).

2.5. Statistical analysis

SPSS 24 (SPSS, Chicago, USA) was used to conduct one-way 
analysis of variance to analyze the differences in basic properties, 
bacterial abundance and diversity, and Duncan’s test at p < 0.05 was 
used to compare the significance between the soil treatments. The 
difference of physicochemical properties between bulk and 
rhizosphere soils was analyzed by T-test. The effects of fertilization, 
rhizosphere effect, and growth stage interaction on bacterial 
abundance and community diversity were analyzed by multiway 
analysis of variance (ANOVO) (Chen et  al., 2021). Boxplot and 
regression analysis were carried out with the “ggplot2” package; 
principal coordinate analysis (PCoA) and Mantel test were proceeded 
by “vegan” package in R software (v 3.6.1). Redundancy analysis 
(RDA) was performed using CANOCO (version 5.0) to visualize the 
effects of soil physicochemical factors on bacterial OTU composition. 
The relationships among the soil properties, nodule dry weight, 
soybean yield, and bacterial community composition were detected 
by calculating Spearman correlation coefficients.

AMOS software (IBM® SPSS® Amos 26.0.0) was used to conduct 
structural equation modeling (SEM) to account for the direct and 
indirect relationships among soil main physicochemical factors, nodule 
dry weight, soybean yield, and bacterial community structure. The first 
principal component (PC1) of PCoA was used as the index of bacterial 
community composition, and the Shannon index was used as the index 
of bacterial diversity. The best fitting model was obtained based on the 
maximum likelihood of fit, namely, p-values, the goodness of Chi-square 
test (χ2) and fit index (GFI), and the approximate root mean square 
error (RMSEA; Lefcheck, 2015; Kwok et al., 2018).
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3. Results

3.1. Variations in environmental factors 
among treatments

Long-term fertilization and inoculation with rhizobium changed 
the soil physicochemical properties, and soybean nodulation rate and 
yield (Table 1). Long-term nitrogen fertilization (PK + N) reduced the 
root nodule dry weight by 69.02% compared with PK, by 33.94% 
when compared with PK + R during the flowering–podding stage. The 
soybean yield was the highest in PK + R (3,025.33 kg ha−1). Inoculation 
with B. japonicum 5821 increased soybean yield by 737.73 kg ha−1 
(32.25%) on average when compared with CK, by 168.66 kg ha−1 

(5.90%) on average when compared with PK, and by 144.00 kg ha−1 
(5.00%) on average when compared with PK + N. Long-term 
fertilization (PK, PK + N, PK + R) substantially decreased the soil pH, 
particularly in PK at flowering-podding stage and in PK+ N at 
maturity stage. The pH of the PK + R was notably greater than that of 
the PK and PK + N. Long-term application of PK+ N and PK + R 
significantly increased AP and AK content in soil at both stages. 
However, the effects of different treatments on TN and AN were 
inconsistent. Their contents fluctuated within a small range among 
different treatments, which might be related to the strong nitrogen 
fixation potential of the soybean roots. Additionally, at the flowering–
podding stage, the pH of rhizosphere soil in all treatments was 
significantly higher than that of bulk soil. There was no significant 

TABLE 1 Properties of the bulk soil and rhizosphere samples from soybean cultivated at the flowering–podding stage and maturity stage under 
different fertilization levels.

Treatments CK PK PK + N PK + R

Flowering-podding stage

pH
Bulk soil 5.96 ± 0.02a 5.47 ± 0.01d 5.66 ± 0.01c 5.75 ± 0.01b

Rhizosphere 6.16 ± 0.02a* 5.61 ± 0.03d* 5.85 ± 0.01c* 5.99 ± 0.01b*

OM (g kg−1)
Bulk soil 28.92 ± 0.67a 29.68 ± 1.31a 30.85 ± 1.35a 30.50 ± 1.51a

Rhizosphere 28.55 ± 1.74a 28.38 ± 0.29a 30.81 ± 1.45a 29.89 ± 0.82a

TN (g kg−1)
Bulk soil 1.71 ± 0.04ab 1.66 ± 0.03b 1.75 ± 0.04a 1.67 ± 0.06ab

Rhizosphere 2.03 ± 0.08a 1.76 ± 0.13b 1.91 ± 0.12ab 1.88 ± 0.09ab*

AN (mg kg−1)
Bulk soil 122.10 ± 4.70ab 118.48 ± 3.30b 125.14 ± 1.08a 116.30 ± 3.03b

Rhizosphere 125.37 ± 2.67a 120.84 ± 2.94a 127.90 ± 5.66a 124.99 ± 5.13a

AP (mg kg−1)
Bulk soil 21.43 ± 0.60c 78.27 ± 1.11a* 63.93 ± 1.59b* 64.60 ± 0.69b

Rhizosphere 20.80 ± 1.47d 67.70 ± 0.70a 48.97 ± 0.60c 63.57 ± 1.55b

AK (mg kg−1)
Bulk soil 126.15 ± 1.32c 182.73 ± 4.06b 199.58 ± 6.50a 204.97 ± 3.75a

Rhizosphere 132.59 ± 2.70c* 238.94 ± 7.65a* 197.34 ± 2.60b 242.18 ± 3.38a*

Nodule dry weight 

(g)
1.48 ± 0.06ab 1.98 ± 0.34a 1.17 ± 0.44b 1.57 ± 0.06ab

Maturity stage

pH
Bulk soil 6.24 ± 0.03a* 6.02 ± 0.01b* 5.85 ± 0.01c 6.02 ± 0.00b

Rhizosphere 5.93 ± 0.02b 5.95 ± 0.01ab 5.87 ± 0.02c 5.98 ± 0.03a

OM (g kg−1)
Bulk soil 30.09 ± 0.75ab 29.06 ± 0.17c 30.76 ± 0.08a 29.86 ± 0.46bc

Rhizosphere 31.48 ± 0.59ab 30.78 ± 0.74b* 32.10 ± 0.44a* 32.49 ± 0.63a*

TN (g kg−1)
Bulk soil 1.56 ± 0.03a 1.49 ± 0.02a 1.45 ± 0.28a 1.56 ± 0.03a

Rhizosphere 1.68 ± 0.01a* 1.72 ± 0.06a* 1.71 ± 0.04a 1.70 ± 0.03a*

AN (mg kg−1)
Bulk soil 138.35 ± 3.49a 140.31 ± 3.31a 140.68 ± 5.70a 144.34 ± 4.81a

Rhizosphere 142.72 ± 2.62a 150.38 ± 3.60a* 143.08 ± 3.96a 142.41 ± 5.59a

AP (mg kg−1)
Bulk soil 17.40 ± 1.66d 49.13 ± 1.37c 57.77 ± 1.20b* 68.40 ± 1.44a*

Rhizosphere 19.27 ± 1.50d 54.90 ± 0.78b* 50.37 ± 0.71c 58.33 ± 1.23a

AK (mg kg−1)
Bulk soil 146.47 ± 1.05b 143.73 ± 2.96b 168.65 ± 1.69a 163.00 ± 5.96a

Rhizosphere 218.40 ± 46.05ab 191.44 ± 1.55b* 246.39 ± 8.77a* 251.03 ± 7.14a*

Soybean yield 

(kg ha−1)
2287.60 ± 119.86b 2856.67 ± 160.32a 2881.33 ± 173.27a 3025.33 ± 131.37a

Soil properties were calculated for each replicate of fertilizer treatment and bulk soil/rhizosphere samples (n = 3). Data are the means ± standard deviation. CK: non-inoculated control in soil; 
PK, superphosphorus and potassium chloride; PK + N, PK chemical fertilizers plus urea; PK + R, PK chemical fertilizers plus Bradyrhizobium japonicum 5821. Different letters in each column 
of same fertilization treatment indicate significant difference among treatments in different stage (p < 0.05). The asterisks indicate the significance of the difference between the indexes of bulk 
and rhizosphere soil under the same treatment during the same growth stage (p < 0.05).
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difference between the bulk and rhizosphere contents of OM and AN 
in all treatments. Except PK + N, AK in other treatments was 
significantly greater in the rhizosphere than in the bulk soil. At the 
maturity stage, OM and AK in rhizosphere soil were significantly 
higher than that in bulk soil under fertilization conditions (p < 0.05). 
TN in bulk soil was significantly lower than that in rhizosphere soil 
except nitrogen fertilizer treatment.

3.2. Variations in abundance and richness 
of bacteria

Results of the three-way ANOVA confirmed that the 
rhizosphere effect (p < 0.001) and treatment (p < 0.01) had 
remarkable influence on 16S rRNA gene abundance, whereas 
growth stage had no remarkable influence (Figure  1). The 
interactions among growth stage, rhizosphere effect, and treatment 
were noteworthy (p < 0.001). The abundances of soil bacteria were 
14.91× 108 to 46.07 × 108 copies g−1, which in CK were obviously 
less than other treatments at the flowering–podding stage 
(Figure 1A), whereas those in PK + R were apparently greater than 
other treatments in bulk soil and obviously less than other 
treatments in rhizosphere soil at the maturity stage (Figure 1B).

A complete of 7,132,055 high-quality reads had been obtained 
from 48 soil samples. The coverage values ranged from 96.05% to 
96.52%. Three-way ANOVA confirmed that the growth stage 
(p < 0.001) and rhizosphere effect (p < 0.05) had obvious significance 
on the Shannon index, whereas the treatment had no remarkable 
influence. The interactions among growth stage, rhizosphere effect, 
and treatment were noteworthy (p < 0.05; Figure 1). At the flowering–
podding stage, the Shannon index in the PK treatment was 
significantly higher than that in the PK + N treatment in the bulk soil, 
and that in CK and PK + N were greater than other treatments in the 
rhizosphere soil (Figure 1C). At maturity, there was no remarkable 
difference in Shannon index among any treatments in the bulk soil. In 
the rhizosphere soil, Shannon index in PK + R was 2.91%, 5.05%, and 
5.05% higher than those in CK, PK, and PK + N, respectively 
(Figure 1D).

Linear regression analysis showed that bacterial abundance in 
bulk and rhizosphere soil at the flowering–podding stage was 
positively correlated with soybean yield (Figures 2A,C), whereas they 
had no significant correlation with soybean yield at the maturity stage 
(Figures 2E,G). The bacterial richness in bulk and rhizosphere soil at 
both stages was not correlated with soybean yield (Figures 2B,D,F,H). 
There was no significant correlation between soybean yield and root 
nodule dry weight (Supplementary Figure S1).

FIGURE 1

Bacterial abundance (A,B) and richness (C,D) in soybean field trials at the flowering–podding stage (A,C) and maturity stage (B,D). CK: non-inoculated 
control in soil; PK, superphosphorus and potassium chloride; PK + N, PK chemical fertilizers plus urea; PK + R, PK chemical fertilizers plus Bradyrhizobium 
japonicum 5821. Different letters above bars indicate significant differences (one-way ANOVA, p < 0.05, Duncan’s multiple-range test) among different 
treatments at each growth stage. The overall effects of growth stage (G), rhizosphere effect (R), and treatment (T) on bacterial abundance and Shannon 
index were evaluated by three-way ANOVA, with the results shown at the top of the figure. *0.01 < p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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3.3. Variations in community composition 
of bacteria

PCoA analysis of the bacterial community structure showed that 
there was a significant separation among the clusters at both growth 
stages (p = 0.001; Figure 3). At the flowering–podding stage, 32.01% 
could be explained by PC1 and 29.73% by PC2 (Figure 3A). Meanwhile, 
at the maturity stage, 43.23% could be explained by PC1 and 7.92% by 
PC2 (Figure  3B). The different treatments presented remarkable 
separation at the flowering–podding and maturity stages. Rhizosphere 
effects also led to prominent separation of the bacterial community 

structure (Figures 3A,B). Three-way ANOVA showed that the growth 
stage (p < 0.001) and rhizosphere effect (p < 0.05) had significant 
influence on the bacterial community composition, whereas the 
treatment had no remarkable influence. The effects of different 
treatments on bacterial beta diversity were significantly different at the 
same stage and space scale (p = 0.001, Supplementary Table S1). 
Specifically, at the flowering-podding stage, the R2 value was 0.7963 in 
bulk soil and 0.9506 in rhizosphere soil. At the maturity stage, the R2 
value was 0.7037 in bulk soil and 0.7562 in rhizosphere soil.

The predominant bacterial classes in all samples  
were Alphaproteobacteria, Actinobacteria, Thermoleophilia, 

FIGURE 2

Linear regression relationships between bacterial abundance (A,C,E,G) and richness (B,D,F,H), and soybean yield, in bulk (A,B,E,F) and rhizosphere soil 
(C,D,G,H), at the flowering–podding stage (A–D) and at the maturity stage (E–H).
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Gammaproteobacteria, Acidobacteria, Vicinamibacteria, and 
Gemmatimonadetes, accounting for 65.44–74.24% of the total 
sequences at the flowering–podding stage (Figure  4A) and 69.11–
74.42% at the maturity stage (Figure 4B). Subsequently, we analyzed 
the changes in dominant bacteria communities at class level caused by 
fertilization and rhizobium (Supplementary Table S2). Notably, the 
application of the same fertilizer or rhizobium in bulk or rhizosphere 
soil during different growth periods resulted in different dominant 
bacteria in the community. For instance, when applicated with PK + R, 
in bulk soil at the flowering–podding stage, the relative abundances of 
the classes Thermoleophilia, Chloroflexia, and Bacilli were significantly 
(p < 0.05) increased, while the relative abundance of the classes 
Alphaproteobacteria, Gammaproteobacteria, Gemmatimonadetes, 
Bacteroidia, Saccharimonadia, and Holophagae were significantly 

decreased. In rhizosphere soil at the flowering–podding stage, the 
relative abundances of the classes Actinobacteria, Thermoleophilia, 
Chloroflexia, Ktedonobacteria, and Bacilli were significantly  
(p < 0.05) increased, while the relative abundance of the classes 
Gammaproteobacteria, Gemmatimonadetes, Bacteroidia, Polyangia, 
Saccharimonadia, and Holophagae were significantly decreased. In 
bulk soil at the maturity stage, the relative abundance of the class 
Bacteroidia and Gemmatimonadetes was significantly decreased. In 
rhizosphere soil at the maturity stage, the relative abundances of the 
classes Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia 
were significantly (p < 0.05) increased, while the relative abundance of 
the classes Thermoleophilia, and Gemmatimonadetes were significantly 
decreased. The relative abundance of the class Gemmatimonadetes was 
significantly decreased in all treatments during the both growth stages.

FIGURE 3

Principal coordinate analysis (PCoA) ordinations of bacterial community composition from the bulk soil and the rhizosphere of soybean under different 
fertilization levels at the flowering–podding stage (A) and the maturity stage (B). Differences in bacterial beta diversity among different fertilization 
treatments were determined through PERMANOVA based on the Bray–Curtis distance matrix. CK: non-inoculated control in soil; PK, superphosphorus 
and potassium chloride; PK + N, PK chemical fertilizers plus urea; PK + R, PK chemical fertilizers plus Bradyrhizobium japonicum 5821. The effects of 
growth stage (G), rhizosphere effect (R), and treatment (T) on bacterial community composition were evaluated by three-way ANOVA, with the results 
shown at the top of the figure. *0.01 < p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

FIGURE 4

Relative abundance of dominant bacteria at the class level (relative abundance >1%) (A,B) for each treatment at the flowering–podding stage (A) and at 
the maturity stage (B). CK: non-inoculated control in soil; PK, superphosphorus and potassium chloride; PK + N, PK chemical fertilizers plus urea; PK + R, 
PK chemical fertilizers plus Bradyrhizobium japonicum 5821.

https://doi.org/10.3389/fmicb.2023.1161983
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wei et al. 10.3389/fmicb.2023.1161983

Frontiers in Microbiology 08 frontiersin.org

The dominant genus was norank_f_norank_o_Gaiellales (2.51–
7.71%) in bulk and rhizosphere soil at both stages, and their relative 
abundances varied significantly across different treatments (Figure 5). 
When applicated with PK + R, in bulk soil at the flowering–podding 
stage, the relative abundances of the genera norank_f_norank_o_
Gaiellales, Gaiella, Nocardioides, and Blastococcus were significantly 
(p < 0.05) increased, while the relative abundances of the genera 
Gemmatimonas, norank_f_SC-I-84, Sphingomonas, and Ellin6067 were 

significantly decreased. In rhizosphere soil at the flowering–podding 
stage, the relative abundances of the genera Blastococcus, Nocardioides, 
and norank_f_norank_o_Gaiellales were significantly (p < 0.05) 
increased, while the relative abundance of the genera norank_f_SC-I-
84, Ellin6067, norank_f_norank_o_Saccharimonadales, and 
Gemmatimonas were significantly decreased. In bulk soil  
at the maturity stage, the relative abundances of the genera  
norank_f_norank_o_Vicinamibacterales, Arthrobacter, and 

FIGURE 5

Relative abundances of top 20 dominant genera in different treatments at flowering–podding (A,B) and maturity (C,D) stages in bulk (A,C) and 
rhizosphere (B,D) soil. CK: non-inoculated control in soil; PK, superphosphorus and potassium chloride; PK + N, PK chemical fertilizers plus urea; PK + R, 
PK chemical fertilizers plus Bradyrhizobium japonicum 5821.
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norank_f_Vicinamibacteraceae were significantly (p < 0.05) increased. 
Overall, co-application of fertilization and rhizobium significantly 
increased the relative abundance of the genera norank_f_norank_o_
Gaiellales, Nocardioides, and Blastococcus, and decreased the relative 
abundance of Gemmatimonas, norank_f_SC-I-84, and Ellin6067 in 
bulk and rhizosphere soil at the flowering–podding stage. In addition, 
fertilization resulted in a significant reduction of norank_f_norank_o_
Elsterales and norank_f_Xanthobacteraceae in bulk soil at flowering–
podding stage. Application of nitrogen fertilizer resulted in significant 
decrease in Bacillus in bulk soil, and Mycobacterium and norank_f_
norank_o_C0119 in rhizosphere soil at maturity stage (Figure  5; 
Supplementary Table S3). The relative abundances of Bradyrhizobium 
in bulk and rhizosphere soil at the flowering–podding and maturity 
stages are shown in Supplementary Figure S2. Specifically, the relative 
abundance of Bradyrhizobium was lower in PK + R compared to 
PK + N in bulk soil at both the flowering-podding and maturity stages. 
However, in rhizosphere soil at the flowering-podding stage, the 
relative abundance of Bradyrhizobium was higher in PK + R compared 
to PK + N, while the opposite trend was observed at the maturity stage.

Spearman correlation analysis revealed the correlation between 
soybean yield and major bacterial communities at class and genus 
levels (Figure 6). In bulk soil, at the flowering–podding stage, the class 
KD4–96 (Figure 6A) and the genus norank_f_norank_o_norank_c_
KD4-96 (Figure 6E) were positively correlated with soybean yield. 
Conversely, the classes Gammaproteobacteria, Gemmatimonadetes, 
Bacteroidia, and Nitrospiria (Figure  6A), and the genera 
Gemmatimonas, Candidatus_Solibacter, Bryobacter, and Ellin6067 
were negatively correlated with soybean yield (Figure  6E). The 
bacterial communities in rhizosphere soil at the flowering–podding 
stage showed that the relative abundances of the classes Chloroflexia, 
Bacilli, and Ktedonobacteria (Figure  6B), and the genera 
Bradyrhizobium, Arthrobacter, and Nocardioides (Figure  6F) were 
positively correlated with soybean yield. The classes 
Gemmatimonadetes, Acidobacteria, Polyangia, and Holophagae 
(Figure  6B), and the genera Gemmatimonas, norank_f_ 
norank_o_Acidobacteriales, norank_f_SC-I-84, Ellin6067, and 
Candidatus_Solibacter (Figure 6F) were negatively correlated with 
soybean yield. In summary, the significant different class 
Gemmatimonadetes, and the genera Gemmatimonas and Ellin6067 in 
soil at the flowering–podding stage were negatively correlated with 
soybean yield. However, the soil bacterial community at both class and 
genus levels at maturity was not correlated with soybean yield 
(Figures 6C,D,G,H).

3.4. Factors driving bacteria variation in 
black soil

The RDA analysis showed the effects of soil properties on bacterial 
community composition at different stages (Figure 7). Overall, 29.41% 
of variation in the bacterial composition in these treatments at the 
flowering–podding stage was explained by RDA1 and 17.82% by 
RDA2 (Figure 7A). At the maturity stage, 68.14% of variation was 
explained by RDA1 and 0.51% by RDA2 (Figure 7B). Treatments at 
both stages in the bulk soil were separated along RDA2, whereas the 
treatments in rhizosphere soil were isolated from the bulk soil along 
RDA1. AK and TN were significantly related to bacterial communities 
at flowering-podding stage, and AK, OM, TN, and pH at maturity 

stage. This indicates the presence of a specific bacterial community 
composition between the bulk and rhizosphere soil treatments. Mantel 
test was proceeded to further investigate the influence of 
environmental factors on bacterial composition. There was a 
significant positive correlation between pH and bacterial community 
in the rhizosphere soil at the maturity stage (p < 0.05, 
Supplementary Table S4).

3.5. Integrated responses of soil properties 
and soybean yield on bacterial structure

Spearman’s correlation analyses between soil properties, nodule 
dry weight, soybean yield, and bacterial structure are shown in 
Supplementary Table S5. Nodule dry weight was negatively related to 
pH and positively related to AP and AK contents. Soybean yield was 
positively related to AP. Bacterial abundance was positively related to 
AN and AK, whereas bacterial diversity was negatively related to OM, 
AN, and AK. Bacterial composition was positively related to OM, AN, 
and AK, and negatively related to TN and bacterial abundance.

We assessed the effects of bacterial structure on main 
physicochemical factors and the soybean yield by using an SEM model 
based on Supplementary Table S5 (Figure 8A). This model fits our 
causal hypothesis (χ2 = 24, df = 18, p = 0.16, GFI = 0.92, RMSEA = 0.08). 
The effect of AP (path coefficient = 0.58) on soybean yield was 
significantly positive. The path coefficient of pH on bacterial 
composition was 0.66, which was higher than that of AP (0.42) and 
OM (0.21). The negative path coefficient of TN on bacterial 
composition was −0.42, which was higher than the path coefficient on 
bacterial diversity (−0.39). Bacterial composition positively affected 
nodule dry weight, and the path coefficient was 0.48, whereas OM and 
pH negatively affected nodule dry weight, the path coefficient was 
−0.51 and − 0.46. The final model explained the weightiness of 
different components, with soybean yield accounting for 34%, nodular 
dry weight for 33%, bacterial abundance for 6%, bacterial composition 
for 75%, and bacterial diversity for 29%. Details of the standardized 
direct and indirect effects for the SEM models are shown in Figure 8B.

4. Discussion

4.1. Long-term co-application of 
Bradyrhizobium japonicum 5821 and 
fertilizer promotes soybean yield and alters 
soil properties

Rhizobium inoculation has been suggested to promote soybean 
nodules and yields (Albareda et al., 2009; Hungria et al., 2013; Zhong 
et al., 2019; Ulzen et al., 2020). In our study, long-term inoculation 
with B. japonicum 5821 and application of PK fertilizer promoted 
soybean nodule dry weight by 33.94% when compared with PK + N, 
and increased soybean yield when compared with CK, PK, and PK + N 
(Table 1). This was similar to the study, soybean yield increased by 
10.1% (180 kg hm−1) after 8 years of prolonged field inoculation with 
Bradyrhizobium and NPK fertilizer application in central India (Rawat 
et al., 2013). However, most previous studies have been carried out on 
other crops based on short-term field trials, not at long-term scale. For 
example, 2 years of field experiments showed that inoculating rhizobia 
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FIGURE 6

Spearman correlation coefficients between soybean yield and dominant bacteria at class (relative abundance >1%) (A–D) and genus level (20 most 
abundant) (E–H) in bulk soil (A,C,E,G) and rhizosphere soil (B,D,F,H) at the flowering–podding stage (A,B,E,F) and maturity stage (C,D,G,H). Bold font 
indicates classes and genera with significant differences among different treatments. *0.01 < p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

FIGURE 7

Redundancy analysis (RDA) profile constructed from the OTU composition of bacteria and soil properties in the bulk and rhizosphere soil samples 
under different fertilization levels at the flowering–podding stage (A) and the maturity stage (B). The position and length of the arrows indicate the 
direction and strength of the influence of soil variables on bacterial communities, respectively. The significant variables are shown by red arrows 
(p < 0.01). CK, non-inoculated control in soil; PK, superphosphorus and potassium chloride; PK + N, PK chemical fertilizers plus urea; PK + R, PK chemical 
fertilizers plus Bradyrhizobium japonicum 5821.
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alone was not enough to promote cowpea yield; only rhizobia 
inoculation combined with phosphate and potassium fertilizer could 
promote the yield (Chiamaka, 2015). It can be seen that long-term 
inoculation could increase soybean yield, but short-term inoculation 
did not necessarily increase yield, which was related to the cumulative 
effects of continuous inoculation, suggesting that continuous 
inoculation was necessary for production. In addition, Bradyrhizobium 
spp. inoculation and N fertilizer application for two consecutive years 
increased soybean yield by 130 kg ha−1, and promoted soybean dry 
weight and nitrogen content, but N fertilizer application without 
rhizobia inoculation only increased plant dry weight, the effect on 
soybean yield and nitrogen content was insignificant (Ruiz Diaz et al., 
2009). Consequently, rhizobium combined with appropriate fertilizer 
can improve the yield of leguminous crops by improving soil fertility 
and crop root environment, and providing sufficient nitrogen for crop 
growth (Quandt and Hynes, 1993; Nett et al., 2022). And B. japonicum 
5821 inoculation instead of nitrogen fertilizer increased soybean yield.

Long-term nitrogen fertilization (PK + N) reduced root nodule 
dry weight by 69% when compared with PK, and by 33.94% when 
compared with PK + R, because soil biological nitrogen fixation can 
be inhibited by excessive nitrogen fertilizer (Liu et al., 2019; Smercina 
et al., 2019; Zheng et al., 2019). Excessive nitrogen application can also 
negatively affect soybean growth (Zhou et  al., 2006). Nitrogen 
application weakened the symbiotic nitrogen fixation ability of 
soybean with different genotypes (Reinprecht et al., 2020). Nitrogen 
fertilizer significantly reduced rhizobium abundance treated by 
ambient CO2 (Liu et al., 2021). In addition, PK + R had higher soybean 
yield and nodulation compared with PK + N. The synergistic effects of 
nodulation and nitrogen fixation on yield indicated that rhizobium 
inoculation reduced nitrogen availability, this is in line with preceding 
research (Turan et al., 2019; Sanyal et al., 2020). Therefore, rhizobia 
inoculation is a greener and more effective agricultural management 
measure than nitrogen fertilizer application.

The difference of pH between bulk and rhizosphere soil is 
insignificant in each treatment at the flowering–podding stage, which 
confirmed the cumulative effect and precise effect of long-term targeted 

inoculation of rhizobia. Long-term fertilization resulted in soil 
acidification (Barak et al., 1997; Schroder et al., 2011; Yang et al., 2018). 
Our study also showed that long-term fertilization resulted in a 
significant decrease in soil pH (Table 1). The pH of PK + R was obviously 
greater than that of PK and PK + N at the flowering–podding stage, 
suggesting that inoculation with B. japonicum 5821 can prevent soil 
acidification. This observation is consistent with preceding research 
(Watkin et al., 2000; Makoi et al., 2013; Alemayehu and Dechassa, 2022). 
Because rhizobia was more suitable for survival in near neutral pH 
environment than low pH environment. Inoculating rhizobium 
significantly increased soil pH, further increased the availability of Ca, 
Na, Fe, Cu, Zn, and Mn nutrients in rhizosphere soil (Bambara and 
Ndakidemi, 2010), also considerably extended the absorption of 
nutrient elements such as P, K, Ca, and Mg in plants (Makoi et al., 2013). 
It is suggested that inoculation with rhizobium inhibits soil acidification 
by increasing nutrient availability in soil and extending absorption of 
nutrient in plants. The total and available nutrients of rhizosphere soil 
were higher than that of bulk soil at the maturity stage, which is 
supported by recent studies (Chen et al., 2018, 2019; Li et al., 2019). This 
may be related to the carbohydrate and amino acid substances in the 
rhizosphere secretions promoted the contents of various nutrients in the 
rhizosphere soil, resulted in a significantly different rhizosphere 
microenvironment from that in bulk soil (Ai et al., 2013). Furthermore, 
the pH of PK + R was observably less than that of CK at the flowering–
podding stage, indicating certain limitations on the effect of rhizobia 
inoculation on soil pH. Thus, inoculation with rhizobia can prevent soil 
acidification to some extent.

4.2. Effects of long-term co-application of 
Bradyrhizobium japonicum 5821 and 
fertilizer on bacterial community 
composition

Rhizobia inoculation not only affected the growth of aboveground 
crops, but also soil microbiota. In the present study, a combination of 

FIGURE 8

Structural equation model (SEM) showing the hypothesized causal relationships among soil properties (OM, TN, pH, AP), nodule dry weight, soybean 
yield and bacterial abundance, diversity, and composition (A). This model resulted in a good fit to the data, with a model χ2 = 24, df = 18, p = 0.16, 
GFI = 0.92, RMSEA = 0.08. Red arrows indicate significant positive correlations, while blue indicates significant negative relationships (p < 0.05). R2 values 
represent the proportion of the variance explained for each endogenous variable. The direct and indirect effects of factors on bacterial composition 
were determined using SEM (B).
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amplicon sequencing and qPCR analyses revealed that fertilization 
and inoculation with rhizobia had far-reaching influence on bacterial 
abundance and richness (Figure 1). We observed that at the maturity 
stage, bacterial abundance (in bulk soil) and richness (in rhizosphere 
soil) of PK + R were significantly higher than those of other treatments, 
indicating that co-application of B. japonicum 5821 and PK chemical 
fertilizers increased bacterial abundance and richness. This is 
consistent with previous reports on single inoculation of rhizobia or 
single fertilization. Fall et  al. (2016) observed that rhizobium 
inoculated with native trees of Senegalia senegal (L.) Britton in a gum 
Arabic production area improved soil microbial biomass and 
functional diversity. Phaseolus beans inoculated with two native 
rhizobium significantly increased bacterial richness (Trabelsi et al., 
2011). Co-inoculation of alfalfa with rhizobia slightly promoted 
microbial diversity in rhizosphere soil (Ju et al., 2019). Wang et al. 
(2018) characterized rhizosphere and bulk soil bacterial communities 
in a 36-year fertilizer experiment and found that application of N 
fertilizer decreased bacterial abundance, whereas MNPK (horse plus 
NPK) fertilizer enhanced bacterial abundance in the maize soil. Long-
term application of high phosphorous fertilizer reduced bacterial 
diversity in wheat rhizosphere soil (Liu et al., 2020). Liu et al. (2021) 
reported that inoculation with Bradyrhizobium diazoefficiens USDA 
110 reduced the diversity of soybean rhizosphere microbes. These 
inconsistent results may be on account of the interaction between soil 
and plants, which leads to complex soil environments and diverse 
microorganisms (Wu et al., 2011; Francioli et al., 2016; Hu et al., 2018; 
Semenov et al., 2020). Furthermore, the bacterial abundance in PK + R 
was observably lower than in other treatments in rhizosphere soil at 
maturity (Figure 1B). First, this may be because the inoculation of 
rhizobia inhibits the growth of other bacteria, leading to the 
enrichment of rhizobia in the soybean rhizosphere soil. Secondly, 
rhizobium can symbiosis nitrogen fixation with soybean, and soybean 
growth slows down after entering the maturity stage compared with 
the earlier stages, resulting in a decrease in bacterial abundance (Sohn 
et al., 2021). Third, crop roots mainly stimulate specific rhizosphere 
groups, resulting in communities that become increasingly different 
from the bulk soil, often with lower diversity (Shi et al., 2015; Fan 
et al., 2017; Nuccio et al., 2020).

Co-application of B. japonicum 5821 and PK fertilizer led to 
significant diversification of soil bacterial community composition 
(Supplementary Tables S2, S3). The co-application decreased the 
relative abundance of the class Gemmatimonadetes in all treatments 
during both growth stages (Figure 4); and significantly increased the 
relative abundance of the genera norank_f_norank_o_Gaiellales, 
Nocardioides, and Blastococcus, and decreased the relative abundance 
of Gemmatimonas, norank_f_SC-I-84, and Ellin6067 in bulk and 
rhizosphere soil at the flowering–podding stage (Figure  5). Such 
variation in bacterial composition caused by long-term inoculation 
was similar to those in the short-term scale. Sun et  al. (2009)  
carried out 1-year field inoculation experiments, found that  
inoculation with Sinorhizobium meliloti CCBAU01199 increased  
Alphaproteobacteria and Betaproteobacteria relative abundance, 
decreased Gammaproteobacteria, Deltaproteobacteria, Firmicutes, 
and Actinobacteria abundance in alfalfa rhizosphere soil. During in 
situ restoration of a vanadium titanomagnetite tailings dam using 
Pongamia pinnata for 2 years, the abundance of groups under the 
phylum Proteobacteria increased in rhizosphere flora, and OTUs 
associated with rhizobia were preferably enriched (Yu et al., 2019). 

Furthermore, fertilization has been shown to alter soil microbial 
community composition (Geisseler and Scow, 2014; Ma et al., 2018; 
Zhou et  al., 2019; Zhu et  al., 2021). Nitrogen directly affect the 
bacterial community composition and soil factors, NPK directly affect 
the fungi community composition (Cassman et al., 2016). We can 
imply that long-term co-application of B. japonicum 5821 and PK 
fertilizer induced varied changes in the bacterial community 
structures (Zhu et  al., 2018; Chee-Sanford et  al., 2019; Kalam 
et al., 2022).

From our results, soil bacterial abundance at the flowering–
podding stage were positively correlated with soybean yield, but not 
at the maturity stage (Figure  2). This is related to the different 
ecological functions of bacterial community in plant development 
stage. Root exudates are the communication link between plants and 
soil bacterial communities. Plants at different development stages 
release root exudates to change the assembly of plant microbiome 
(Ajilogba et al., 2022). And soil microbial activity at the flowering–
podding stage of soybean was more vigorous than that at the maturity 
stage (Xu et  al., 2009; Sohn et  al., 2021). Additionally, Spearman 
correlation results revealed that at the flowering–podding stage, the 
class KD4–96 and the genus norank_f_norank_o_norank_c_KD4-96 
in bulk soil, the classes Chloroflexia, Bacilli, and Ktedonobacteria, and 
the genera Bradyrhizobium, Arthrobacter, and Nocardioides in 
rhizosphere soil, were positively correlated to soybean yield. The 
significant different class Gemmatimonadetes, the genera 
Gemmatimonas and Ellin6067 in bulk and rhizosphere soil were 
negatively correlated with soybean yield (Figures  6A,B,E,F). The 
results showed that these bacteria had significant effect on soybean 
yield. This was similar to the report by Niraula et  al. (2022) who 
observed that the rhizosphere soil microorganisms during soybean R1 
(beginning of flowering)—R2 (blooming) stages, the class 
Anaerolineae, family Micromonosporaceae, and genera Plantomyces, 
Nitrospira, and Rhizobium have important effects on soybean yield. 
But the soil bacterial community at both class and genus levels at 
maturity was not significantly correlated with soybean yield 
(Figures  6C,D,G,H), this further indicated that the key bacterial 
communities determine soybean yield were concentrated in the early 
stages of soybean growth.

Mantel test and Spearman correlation results showed that soil 
OM, TN, pH, and AP were the dominant variables affecting bacterial 
community composition (Supplementary Tables S4, S5). The SEM 
showed significant effects of the four variables and bacterial diversity 
on bacterial composition. Nodule dry weight was negatively affected 
by OM and pH, and soybean yield was positively affected by AP 
(Figure 8). Preceding reports agree with our results (Yan et al., 2014, 
2019; Liu et al., 2021).

5. Conclusion

In the present study, we evaluated the effects of four treatments 
(CK, PK, PK + N, and PK + R) on the bacterial composition of 
soybean grown in the black soil of Northeast China at the flowering–
podding and maturity stages. Long-term inoculation with 
B. japonicum 5821 and application of PK fertilizer increased soybean 
nodule dry weight and soybean yield and altered soil properties. 
Co-application of B. japonicum 5821 and PK increased bacterial 
abundance in soybean bulk soil, and reduced bacterial abundance in 
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rhizosphere soil at the maturity stage. The classes Alphaproteobacteria, 
Actinobacteria, Thermoleophilia, Gammaproteobacteria, 
Acidobacteria, Vicinamibacteria, and Gemmatimonadetes were the 
dominant bacteria across all the soil samples. Co-inoculation with 
B. japonicum 5821 and PK fertilizer strongly altered the bacterial 
community composition. The key bacterial communities that 
determine soybean yield were concentrated in the flowering–podding 
stage, not at maturity stage. Soil OM, TN, pH, and AP were the 
dominant variables affecting bacterial composition. The results 
demonstrate that long-term inoculation of rhizobia has the potential 
to promote soybean productivity and nitrogen fixation ability, and to 
improve soil fertility.
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