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The comparative genomic analysis of Lactiplantibacillus plantarum YW11 (L. 
plantarum YW11) isolated from Tibetan kefir involves comparison of the complete 
genome sequences of the isolated strain with other closely related L. plantarum 
strains. This type of analysis can be used to identify the genetic diversity among 
strains and to explore the genetic characteristics of the YW11 strain. The 
genome of L. plantarum YW11 was found to be composed of a circular single 
chromosome of 4,597,470 bp with a G + C content of 43.2%. A total of 4,278 open 
reading frames (ORFs) were identified in the genome and the coding density 
was found to be 87.8%. A comparative genomic analysis was conducted using 
two other L. plantarum strains, L. plantarum C11 and L. plantarum LMG21703. 
Genomic comparison revealed that L. plantarum YW11 shared 72.7 and 75.2% of 
gene content with L. plantarum C11 and L. plantarum LMG21703, respectively. 
Most of the genes shared between the three L. plantarum strains were involved 
in carbohydrate metabolism, energy production and conversion, amino acid 
metabolism, and transcription. In this analysis, 10 previously sequenced entire 
genomes of the species were compared using an in-silico technique to discover 
genomic divergence in genes linked with carbohydrate intake and their potential 
adaptations to distinct human intestinal environments. The subspecies pan-
genome was open, which correlated with its extraordinary capacity to colonize 
several environments. Phylogenetic analysis revealed that the novel genomes were 
homogenously grouped among subspecies of l Lactiplantibacillus. L. plantarum 
was resistant to cefoxitin, erythromycin, and metronidazole, inhibited pathogens 
including Listeria monocytogenes, Clostridium difficile, Vibrio cholera, and 
others, and had excellent aerotolerance, which is useful for industrial operations. 
The comparative genomic analysis of L. plantarum YW11 isolated from Tibetan 
kefir can provide insights into the genetic characteristics of the strain, which can 
be used to further understand its role in the production of kefir.
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1. Introduction

Lactic acid bacteria (LAB) are a group of microorganisms that are 
found everywhere in nature. Since they possess probiotic and 
antimicrobial properties, various species of LAB are added to a wide 
variety of foods to provide consumers with the opportunity to reap the 
associated health benefits (Sarwar et al., 2018; Rodrigo-Torres et al., 
2019; Brandt et al., 2020; Tenea and Ortega, 2021). In addition, LAB 
species help to the safety of food by preventing the spread of microbes 
that cause unwanted spoiling or that are harmful. These organisms are 
also commonly employed in the fermentation procedures that are 
used to produce food. Barrangou et al. (2011), Fernández et al. (2013), 
Swain et al. (2014), Yépez et al. (2017), Adesulu-Dahunsi et al. (2018), 
and Goel et  al. (2020). Additionally, LAB species are used in the 
medical and pharmaceutical industries, as well as in healthcare. LAB 
have demonstrated a variety of health promoting properties which can 
be  used against intestinal illness, including inflammatory bowel 
diseases (IBD), as a result of their demonstrated antibacterial, immune 
modulating, and ability to control gut flora activities and these have 
been confirmed by different researchers (Yonekura et al., 2009; Hojsak 
et al., 2010; Kwon et al., 2010; Joo et al., 2011; Zhang et al., 2018). This 
is because these bacterial strains can regulate gut flora and control the 
bacteria that live there. Lactobacillus species are generally regarded as 
safe (GRAS) (Sarwar et al., 2018) for their usage in human bodies as 
well as their use in the food sector for an extended period as starter 
cultures. Among the lactobacillus species, lactiplantibacillus plantarum 
(previously known as lactobacillus plantarum) is the species that has 
received the most attention from researchers. It is possible to obtain 
lactiplantibacillus plantarum from a variety of sources, such as plant 
matter, fermented foods (yoghurt, pickles, cheese), meat products, 
fruit juices, the gastrointestinal tract of both humans and animals, and 
wine. In addition to that, this species is very useful for the fermentation 
of a wide range of foods (Stefanovic et al., 2017; Zhou et al., 2021; 
Wang et al., 2022).

The probiotic qualities of these strains are primarily responsible 
for all these activities, and because to the health promoting features 
that these strains possess, they have garnered the interest of researchers 
from all over the world (Jeong et al., 2022). More than 90 percent of 
the market for probiotics throughout the world was held by human 
products in 2021. According to the findings of experts, the worldwide 
market for probiotics might be worth $3.5 billion by the year 2026 
(Wang et al., 2021). L. plantarum is a bacterium that dwells in the 
gastrointestinal tract (Kleerebezem et al., 2003; Aziz et al., 2022). It 
may be  found in nearly any kind of environment. There are 
approximately 400 different bacterial species that make up the human 
stomach related framework. Some of these bacteria include 
L. acidophilus (Hatami et al., 2022), L. pentosus, L. brevis, L. lactis 
(Ashaolu and Reale, 2020), L. amylovorus, L. casei, L. bulgaricus 
(Albayrak and Duran, 2021), L. fermentum, L. plantarum and 
L. rhamnosus produces extracellular, exopolysaccharides, bacteriocins 
and lipoteichoic acids (Gupta et al., 2021).

The growing number of lactiplantibacillus strain genome 
sequences has shown their genetic potential for probiotic 
characteristics and adaptation to varied environmental conditions and 
stressors. Our Tibetan kefir strain Lactiplantibacillus plantarum YW11 
regulates modulatory effects on gut dysbacteriosis, improves 
immunological response, and reduces inflammatory bowel illness, 
according to our newest findings (IBD) (Jian et al., 2020; Zhang et al., 

2020). In addition to that it was also evident from another study that 
the L. plantarum YW11 has good tolerance to acid and bile stress (Jian 
et al., 2017). Correspondingly, we have also found that L. plantarum 
YW11 may be employed as a functional agent in the production of 
fermented dairy products with better textural stability and bioactivities 
such as cholesterol reducing, antioxidant, and antibiofilm properties 
(Zhang et al., 2020, 2022). Similarly, this strain L. plantarum YW11 
has the competency of biotransformation of linoleic acid (LA) into 
conjugated linoleic acid (CLA) (Aziz et al., 2020). Most study has 
focused on viable probiotic strain effects and mechanisms. Scientists 
are growing interested in employing probiotics as immunologically 
active, microbiologically non-viable medications. It may be  more 
effective, viable, and safer for therapeutic probiotic usage due to safety 
problems with the active metabolic form favoring bacterial 
translocation. The risk favored active metabolic form may explain 
these advantages. However, its genetic base for probiotic properties 
and adaptability is still mostly recognized (Moradi et al., 2020; Teame 
et al., 2020; De Jesus et al., 2022). Genomic-level studies can provide 
insights into the primary genetic factors and molecular mechanisms 
associated with the probiotic characteristics of these microorganisms, 
such as gastrointestinal tract survival, pathogen inhibition, and 
immunoregulation GIT survival, pathogen inhibition, and 
immunoregulation (Ventura et al., 2012; Salvetti and O’Toole, 2018; 
Castro-López et al., 2021).

Pan-probiosis, which compares the genomes of numerous 
probiotic bacterial strains, employs comparative genomics as an 
additional tool. This research aims to identify the best probiotic 
bacteria strains. Pan-genomic derivatives are a technique for 
discovering genes linked with probiotic properties that are either 
conserved across all strains of a certain bacteria or unique to a given 
genus or species (Rodenes et al., 2022). All known bacterial strains 
either have these genes, or all but one of them do not. Through the 
integration of phylogenomic research, studies can link genotypes and 
phenotypes to specific strains, enabling the use of those strains for 
specialized medical or biotechnological applications. This line of 
reasoning has been used by researchers to explain the probiotic profile 
of the L. plantarum YW11 strain. Some of the researchers used a 
particular technique, while others went in a completely different 
direction (Shin et al., 2022). Recent studies on them have given us 
more information about the probiotic potential of recently discovered 
species like Lactobacillus helveticus (Alessandri et  al., 2022). It is 
difficult to assert that we have a firm grasp on the subject given the 
genetic pathways used to metabolize a wide variety of carbohydrates 
in the gut microbiota of newborns and adults, as well as the organism’s 
genomic plasticity. Even though we now have a better understanding 
of how L. plantarum YW11 adapts to the human GI tract, it would 
be premature to say that we currently have a firm grasp on the topic. 
The adaptability of the creature’s genome is responsible for this special 
quality. Therefore, it is crucial that this research includes genomes with 
distinctive traits. The genetic foundations of L. plantarum YW11, 
which survives in the various ecological niches that make up the 
human gut microbiome, are being investigated using comparative 
genomic analysis (Alessandri et  al., 2022; Asarina et  al., 2022; 
Chaudhary et al., 2022; Hebert and Meglécz, 2022; McPherson et al., 
2022; Valdez-Baez et al., 2022; Wang et al., 2022; Xiang and Li, 2022). 
When analyzing these genetic roots, this context is very important. It 
also contains four additional strains that were isolated from young 
people in Chile and demonstrated a broad range of adaptability to the 
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host using an in-silico method. Chile provided the first mention of the 
appearance of these novel strains (Alessandri et al., 2022; McPherson 
et al., 2022; Wang et al., 2022).

To this end, we attempted to characterize the functional genes of 
L. plantarum YW11 and other genomes with reported probiotic 
effects, in addition to other biological traits that may relate to the 
distinct host health advantages of this strain. We also checked for 
things like hydrophobic cell walls, antibiotic resistance, and 
antagonistic potential, and we examined cell growth. In that study, 
L. plantarum was shown to be resistant to the antibiotics cefoxitin, 
erythromycin, and metronidazole; to have a high inhibition rate 
against pathogens (including Listeria monocytogenes, Clostridium 
difficile, Vibrio cholera, and others); and to have a high aerotolerance, 
which is an advantageous property for industrial processes (Alessandri 
et al., 2022; Asarina et al., 2022; McPherson et al., 2022; Valdez-Baez 
et al., 2022; Wang et al., 2022). The genome project’s findings may shed 
light on some of these traits and mechanisms, paving the way for 
future research. The purpose of this research was to conduct a 
comparative genome analysis of this strain with 10 previously 
sequenced whole genomes of the species, and by searching for genes 
associated with favorable features.

2. Materials and methods

2.1. Analysis of Lactiplantibacillus 
plantarum YW11 comparative genome

The whole of the L. plantarum YW11 genome was submitted to 
GenBank and assigned the accession number.1 The nucleotide FASTA 
format was utilized in order to retrieve all 10 of the entire genome 
sequences of L. plantarum that can be found in the NCBI GenBank 
database (Hebert and Meglécz, 2022). All genomes were annotated 
using Prokka v1.14.5. The L. plantarum YW11 genome, along with the 
other fully sequenced genomes of the species, was used to conduct a 
synteny analysis. Several whole-genome sequence alignments were 
performed with the help of the implemented version of Mauve (v2.4) 
(Chaudhary et al., 2022).

2.2. Antibiotic resistance genes prediction

The NCBI-AMRFinderPlus, CARD, ARG-ANNOT, Resfinder, 
and MEGARES 2.0 databases were searched using the ABRIcate v1.0.1 
software (Xiang and Li, 2022) in order to locate antibiotic resistance 
genes for the purpose of validating the accuracy of antibiotic resistance 
gene prediction (last update of databases: September 2022).

2.3. Taxonomy, phylogenomics, and 
evolutionary analysis

Calculations were made to determine the average levels of 
nucleotide similarity (ANI) between the 10 genomes of 

1 https://www.ncbi.nlm.nih.gov/assembly/GCF_004028295.1

L. plantarum and the outgroup species (Alkalay-Oren et al., 2022). 
The phylogenetic tree was constructed by applying the Codon 
Tree Test method developed by the Pathosystems Resource 
Integration Center (PATRIC) (2viewed on 28 September 2022) to 
many genes, each of which only had a single copy of the gene 
(Spergser et al., 2022). This allowed for the phylogenomic tree to 
be accurate and reliable. The RaxML program utilized a total of 
100 repetitions in order to calculate the support values (Batarseh 
et al., 2022).

2.4. Pangenome analysis

Data for 10 genomes retrieved from the NCBI RefSeq database 
were analyzed by panX to do the computation for the pangenome size 
(Ding et  al., 2018). The analysis with the default settings and an 
identity cut-off of 99% was run. This was done while taking into 
consideration an abnormally high average GC content, which was 
equal to two times the standard deviation. The Cluster of Orthologous 
Genes (COG) designations were used to carry out the functional 
analysis and to explore the evolutionary relationships between gene 
clusters, and to identify potentially related gene clusters (Kamau 
et al., 2020). The analysis was used to illustrate the number of distinct 
genes possessed by each L. plantarum strain, and to analyze the 
biosynthetic pathways of gene clusters, and to identify potential 
new pathways.

2.5. Identifying genes related to probiotic 
features

The research that has been conducted on the genera L. plantarum 
and Lactobacillus has resulted in the discovery of genes that are 
involved in the mechanisms of adhesion, resistance to stress 
conditions (acid, bile salts, heat, and osmotic), the repair and 
protection of DNA and proteins, and the production of vitamins. 
These genes are also responsible to produce vitamins. Using a piece 
of software known as the Basic Local Alignment Search Tool 
(BLAST),3 we were able to match the protein sequences of these genes 
with the genome that we are now researching (Gaina et al., 2022). The 
alignment has to achieve at least 70% identity and a cutoff of 1E5 to 
be successful.

3. Results

3.1. Antibiotic resistance genes prediction

The discovery of genes that confer resistance to antibiotics led to 
the identification of two genes in total: vanY and vanB in Figure 1. The 

2 http://www.patricbrc.org

3 https://blast.ncbi.nlm.nih.gov/Blast.cgi
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significance of the coverage percentage for each and every hit was 
more than 91.42 percent (Table 1).

3.2. 3.2. Multiple whole genome sequence 
alignments

L. plantarum YW11 had a circular chromosome that was 2.99 
Mbp in size and had 44.5% GC in its genome when it was completely 
sequenced. The genome assembly started off with a total of six contigs 
and a N50 value of 2,991,907. However, after the gaps in the sequence 
were filled in, it was able to retrieve the whole genome in a single 
contig. During the annotation procedure, a total of 2,832 genes, 68 
transfer RNAs, 16 ribosomal RNAs, and 1986 CDS were found. The 
CDS represented 907 putative proteins. Concerning the origin of the 
data, most samples were collected from the feces of children, while just 
a few were taken from the feces of adults, vagina, the environment, 
and human breast milk. L. plantarum YW11 demonstrated collinearity 
of the gene blocks with most of the other genomes that were assessed 
while the conservation of the structure of the genome was being 
evaluated. In this regard, additional L. plantarum strains exhibited 
both a major and a small inversion in the genome’s core region, 
respectively.

3.3. Phylogenomic analysis

The phylogenetic tree organized the genomes into clusters 
according to their prior taxonomic structure. This was done to 
represent the divergence that occurred among the branches of the 
subspecies that all descended from the same ancestor as shows in 
Figure 2. We found, as was to be predicted, that most genomes were 
located in a manner that allowed for uniform segregation into 
subspecies plantarum taxonomic categories.

3.4. Average nucleotide identity

In order to assess the genomic link between the several 
L. plantarum genomes, an average nucleotide identity (ANI) analysis 
was carried out on each of the genomes that were selected for this 
research (both from public databases and the novel strains). This was 
done in order to define the genomic relationship among the 
L. plantarum genomes. The genomes were found to be substantially 
grouped into an ANI structure, with values reaching more than 0.991 
as shows in Figure 3. It is interesting to note that some genomes came 
out with an ANI range lower than 0.994. Other strains of L. plantarum, 
for example, were isolated from calf feces and had the lowest ANI 
value. This elucidates the genetic difference that exists between strains 

A

B

FIGURE 1

Prediction of antibiotic resistance genes (A) The criteria, cut-off and percent identity (B) the vanY gene show in strict area of ARO.

TABLE 1 Resistance gene identification.

RGI 
criteria

ARO 
term

SNP Detection 
criteria

AMR gene 
family

Drug class Resistance 
mechanism

% identity of 
matching 

region

% length of 
reference 
sequence

Strict VanY gene 

in vanB 

cluster

Protein homology 

model

vanY, 

glycopeptide 

resistance gene 

cluster

Glycopeptide 

antibiotic

Antibiotic target 

alteration

31.33 91.42

https://doi.org/10.3389/fmicb.2023.1157615
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Aziz et al. 10.3389/fmicb.2023.1157615

Frontiers in Microbiology 05 frontiersin.org

that occupy the animal gut microbiome and those that inhabit the 
human gut microbiome. When it came to L. plantarum YW11, the 
ANI value was close to 0.995.

Figure 3 illustrates the taxonomic characterization achieved by 
doing similarity comparisons based on ANI values that were 

computed for each of the 10 strains of L. plantarum. In every single 
one of the comparisons that L. plantarum YW11 underwent with 
other strains of L. plantarum, the ANI values ranged between 0.94 and 
0.96 when grouped with these strains, showing its high level of 
nucleotide similarity with this species.

FIGURE 2

Phylogenetic tree shows genomes into clusters according to their taxonomic analysis.

FIGURE 3

ANI analysis of genome to shows genomic relationship.
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3.5. Probiotic genes identification

According to the display run summary and file information in 
Tables 2,3, the investigation uncovered a total of 16 condensed genes 
that were associated with adhesion. Among these genes were 
sequences that codified for sortases. The condensed genes include 
Immunity protein membrane-bound protease CAAX family, Glycerol 
uptake facilitator protein 3 OS = Lactobacillus plantarum, DNA 
helicase IV, and Alpha-glycerophosphate oxidase as display in 
Figure  4. Two sequences were codified for Accessory factor for 
ABC-transporter PlnH and Bacteriocin ABC-transporter, 
ATP-binding and permease protein PlnG shown in Table 4.

3.6. Binary pan genome

The calculation of the size of the pangenome found a total of 4,477 
genes, based on how they were distributed throughout the 10 

genomes. According to the ANI analysis, the fact that L. plantarum 
YW11 formed a well-supported clade with L. plantarum YW11 81 in 
the phylogenomic tree that was constructed using single-copy genes 
suggests that this strain is closely related as shows in Figure 5B. While 
performing experiment, L. plantarum strains were shown to 
be effective probiotics and revealed a connection to other clades as 
display in Figure 5A.

4. Discussion

Comparative genomics studies on various strains of L. plantarum 
may provide information on how different taxonomic groups adapt to 
their habitat and which of their traits are required for such adaptations. 
These modifications might be related to the host or to the geological 
and geographical environment in which they dwell. The taxa of 
L. plantarum exhibit greater genomic variety than previously believed, 
according to earlier findings from pangenome research (Kamau et al., 
2020; Gaina et  al., 2022; Li et  al., 2022). A closed pangenome is 
regarded as a finalized pangenome in which the number of genomes 
does not change even if new genomes are added to it, as opposed to 
an open pangenome, that expands every time a new genome is added. 
It has been proposed that whether the pangenome is open or closed is 
closely tied to the mode of life of the bacterial species being studied 
(Surve et al., 2022). Given this perspective, animals with an open 
pangenome are which live in various habitats and have a variety of 
genetic exchange pathways. Salmonellae, Escherichia coli, Helicobacter 

TABLE 2 Run summary for the analysis.

Run summary

Number of Files analyzed 2

Number of DNA fragments analyzed 1

Total bases in all DNA 2,991,907

Number of Areas of Interest (AOI’s) 1

TABLE 3 The file name, class, and start and end.

AOI Start End Class Filename

NZ_CP0350311.0.AOI_01 261,713 2,652,058 171.2;  Plantaricin_F undefined

TABLE 4 The name of probiotic genes, function, and Motifs.

Name Function Motifs

orf00001 DNA helicase IV OS=Bacillus subtilis (strain 168) OX = 224,308 = held PE = 1 SV = 1

orf00002 PlnY

orf00005 PlnS

orf00006 PlnS

orf00008

orf00010 PlnS

HlyD Accessory factor for ABC-transporter PlnH PF13437

LanT Bacteriocin ABC-transporter, ATP-binding and permease protein PlnG PF00005; PF03412

171.2; Plantaricin_F ggmotif; Lactococcin; Bacteriocin_llc; 171.2; Plantaricin PF04369; PF10439

orf00019 P71468_LACPL Plnl, (Immunity protein membrane-bound protease CAAX family)

orf00021 Transposase for insertion sequence element IS905 OS = Lactococcus lactis subsp. Lactis (strain IL1403) OX = 272,623 

GN = tra905 PE = 3 SV = 1

orf00023

orf00024

orf00026

orf00028 Glycerol uptake facilitator protein 3 OS = Lactobacillus plantarum (strain ATCC BAA-793/ NCIB 8826 / WCFS1) 

OX = 220668 GN = glpF3 PE = 3 SV = 1

orf00030 Alpha-glycerophosphate oxidase OS = Enterococcus Casseliflavus OX = 37,734 GN = glpO PE = 1 SV = 1
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FIGURE 4

The gene names and their functions.

A

B

FIGURE 5

The panX outcomes for the pangenome analysis and exploration. (A) L. plantarum strains were shown to be effective probiotics and revealed a 
connection to other clades (B) the gene counts distribution and length distribution analysis.
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pylori, Streptococci, and Meningococci pangenomes are a few examples. 
As a result, they have a restricted selection of genes available to them. 
Examples of closed pangenomes are Mycobacterium TB, Bacillus 
anthracis, and Chlamydia trachomatis (Gaina et al., 2022; Li et al., 
2022; Liu et al., 2022; Surve et al., 2022; Syrokou et al., 2022).

The gastrointestinal tract includes the oral cavity, large intestine, 
stomach, and small intestine of the human are some of the locations 
where L. plantarum YW11 may be found. It stands out among gut 
microbes because it is a major component of the gut microbiota in 
newborn humans and is frequently found in the gut microbiota of 
adults (Teame et al., 2020). Humans are the only species with this 
characteristic (Kim et al., 2022). Previous research indicates that by 
examining the core genome, which is a genetically conserved section, 
we may be able to identify subspecies-specific adaptations. The COGs 
discovered in each strain isolated from Chileans in this study were 
found to be among the higher percentages allocated to the functional 
category “carbohydrate transport and metabolism (G)” in the shell 
gene set (Li et al., 2022). The metabolism of carbohydrates falls under 
this category. To acquire nutrients and subsequently carve out an 
ecological niche for themselves, these functions are crucial in 
controlling the contact with the host and the environment (Carpi et al., 
2022; Yin et al., 2022; Aziz et al., 2023).

It’s remarkable how different conclusions can be drawn from the 
phylogenetic analysis of L. plantarum YW11. The L. plantarum YW11 
strain was classified as a subspecies of lactobacillus in both the 
phylogenetic tree we built and the original annotation. L. plantarum 
YW11, which was isolated from an infant’s gut microbiota, thrived in 
neutral HMOs such as LNT and LNnT. Previous studies suggest 
L. plantarum YW11 may be a niche adaptation rather than a horizontal 
gene transfer (Syrokou et al., 2022). L. plantarum YW11 also grouped 
further away from Chilean isolated strains with an ANI value <0.98. 
Its genome is closer to other L. plantarum strain, which was isolated 
from a calf ’s stomach microbiota. Albert et al. study’s grouped the 
L. plantarum YW11 genome like the infantis subspecies. Although 
most L. plantarum genomes belong to the subspecies lactobacillus, 
some strains, such as YW11, may have had a unique genomic 
architecture to adapt to their ecological niches (Spergser et al., 2022).

5. Conclusion

In our recently published study we  demonstrated that the 
L. plantarum YW11 genome we found exopolysaccharides including 
terpenes, T3PKS and RiPP like regions. On further investigations of 
this genome with other species, e.g, enterococcus, bacillus cereus and 
halo bacillus we noticed that L. plantarum YW11 genome has two 
bacteriocins Streptin and Ruminococcin-A, were further analyzed for 
their probiotic role via docking with virulent proteins of pathogenic 
bacterial species which confirmed that both bacteriocins are potent 
inhibitors of the target bacterial pathogens and help the human host 
elicit a strong immune response against pathogenic bacteria. In this 
study we found out that a carbohydrate enzyme in the L. plantarum 
YW11 genome. Similar enzymes were discovered in L. plantarum 
strains during previous studies. The previous research demonstrated 
that particular strains of L. plantarum may selectively constrain the 
development of the baby’s gut microbiota’s carbohydrate-mediated 
symbiosis. The conclusions that were reached from the study reflected 
these findings. L. plantarum’s metabolic abilities are critical for trophic 

interactions with other commensal bacterial populations, promoting 
a mutualistic environment in their host, allowing cross-feeding 
connections between microorganisms, and maintaining appropriate 
gut microbiome growth. Cross-feeding interactions are those in which 
one microbe consumes the nutrients from another microbe. This 
genome L. plantarum YW11 is of very great interest and can be helpful 
for food safety, food fermentation and food starter cultures. Moreover, 
its probiotic capabilities cannot be ignored and several in-vitro and 
in-vivo activities can be performed on it.
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