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The past decade witnessed the emergence in Shiga toxin-producing Escherichia 
coli (STEC) infections linked to the consumption of unpasteurized milk and 
raw milk cheese. The virulence of STEC is primarily attributed to the presence 
of Shiga toxin genes (stx1 and stx2) carried by Stx-converting bacteriophages, 
along with the intimin gene eae. Most of the available information pertains to 
the “Top  7” serotypes associated with STEC infections. The objectives of this 
study were to characterize and investigate the pathogenicity potential of E. coli 
UC4224, a STEC O174:H2 strain isolated from semi-hard raw milk cheese and to 
develop surrogate strains with reduced virulence for use in food-related studies. 
Complete genome sequence analysis of E. coli UC4224 unveiled the presence 
of a Stx1a bacteriophage, a Stx2a bacteriophage, the Locus of Adhesion and 
Autoaggregation (LAA) pathogenicity island, plasmid-encoded virulence genes, 
and other colonization facilitators. In the Galleria mellonella animal model, E. coli 
UC4224 demonstrated high pathogenicity potential with an LD50 of 6 CFU/10 μL. 
Upon engineering E. coli UC4224 to generate single and double mutant derivatives 
by inactivating stx1a and/or stx2a genes, the LD50 increased by approximately 1 
Log-dose in the single mutants and 2 Log-doses in the double mutants. However, 
infectivity was not completely abolished, suggesting the involvement of other 
virulence factors contributing to the pathogenicity of STEC O174:H2. Considering 
the possibility of raw milk cheese serving as a reservoir for STEC, cheesemaking 
model was developed to evaluate the survival of UC4224 and the adequacy of the 
respective mutants as reduced-virulence surrogates. All tested strains exhibited 
the ability to survive the curd cooking step at 48°C and multiplied (3.4 Log CFU) 
in cheese within the subsequent 24 h. These findings indicate that genomic 
engineering did not exert any unintended effect on the double stx1-stx2 mutant 
behaviour, making it as a suitable less-virulent surrogate for conducting studies 
during food processing.
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1. Introduction

Infections caused by Shiga toxin producing Escherichia coli 
(STEC) are responsible for outbreaks of serious diseases such as 
haemorrhagic colitis (HC) and haemolytic uremic syndrome (HUS), 
posing a serious public health concern (Pedersen et al., 2018). In 2020, 
28 European countries reported 4,824 confirmed cases of infection 
with E. coli STEC and thus, recognized as the fourth most reported 
zoonosis (ECDC, 2022). Cattle have been recognized as an 
asymptomatic natural reservoir of STEC, representing a vehicle for 
human infection through direct contact or via foodstuffs (Zuppi et al., 
2020). Recently, STEC outbreaks have been increasingly related to the 
consumption of dairy products; in Europe, two outbreaks in 2020 and 
one in 2021 as reported by EFSA-ECDC (EFSA and ECDC, 2021, 
2022); in 2019, 20 paediatric cases of STEC O26:H11 infections were 
associated to the consumption of fresh raw milk cheese in France and 
other 21 cases were related to a milk pasteurisation malfunction at 
dairy farm level in UK (Jones et al., 2019; Jenkins et al., 2022). These 
outbreaks, as reported by the data collected in the European Union 
One-Health (2022) report, demonstrate as raw milk cheese and other 
dairy products are frequently associated to the presence of STEC (2% 
of analysed dairy products (EFSA and ECDC, 2022)). Thus, in the 
absence of an effective pasteurisation process, the cheese production 
and ripening steps have proven to be  insufficient to achieve the 
complete inactivation of these pathogenic E. coli microorganism 
(Bellio et  al., 2018; Ioanna et  al., 2018), as shown in studies that 
investigated the persistence of STEC in raw milk and its derivatives 
(Miszczycha et al., 2013; Peng et al., 2013; Ahmed and Samer, 2017).

The current framework for identification of STEC includes the 
determination of serogroup, with correlation to their capacity to cause 
human illness. Serogroups O157, O145, O111, O103, and O26, 
considered the “top 5” STEC, have been identified as responsible for 
severe diseases and outbreaks (Franz et al., 2019; Koutsoumanis et al., 
2020). Shiga toxins Stx1 and Stx2, encoded by genes stx1 and stx2 
carried by lambdoid prophages, are considered the central driver of 
STEC virulence. Each of the Stx toxins are furtherly classified into 
subtypes and, particularly Stx2 subtypes a and c, seem to be corelated 
to the most severe forms of STEC diseases (Werber and Scheutz, 2019; 
Rodríguez-Rubio et al., 2021). The risk for a severe disease is generally 
associated with the concurrent presence of the stx2 gene and the Locus 
of Enterocyte Effacement (LEE), which contains the eae gene, coding 
for the intimin protein responsible for adhesion (Franzin and Sircili, 
2015). However, recently, non-O157 LEE-negative strains have been 
correlated with increasing number of infections in humans (Cundon 
et al., 2018; Krause et al., 2018; Colello et al., 2019; Cortimiglia et al., 
2021). The LEE-negative STEC strains implicated in human disease 
harbour other virulence factors (VFs) involved in other adherence 
processes carried by plasmids, non-Stx prophages or unique 
pathogenicity islands (PAIs). Montero et al. (Montero et al., 2017), 
described the PAI Locus of Adhesion and Autoaggregation (LAA), a 
86 kb region divided in four modules containing the hes gene coding 
for and haemagglutinin (Montero et al., 2017). A recent study by 
Cortimiglia et al. (Cortimiglia et al., 2021) detected this virulence 
locus in STEC O174 strains harboring both Stx1- and Stx2-
bacteriophages isolated from Italian semi-hard raw milk cheese. 
Moreover, E. coli O174 strains are frequently detected as being among 
the top 10 STEC serotypes from animal, food and humans (EFSA and 
ECDC, 2022).

Although the risk that STEC poses for consumers of dairy 
products is high, few studies have addressed the growth, survival and 
inactivation kinetics of Shiga toxin producing E. coli during the cheese 
processing and ripening (Schlesser et al., 2006; Miszczycha et al., 2016; 
Centorotola et  al., 2021). One of the major limitations in the 
development of challenge studies in food, is the high pathogenicity of 
STEC strains that hamper their use in pilot plants outside the confined 
conditions of biosafety laboratories. STEC mutants with the toxin 
genes inactivated were developed to assess the role of Stx virulence 
(Kim et al., 2010; Xue et al., 2011) but not specifically used as surrogate 
for toxigenic strains to appraise the growth and persistence in food 
models. The objective of our study is to perform a comprehensive 
genomic characterization of the virulence profile of E. coli UC4224, a 
STEC strain isolated from semi-hard raw milk cheese, utilizing a 
WGS-based approach. Our research also aims to investigate the 
impact of stx1 and stx2 genes on pathogenicity in vivo using the 
Galleria mellonella model by individually and collectively inactivating 
them via genome engineering. Moreover, we assessed the survival of 
the parental strain and the suitability of the three mutants as 
attenuated surrogates under acid stresses and in 
cheesemaking conditions.

2. Methods and materials

2.1. Bacterial strains, plasmids, and media

STEC strain UC4224, isolated from semi-hard raw milk cheese, 
and respective mutant strains were grown in Luria-Bertani (LB) broth 
(Sigma-Aldrich) and supplemented with appropriate antibiotics when 
needed. The antibiotics used were chloramphenicol (Cm) (Sigma-
Aldrich) (3.125–25 μg/mL), kanamycin (Kan) (Sigma-Aldrich) 
(12.5–25 μg/mL), and ampicillin (Amp) (Sigma-Aldrich) (100 μg/mL). 
Strains and plasmids used in this study are listed in Table 1 whereas 
oligonucleotides are listed in Supplementary Table S1. The E. coli 
strain DH5α, grown in LB broth supplemented with Amp, was used 
for the propagation and purification of plasmids.

2.2. Whole genome sequencing and data 
submission

Genomic DNA of UC4224 and UC4178 (UC4224Δstx1::kan 
Δstx2::cat) was extracted from 1 mL of an overnight culture by 
E.Z.N.A. ® Bacterial DNA Kit (Omega Bio-tek), following the 
manufacturer’s instructions. After, Qubit 2.0 Fluorometer (Thermo 
Fisher Scientific) was utilized to quantify the DNA concentration and 
then loaded on agarose gel (0.8%) to confirm the DNA integrity. 
Genomic DNA of UC4224 and UC4178 were sequenced using 
Illumina Miseq platform with 250 paired-end run after Nextera XT 
paired-end library preparation (Illumina). Additionally, long-read 
sequencing was carried out for UC4224 only and performed with 
PacBio Sequel II SMRT sequencing. Sequence trimming was 
completed with trimgalore! (GitHub – FelixKrueger/TrimGalore) 
(Krueger, 2016). After, hybrid assembly was executed using Unicycler 
(Wick et al., 2017). Then, contigs of both parental and mutant strains, 
were annotated with Prokka with a de fault e-value cut-off (version 
1.13.3) (Seemann, 2014). Genome assemblies were deposited on NCBI 
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under Genbank assembly accession No. GCA_025369975.1 for 
UC4224 and GCA_025290845.1 for UC4178.

2.3. Bioinformatic analyses

A total of 99 strains genomes (including UC4224) were retrieved 
from NCBI for phylogenomic analyses, including 40 from cheese, 5 
from dairy milk and 54 from non-specified dairy products 
(Supplementary Table S2). Bioinformatic analyses comprising the 
calculation of the pangenome and the construction of the phylogenetic 
tree with bootstrapping of 1,000, of all genomes were performed as 
previously described by Belloso Daza et al. (2021). The screening for 
virulence factors, antimicrobial resistance genes was executed 
according to another study (Cortimiglia et  al., 2021). Finally, the 
analysis of mobile genetic elements like plasmids and prophages was 
carried out following the pipeline of Belloso Daza et al. (2022).

2.4. Construction the amplimer with short 
(50 bp) and long (~280 bp) homology 
sequences

PCR reactions were performed using Phusion Flash High-Fidelity 
PCR Master Mix (ThermoFisher Scientific) as provided by the 
manufacturer. The two plasmids pKD3 (Datsenko and Wanner, 2000) 
and pRL128 (Gueguen and Cascales, 2013) were used for amplifying 
the resistance cassettes using primers (Supplementary Table S1) 
constructed as described by Egan et al. (2016). The detection of each 
amplicon was verified by gel electrophoresis (ThermoFisher Scientific), 
then the product was excised from the gel and purified using the 
Macherey-Nagel™ NucleoSpin™ Gel and PCR Clean-up (Macherey-
Nagel). The PCR product was concentrated using Zymo Research’s 
DNA Clean & Concentrator Kit™-25 (D4005) in a final volume of 
25 μL of molecular-grade water.

Homology regions of the stx2 gene, located at the two ends of the 
cat cassette, have been increased as previously described by Serra-
Moreno et al. (2006). The new PCR products were constructed using 

the overlapping regions within three different dsPCR fragments: the 
cat cassette and the other two that present homology with both stx2 
and antibiotic resistance cassette using the primers reported in 
Supplementary Table S1. The amplimers obtained were stx2 Forward/
Cm-F stx2 (270 bp) and stx2 Reverse/Cm-R stx2 (280 bp). The three 
amplimers obtained were annealed at their overlapping region. The 
two external primers stx2 Forward and stx2 Reverse were used to 
overlap the three fragments. The fusion product was amplified using 
the same primer pair stx2 Forward/Reverse, subsequently purified. 
The fusion product obtained is Δstx2::cat PCR amplicon with long 
homologous arms.

2.5. Transformation of Escherichia coli 
STEC UC4224 with plasmids pSIM6 and 
preparation of electrocompetent cells for 
recombineering

The pSIM6 plasmid was propagated in E. coli strain DH5α and 
extracted using ZymoPURE Plasmid Miniprep Kit (Zymo Research) 
following the manufacturer instructions. Then it was transformed in 
UC4224 after making it electrocompetent (BIORAD, 1900) E. coli. The 
transformant of UC4224 with the pSIM6 was named UC4175. The 
UC4175 overnight culture was then diluted to 100-fold in LB with 
Amp (100 μg/mL) and grown to an OD600 of 0.8. The culture was then 
thermally shocked at 42°C at 250 rpm for 45 min to induce the lambda 
red genes expression by pSIM6, as described previously (Egan et al., 
2016). After the induction, UC4175 was made electrocompetent as 
described above. Ninety μl of chilled electrocompetent UC4175 cells 
were added to 100 ng of Δstx2::cat or Δstx1::kan PCR amplicons, 
including negative controls without PCR products. The mix was held 
on ice for 1 min, then, electroporation was performed at a voltage of 
2.5 kV. Electroporants were immediately recovered in 1 mL of S.O.C 
medium and grown at 37°C at 225 rpm overnight,. After, the cultures 
were spread on LB supplemented with Cm (6.5–25 μg/mL) or Kan 
(15–30 μg/mL) and examined to determine CmR and KanR 
recombinants. Recombinants were observed after 1 to 2 days of 
incubation at 37°C. The resulting mutants are UC4176 

TABLE 1 Bacterial strains and plasmids used in this study.

Strain Relevant genotype, phenotype Reference/Source

E. coli

UC4224 STEC parental strain This study

UC4175 UC4224(pSIM6), AmpR (Ts) This study

UC4176 UC4224Δstx1::kan, KanR This study

UC4177 UC4224Δstx2::cat, CmR This study

UC4178 UC4224Δstx1::kan Δstx2::cat, KanR CmR This study

Plasmids

pSIM6 Plasmid expressing Lambda red recombination genes below the 

control of CI857 repressor, AmpR (Ts)

Datta et al. (2006)

pKD3 Template plasmid for the amplification of FRT-cat-FRT 

amplicon, AmpR CmR

Datsenko and Wanner (2000)

pRL128 Template plasmid for the amplification of FRT-kan-FRT 

amplicon, AmpR KanR

Gueguen and Cascales (2013)

Amp, ampicillin; Kan, kanamycin; Cm, chloramphenicol; superscripts “R” and “S” represent resistance and sensitivity, respectively.
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(UC4224Δstx1::kan, KanR) and UC4177 (UC4224Δstx2::cat, CmR) 
(Table 1).

Subsequently, UC4176 was induced and made eletrocompetent, 
as described above. The induced eletrocompetent cells were 
eletroporated with 100 ng of Δstx2::cat PCR amplicons with long 
homologous arms. The electroporation conditions used were the same 
as those described previously. After 16 h of incubation, recovered 
cultures were cultured onto LB plates with Cm (6.5–25 μg/mL) and 
Kan (15–30 μg/mL) and examined to determine CmR/KanR 
recombinants. The resulting double mutant is UC4178 
(UC4224Δstx1::kan Δstx2::cat, KanR CmR) (Table 1).

2.6. Curing of pSIM6 and replacement 
confirmation

Once the recombinant UC4178 had been found, 10 μL of an 
overnight culture was spread on LB agar with added Cm (6.25 μg/mL) 
and Kan (22.5 μg/mL) and incubated overnight at 42°C. A few 
colonies were then taken and streaked onto both LB agar supplemented 
with respective antibiotics and incubated overnight at 30°C. The 
correct replacement was confirmed by locus specific PCR and Sanger 
sequencing. Briefly, the stx1 and stx2 genes were amplified with the 
external primer listed in Supplementary Table S1 (Paton et al., 1993, 
1995; Ruessmann et al., 1994; Muniesa et al., 2003), visualized on 1.2% 
agarose gel by Sybr-Safe staining (Thermofisher) and purified using 
ReliaPrep DNA clean-up and concentration system (Promega) 
according to the protocol provided by the manufacturer. The purified 
DNA was sequenced by commercial facility (Eurofins Genomics, 
Italy) using Sanger technology. Additionally, the replacement was 
confirmed through WGS, performed as reported above. The genome 
assembly is deposited in Genbank with accession number 
GCA_025290845.1.

2.7. Pathogenicity assessment in Galleria 
mellonella

The in vivo analysis using larvae of the greater wax moth, 
G. mellonella, was performed as previously described by Morgan et al. 
(2014). Briefly, bacterial overnight cultures were pelleted and washed 
twice in Phosphate Buffer Solution (PBS) (0.1 M) and resuspended in 
10 mL of PBS. The larvae were selected to be 15–25 mm long, cream-
coloured with minimal spotting and no grey marks. Three 
independent biological replicates of ten larvae of 200 to 250 mg each, 
were infected with 10 μL of serial dilution (101–107 CFU/10 μL) of each 
different strains, by injection with a 26-gauge Hamilton syringe. 
Larvae were then incubated at 37° C in the dark and the dose resulting 
in 50% of kills (LD50) was calculated after 24 h. The survival rate was 
monitored for an additional 48 h. The strains used for this assay were 
UC4224, UC4176, UC4177, UC4178 and E. coli BL21 and PBS only 
as a negative control. An additional control composed by three groups 
(n  =  10) without manipulation, was added. Kaplan–Meier survival 
curves were constructed to evaluate the probability of survival of the 
different strains at different injection doses using GraphPad Prism 
(Survival curve 8.4.3 (686)). Logrank tests were applied to detect any 
significant differences in survival rates between strains (p < 0.05). 
Microbial count of bacteria was realized to verify the inoculated doses 

onto LB agar supplemented with Kan and Cm, when needed. The LD50 
values were calculated using Probit Analysis, following the 
methodology of Finney (1971) in Excel 2010 with a 95% confidence 
limit (Mekapogu, 2021).

2.8. Cheesemaking model and tolerance to 
lactic acid

We assessed the survival capacity of UC4224 and the suitability of 
UC4176, UC4177 and UC4178 as attenuated surrogates under acid 
stresses and in cheesemaking process. The cheesemaking process was 
carried out according to the traditional production method from raw 
milk. Briefly, 200 mL of raw milk was aliquoted in five different 500 mL 
flasks and pre-warmed at 30°C. Once the desired temperature was 
reached, each flask was inoculated with a mix of three different starter 
cultures: Streptococcus thermophilus, Lactococcus lactis and 
Lactobacillus delbrueckii subsp. lactis at a cell numbers of 107 CFU/m 
each, and 0.2 mL of rennet per litre of milk. Subsequently, four flasks 
prepared as described above were individually inoculated with 200 μL 
of an overnight culture of UC4224 and the three mutants (inocula-t0); 
the remaining flask, without E. coli inoculum, was used as a negative 
control. The five samples were heat-treated at 34°C for 40 min (t1); 
then, the temperature was increased at 48°C for 40 min (t2) and finally 
the curds were packaged, pressurised and drained; thus, stored at 
room temperature (20°C) for 24 h (t3). Plate counts were carried out 
in triplicate at times t0, t1, t2 and t3 using Violet Red Bile Glucose 
Agar (Oxoid), supplemented with Kan 50 μg/mL and Cm 50 μg/mL 
when required, and incubated at 37°C for 24 h. Lactic acid tolerance 
was tested as previously described by Liu et al. (2020) with slight 
variations. Shortly, the overnight culture of the parental strain and the 
three mutants were serially diluted and 10 μL of each dilution were 
spotted on LB agar, modified with L-lactic acid (Carlo Erba) to a pH 
of 4, 4.5, 5, 5.5, 6 and 6.5, and incubated at 37°C for 24 h. All results 
were statistically analysed using the Tukey’s pairwise test, via the 
Past4.06b software, with α = 0.05.

3. Results

3.1. Genome sequencing and 
characterization of UC4224

In this study, Escherichia coli STEC strain UC4224, isolated from 
semi-hard raw milk cheese, was investigated for its resistome/
virulome/mobilome. The first step toward identifying the nature of 
this strain was to perform WGS following a long-and short-read 
approach. After sequencing and quality check, UC4224 was assembled 
into 3 molecules, one chromosome of 5,047,333 bp and two plasmids, 
pUC4224_1 (111,840 bp) and pUC4224_2 (6,883 bp). UC4224 was 
identified as ST 661, serotype O174:H2 and Clermont phylogroup B1.

3.2. Phylogenomics and distribution of 
dairy associated STEC

Phylogenomic analysis was performed to understand the 
relationship of E. coli UC4224 with a selection of 95 E. coli genomes, 
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retrieved from NCBI, isolated from dairy-associated sources: milk, 
cheese and dairy products. The pangenome analysis resulted in a total 
of 2,175 (8.7%) core genes, 2,652 (8.3%) shell genes and 25,653 (83%) 
cloud or accessory genes. This outcome is in line with the concept of 
the open pangenome of E. coli, decreasing core genomes and 
increasing accessory genomes that support the adaptability of E. coli 
from different ecological niches and the diversity of strains with 
pathogenicity for animals and human (Tantoso et  al., 2022). 
Furthermore, core-genome derived data was then used to construct a 
maximum likelihood phylogenetic tree. As observed in Figure 1, no 
clear cluster patterns regarding serogroup or Stx type are noticeable. 
When observing the relative abundance of the serogroups we found 
the most frequent serogroups were O157 (17%), O6 (13.8%), O26 
(8.5%) and O174 (7.4%). Other recurring serogroups were O103 

(6.4%), O5 (5.3%) O8 (4.3%), O110 (3.2%), O116 (3.2%), O145 
(4.3%). Out of 94, only 6 isolates (6.4%) were not assigned to any 
serogroup. A strict relationship between the Stx-bacteriophages and 
serogroups results from the phylogenomic analysis, as reported in 
other studies (Zhang et al., 2022). In particular, O174 strains harbour 
both Stx1- and Stx2-converting phages and O6 and O26 dairy isolates 
carry Stx1. Higher variability was observed in O157 which may 
contain either Stx2 – or both Stx1- and Stx2-phages.

3.3. Stx-converting phages and other 
prophages

Genome scrutiny of UC4224 revealed the presence of stx1a and 
stx2a carried by two separate prophages. We  comprehensively 
explored the two Stx-phages and their respective flanking regions by 
identifying the attachment sites, structural and regulatory regions. 
Stx-phages are double-stranded DNA-phages with a functional genetic 
organization comparable lambda phage, as it is the case of UC4224 
phages. Stx1-phage of size 62.2 kb (Figure 2B), was found in positions 
669,258–731,903 bp, with the highest homology score to 
Enterobacteria phage D3 (NC_042057). Stx2-phage, of size 77 kb 
(Figure 2C), found in position 4,824,523–4,901,603 bp with highest 
similarity to phage D3, as well. Both phages were found to be unique 
with the highest BLAST nucleotide identity of 92 and 88% with other 
Stx-phages for Stx1-phage and Stx2-phage, respectively.

The stx genes loci of both phages, were composed by the two stx 
genes coding for subunits a and b, the antitermination protein Q, 
responsible for late-phase transcription regulator and lysis protein 
S. Downstream from the Stx-region of both phages, lysis, terminase 
and structural proteins coding for capsid, tail and tail fibers were 
observed. Regulation and recombination genes were found adjacent 
to the toxin and structural genes regions. Upstream from the 
Stx-region, recombination coding sequences were found 
(Figures  2B,C). Specifically, in Stx1-phage, gene nu1 was found, 
coding for a typical protein for DNA packaging in Stx-converting 
phages (Figure  2B). Stx2-phage carries perC, a Type 3 Secretion 
System (T3SS) expression regulator related to the expression of 
LEE-encoded virulence factors in STEC (Carter et al., 2021).

Moreover, four additional prophages were predicted 
chromosomally, namely a 25.4 kb phage with highest homology to 
Enterobacteria phage YYZ_2008 (Acc. No. NC_011356), two phages 
of 39.1 kb and 44.7 kb similar to Enterobacteria phage lambda (Acc. 
No. NC_001416) and a 46.9 kb closest to Klebsiella phage 4 LV-2017 
(Acc. No. NC_047818). The 44.7 kb phage carried gene ompT (outer 
membrane protein and serum resistance lipoprotein bor was found 
flaking the lysis and terminase regions of this phage. Downstream 
from the structural region and adjacent to the tail fibers coding genes, 
lom (outermebrane protein) was found (data not shown).

3.4. Virulence factors and LAA 
pathogenicity island

Although stx genes are considered the main drivers of virulence, 
E. coli STEC strains have developed pathogenicity islands (PAI) 
carrying genes for adhesion and colonization and attachment that 
facilitate the expression of virulence within the host. E. coli UC4224 

FIGURE 1

Maximum likelihood phylogenetic tree using core genes alignment 
of 99 dairy-associated strains retrieved from NCBI. UC4224 is 
depicted in red. The serogroup of each isolate was determined using 
a bioinformatic tool and it is presented on the right side of the three. 
The type of Shiga toxin is depicted in green for Stx1, yellow for Stx2 
and blue for Stx1 and Stx2. The variability of the presence of Stx-type 
is correlated to the serogroup. No clear patterns in serogroup or 
Stx-type distribution is observed. The selected strains had different 
isolation sources: milk, cheese and dairy products; their distribution 
can be found in Supplementary Table S2.
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does not harbour the Locus of Enterocyte Effacement (LEE) PAI, a 
35.6 kb region containing genes responsible for causing attaching and 
effacing lesions, characteristic of E. coli O157: H7 (Franzin and Sircili, 
2015). Differently, the WGS scrutiny revealed the presence of a region 
showing 60.8% nucleotide similarity with the Locus of Adhesion and 
Autoaggregation (LAA) PAI (Genbank Acc No. AFDQ01000026) 
(Figure 2C), a genetic locus described by Montero et al. (Montero 
et al., 2017). As shown in Figure 2A, module 1 carries the gene hes, 
involved in self-aggregation and adhesion (Vélez et al., 2020a). Module 
2 habours the lesP gene, which encodes a variant of an enterobacterial 
self-transporting serine protease (SPATE) (Montero et  al., 2019). 
Module 3 has the pagC, an outer membrane protein important in 
serum resistance in Salmonella enterica (Hasson et al., 2022). Finally, 
the agp43 gene is found in module 4, which is related to the capacity 
for self-aggregation and accumulation of cells, which promotes biofilm 
formation (Montero et al., 2017).

Other two PAIs have been described to appear in LEE-negative 
STEC strains, specifically: the Locus of Proteolysis Activity (LPA) 
(Hauser et  al., 2013) and the Subtilase-Encoding Pathogenicity 
Island (SE-PAI) (Bondì et  al., 2017) were not found in E. coli 
UC4224. Other chromosomally located genes encoding for 
adhesins, T3SS effectors and potential virulence factors were 
identified, including hra (heat-resistant agglutinin) and long polar 
fimbriae (lpfA), an important factor for STEC intestinal 
colonization and adhesion (Supplementary Table S3) (Toma et al., 
2006; Vélez et al., 2022).

The IncF-type conjugative plasmid pUC4224_1 (111 kb), carries 
a large Integrative Conjugative Element (ICE) in position 25,634–
106,706 bp (81,073 bp). This ICE presents an origin of transfer (oriT), 
Type 4 Secretion System (T4SS) proteins tra and trb and Type IV 
coupling protein (T4CP) in ORF 48 (795 aa). Moreover, pUC4224_1 
carried several potential virulence factors (Supplementary Table S3), 
among them adherence protein iha, enterohemolysin operon 
ehxABCD. Next, gene espP was also found, these genes are homologues 
members of Serine Protease Autotransporters of Enterobactericeae 
(SPATE) family. The traT gene, a plasmid-located determinant 
encoding for an outer membrane protein that inhibits the membrane-
attack complex present in the serum of the host (Miajlovic and Smith, 
2014) and saa (STEC autoagglutinating adhesin) genes (Cundon et al., 
2018) were found as potentially involved in virulence. This strain 
harbours colicin coding genes cia and celb, considered as a putative 
virulence factors as they facilitate colonization (Micenková et  al., 
2017). Furthermore, several stress response systems regulators were 
found in UC4224, gene list with corresponding gene function are 
listed in Supplementary Table S3.

3.5. Construction of stx1 and stx2 null 
mutants

To investigate the role of phage encoded stx genes from newly 
identified Stx-phages from a non-O157 strain isolated from 

FIGURE 2

Stx1- and Stx2-converting phages and LAA PAI in UC4224. (A) sequence alignment of LAA PAI reference sequence from E. coli B2F1 (Genbank 
accession AFDQ01000026) and UC4224. (B) genomic annotation of Stx1-phage including stx1a toxin subunits (red), antiterminator protein Q and holin 
S (blue), Nu1 protein (magenta), lysis and toxin operon CDS (green), structural proteins for capsid and tail (yellow) and, regulation, recombination and 
other CDS (grey). Stx 1 attachment site attL was found in position 669,258–669,271 bp (13 bp, TGCCGGATGCGGCG) and attR in position 731,916–
731,903 (13 bp, TGCCGGATGCGGCG). (C) genomic annotation of Stx2-phage including stx2a toxin subunits (red), antiterminator protein Q and holin S 
(blue), lysis and toxin operon CDS (green), structural proteins for capsid and tail (yellow) and, regulation, recombination and other CDS (grey). Stx2-
phage presented attL in position 4,830,701–4,830,714 bp (13 bp, TGGATGATTTTTCA) and attR in 4,901,592–4,901,603 bp (11 bp, TTATGAAAAACG).
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semi-hard raw milk cheese. Therefore, we constructed stx1- and 
stx2-knock-out strains by inserting antimicrobial cassettes by using 
the lambda red recombination system expressed by the low copy 
plasmid pSIM6, as shown in Figure 3. After the deletion of stx 
genes, PCR experiments and Sanger sequencing confirmed the 
substitution of the stx1 region with the KanR (aph(3′)-IIa) (UC4176 
and UC4178) and the stx2a with the CmR (catA1) (UC4177 and 
UC4178), in all the three obtained mutants as shown in Figure 3. 
Moreover, the WGS analyses of UC4178 confirmed the double 
substitution of the stx genes and the absence of the pSIM6 plasmid 
and, no other differences were observed when compared with the 
parental strain UC4224.

3.6. Lethality in the Galleria mellonella 
model of UC4224 and its derivative mutants 
is correlated with carriage of stx genes

In this study we tested the virulence of STEC UC4224 and STEC-
negative mutants UC4176, UC4177 and UC4178. To determine the 
mortality rates, the G. mellonella larvae were injected with a range of 
101 to 107 CFU/10 μL of the mutant strains in comparison with 
UC4224 and E. coli BL21 as negative control. Larvae injected with 
negative controls showed no mortality. The Kaplan–Meier survival 
analysis (Figure 4) was based on the four lowest doses, as at 1.8×104 
CFU/10 μL or higher, and the observed mortality rate was 100% for 

FIGURE 3

Schematic representation of stx1 and stx2 replacement in UC4224. Genes are represented by arrows. In cyan the antimicrobial resistance cassettes. In 
red the two subunits, respectively, of stx1 and stx2 genes. In the double mutant UC4178, the replacement event occurred via homologous 
recombination between stx1 subunits a/b and the kanamycin resistance cassette and between stx2a and the chloramphenicol resistance cassette. The 
dimension of the amplified stx1 and stx2 genes, with the external primers, in the parental strain UC4224 have a size, respectively, of 1,281 bp and 
1,241 bp. Instead, the size of the same region, amplified with the same primers, in strain UC4178 are, respectively, of 1,403 bp and 1,568 bp; thus, 
confirming the correct gene substitution.

FIGURE 4

Kaplan–Meier survival curves of the experiments with G. mellonella larvae inoculated with tested strains at different injection doses (A) 9 CFU/10 μL, 
(B) 1.8×101 CFU/10 μL, (C) 1.8×102 CFU/10 μL, and (D) 1.8×103 CFU/10 μL. Each group contained 30 larvae separated in three groups of 10 larvae. E. coli.
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all the tested strains. The parental strain UC4224, which harbours the 
two intact stx operons, has a LD50 of 6.0 CFU/10 μL 
(Supplementary Table S5.2). When the two single mutants UC4176 
and UC4177 were tested, the observed mortality rates were 
significantly lower than UC4224 (p < 0.05) for the three lowest doses 
injected, with a LD50 of 81.7 CFU/10 μL and 50.5 CFU/10 μL 
respectively, but not significantly different between them 
(Supplementary Table S5.1). The lethality rate of UC4178 strain, with 
a LD50 of 582.7 CFU/10 μL, was significantly lower than the parental 
strains and the two single mutants for the four tested doses. In vivo 
trials with G. mellonella indicated an improved survival rates in larvae 
samples treated with the three mutants compared to those treated with 
the parental strain, with particular attention to UC4178 in which the 
deletion of the stx1 and stx2 genes allowed a considerable reduction 
in pathogenicity.

3.7. Survival and growth dynamics of 
UC4224 and derivate mutants during food 
processing

A cheesemaking model, mimicking the first step of raw milk 
cheese production, was developed to evaluate the survival of UC4224 
and the adequacy of the respective mutants as reduced-virulence 
surrogates during the cheesemaking process. The results of the 
bacterial counts, expressed as the average of three experiments, are 
shown in Figure  5. The four considered strains showed the same 
inactivation and growth dynamics in all the analysed steps of the food 
processing model, without statistically significant differences. In the 

first 40 min at 34°C, corresponding to the renneting step, no growth 
was observed. The thermal treatment at 48°C for 40 min, which 
represents the typical step of semi-hard raw milk cheese, resulted in a 
reduction greater than a 2 Log CFU/g for all four strains. In the 
subsequent step, when the curd was separated from whey and 
maintained at 20°C for 24 h, growth was observed reaching values of 
1.3 Log and 3.4 Log to the thermal treatment at 48°C step. E. coli 
UC4224 and its Stx-phage-inactivated strains derivative were tested 
for their resistance to pH values typical of dairy products, obtained by 
adding lactic acid to growth medium. At pH 4, no growth was detected 
for any of the four strains at any cell density tested, at pH 4.5 growth 
was observed only with an inoculum concentration higher than 7 Log 
CFU/ml, while at pH of 5 was not growth limitation was seen 
(Supplementary Table S4).

4. Discussion

Recently, Shiga-toxin producing Escherichia coli (STEC) infections 
have been associated with the consumption of raw milk and 
derivatives thereof. In this study, STEC strain UC4224 was isolated 
from semi-hard raw milk cheese and was subjected WGS to investigate 
its virulence profile. Bioinformatic analyses using genome-derived 
data, allowed the classification of UC4224 as ST 661, serotype 
O174:H2 and, carrying two new and separate Stx1 and Stx2-
converting phages with the typical Stx-converting phage structure 
(Figure 2). Many stx-carrying strains harbour LEE PAI but this strain 
was determined LEE-negative. LEE-negative strains have developed 
further mechanisms that facilitate infection. Commonly, LEE-negative 

FIGURE 5

E. coli counts in cheese making, at different analysis times, for the four independent experimental tests expressed as the average of three independent 
experiments. Error bars indicate standard deviation.
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STEC strains carry other adhesion and colonization-contributing 
factors like iha (IrgA homologue adhesin), saa (STEC 
autoagglutinating adhesin), and lpfA (long polar fimbria), that 
compensate for the absence of LEE, as it is the case of UC4224 (Lorenz 
et  al., 2016). UC4224 harbours also LAA PAI (86 kb) in the 
chromosome and carries virulence factors throughout its 4 modules 
as previously described (Montero et  al., 2017). A 44.7 kb non-stx 
prophage was found in the chromosome, with the gene ompT, a gene 
coding for a membrane protease highly associated with adhesion and 
pathogenicity in urinary tract infections (He et al., 2015); lom and bor 
genes were also found, which are involved in T3SS expression that 
confer serum resistance and enhance adhesion (Rodríguez-Rubio 
et al., 2021). It has been demonstrated that other non-stx prophages 
have a direct impact on the STEC pathogenicity and pangenome, but 
the direct impact on UC4224 virulence is still to be  determined 
(Rodríguez-Rubio et  al., 2021). Other plasmid encoded virulence 
genes were found in pUC4224_1 (111 kb), including enterohemolysin 
gene ehxA, demonstrated to contribute to virulence in STEC (Lorenz 
et al., 2016; Hua et al., 2021); SPATE family gene (espP) and other 
adhesion (traT and saa) genes.

Insights into the virulence profile of UC4224 led to the 
construction of single and double stx1 and stx2 knock-out mutants to 
study its pathogenicity potential in vivo and evaluate their adequacy 
as surrogates with reduced pathogenicity during cheesemaking. With 
a genome engineering approach we generated three mutant strains in 
which genes stx1 and stx2 were substituted with antibiotic resistance 
cassettes to create UC4176(Δstx1::kan, KanR), UC4177(Δstx2::cat, 
CmR) and UC4178(Δstx1::kan Δstx2::cat, KanR CmR), as confirmed by 
Sanger sequencing. Previous studies have deleted both stx1 and stx2 
from STEC O157:H7 (Yokoyama et al., 2001; Ma et al., 2011), without 
evaluating the pathogenicity in vivo. We focused the first part of this 
study to assess the role of Shiga toxins in UC4224 and respective 
mutants in vivo. Our results showed that, when considering the 
deletion of either or both the stx genes, all three mutants presented 
differences in the lethality against G. mellonella larvae when compared 
to the parental strain. In particular, we  observed that the double 
mutant UC4178 Δstx1 Δstx2 showed highly reduced virulence with an 
increased LD50 of 2 Log dose when compared to UC4224 which shows 
a LD50 of 6 CFU/10 μL. Our study indicates that the presence of both 
stx1 and stx2 genes have a combined effect on the pathogenicity of 
STEC, in fact the single mutants UC4176 Δstx1 and UC4177 Δstx2 
showed a lower virulence (1 Log increase of median lethal dose) than 
UC4224. No differences between strains producing Stx1or Stx2 toxins 
were detected in the G. mellonella model, differently from what was 
observed in other animal models (Xue et al., 2011). In line with our 
results, a previous study has shown that non-pathogenic E. coli strains 
are non-lethal to G. mellonella with inoculations of up to 107 CFU/
larvae (Zuppi et al., 2020). Our results highlight that the deletion of 
either or both the stx genes does not completely suppress UC4224 
virulence, leading to suppose the involvement of LAA PAI, plasmid-
encoded VFs, non-stx prophage encoded VFs, non-LEE T3SS effectors 
and other colonization contributing factors in delivering pathogenicity 
to the host (Cundon et al., 2018; da Campos et al., 2019; Vélez et al., 
2020b; Cortimiglia et  al., 2021; Sánchez et  al., 2021). Indeed, 
previously, another study observed that the deletion of stx genes in the 
presence of other virulence factors reduces the pathogenicity. In this 
work, Habets et al. (2022) showed that non-STEC EPEC O80:H26 

E. coli strains which correctly transduced with the Stx2d-phage, 
increased lethality in G. mellonella larvae, proving that the Stx2-phage 
confers partial virulence to a strain harboring other virulence factors 
(Habets et al., 2022).

After establishing the mutants as suitable substitutes with 
diminished virulence, the second part of our study focused on the 
evaluation of the phenotypic differences between the mutants and 
the parental strain. The three mutants and the parental strain were 
submitted to a pilot scale raw milk cheese production to assess their 
survival in the cheese matrix, which is typically subjected to different 
stressing conditions like temperature, pH, aw and redox potential 
changes. The possibility to use less virulent strains to study how it 
reacts within cheese manufacturing is important in challenge tests 
to avoid using hazardous pathogens. The intrinsic attributes of 
cheese, related to the different production and ripening processes, 
should act as a barrier to bacterial growth. Along with this, the 
intrinsic microbiota of raw milk together with the starter cultures 
are expected to outcompete pathogens by lowering the pH (Baylis, 
2009). Nevertheless, raw milk cheeses of different varieties (soft and 
semi-hard) have been described as sources of contamination or 
outbreaks of STEC, since they do not undergo pasteurisation and the 
production process is not effective in counteracting the proliferation 
of these bacteria (Schlesser et al., 2006; Caro and García-Armesto, 
2007; Miszczycha et al., 2013, 2016; Peng et al., 2013; Ahmed and 
Samer, 2017; Celikl et al., 2021). However, STEC have been isolated 
from pasteurised milk cheese as well, possibly due to cross-
contamination (Fereydouni and Darbouy, 2015; Callon et al., 2016; 
Cardoso and Marin, 2016). It has been demonstrated that the 
survival capacity of STEC in the cheesemaking environment is due 
to the activation of stress response systems (dos Santos Rosario et al., 
2021). This mechanism includes the induction of sigma factor 
encoded by gene rpoS, as a response reaction to acid stress and can 
also be influenced by high pressure, cold, heat, UV radiation, H2O2 
and the concentration of salt (Cheville et al., 1996; Robey et al., 2001; 
Mei et al., 2015; Li et al., 2018). Other SOS response regulons were 
identified in UC4224 that act together with the induction of σS such 
as gadE, coding for one of the most efficient acid stress regulators 
(Vanaja et al., 2009), osmotic regulator ompR and oxidative stress 
coping gene katG (dos Santos Rosario et al., 2021). In line with other 
studies (Dineen et al., 1998), our results showed that the acidity 
values found in dairy products do not limit the growth of UC4224 
and its three mutants being able to grow at pH 4.5, a value 
substantially lower than that of cheese. In a previous work by Cheng 
et al. (2002), where E. coli O157 was treated with pH 5.5 for 4 and 
5 h, resulting in higher resistance to 10% NaCl and a temperature of 
55°C (Cheng et al., 2002). Another study has shown that certain 
strains of the O157 serogroup are able to survive at low pH between 
3 and 4, although the ideal condition for their growth is at pH 7 
(Meira et al., 2017). The presence of these survival mechanisms in 
STEC explains the fact that they can be isolated from different types 
of dairy products and dairy-related environments. In effect, the 
phylogenomic analysis conducted in this study elucidated that the 
distribution of the stx genes did not follow a particular pattern in 
relation to the isolation sources or serogroups. The most abundant 
were O6, O26, O157 and O174. The latter was also found in other 
semi-hard raw milk cheeses as reported in previous study 
(Cortimiglia et al., 2021). Other studies have stated that O174 strains 
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were sporadically isolated during outbreaks yet they represented the 
most frequently isolated STEC isolates from cattle and foods 
(Stephan et al., 2008; Lorenz et al., 2013; Cundon et al., 2018). Our 
results indicated a similar behaviour of the parental strains and 
engineered strains, demonstrating that the genomic modification 
did not affect the possibility to use them to study various metabolic 
features useful in the cheesemaking process.

For the first time, we investigated the pathogenicity of O174:H2 
non-LEE STEC highlighting that the virulence is related not only to 
stx genes but to other virulence factors. For this reason, further efforts 
should be  done to gain a deeper knowledge on STEC from food 
regarding the importance of non-stx non-LEE virulence markers in 
defining the pathogenicity potential of dairy isolates. This work led to 
the creation adequate surrogates with decreased virulence for studies 
during food processing. In order to enhance the suitability and safety 
of these strains, further experiments need to be conducted to eliminate 
non-stx virulence factors.
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