
Frontiers in Microbiology 01 frontiersin.org

First report of coexistence of 
blaKPC-2-, blaNDM-1- and mcr-9-
carrying plasmids in a clinical 
carbapenem-resistant 
Enterobacter hormaechei isolate
Qian Yuan , Peiyuan Xia , Lirong Xiong , Linli Xie , Shan Lv , 
Fengjun Sun * and Wei Feng *

Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical 
University), Chongqing, China

Introduction: Colistin is regarded as one of the last-resort antibiotics against 
severe infections caused by carbapenem-resistant Enterobacteriaceae. Strains with 
cooccurrence of mcr-9 and carbapenemase genes are of particular concern. This 
study aimed to investigate the genetic characteristics of a blaKPC-2-carrying plasmid, 
blaNDM-1-carrying plasmid and mcr-9-carrying plasmid coexisting in a carbapenem-
resistant Enterobacter hormaechei isolate.

Methods: E. hormaechei strain E1532 was subjected to whole-genome sequencing, 
and the complete nucleotide sequences of three resistance plasmids identified in the 
strain were compared with related plasmid sequences. The resistance phenotypes 
mediated by these plasmids were analyzed by plasmid transfer, carbapenemase 
activity and antimicrobial susceptibility testing.

Results: Whole-genome sequencing revealed that strain E1532 carries three 
different resistance plasmids, pE1532-KPC, pE1532-NDM and pE1532-MCR. pE1532-
KPC harboring blaKPC-2 and pE1532-NDM harboring blaNDM-1 are highly identical to 
the IncR plasmid pHN84KPC and IncX3 plasmid pNDM-HN380, respectively. The 
mcr-9-carrying plasmid pE1532-MCR possesses a backbone highly similar to that 
of the IncHI2 plasmids R478 and p505108-MDR, though their accessory modules 
differ. These three coexisting plasmids carry a large number of resistance genes and 
contribute to high resistance to almost all antibiotics tested, except for amikacin, 
trimethoprim/sulfamethoxazole, tigecycline and polymyxin B. Most of the plasmid-
mediated resistance genes are located in or flanked by various mobile genetic 
elements, facilitating horizontal transfer of antibiotic resistance genes.

Discussion: This is the first report of a single E. hormaechei isolate with coexistence of 
three resistance plasmids carrying mcr-9 and the two most common carbapenemase 
genes, blaKPC-2 and blaNDM-1. The prevalence and genetic features of these coexisting 
plasmids should be monitored to facilitate the establishment of effective strategies to 
control their further spread.

KEYWORDS

Enterobacter hormaechei, multidrug resistance, plasmid, carbapenemase genes, mcr-9

1. Introduction

Carbapenem-resistant Enterobacteriaceae (CRE) bacteria pose a serious threat to global 
public health owing to rapid emergence of multidrug resistance (MDR) and limited 
therapeutic agents available (Ma et al., 2023). Production of carbapenemases, especially 
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KPC and NDM, is the main mechanism of carbapenem resistance 
in CRE clinical isolates (Peng et  al., 2022). The blaKPC gene is 
typically located on plasmids of different incompatibility (Inc) 
groups, such as IncF-, IncI-, IncA/C-, IncX-, and IncR-type 
plasmids (Chen et al., 2014), and the blaNDM gene is mainly carried 
by IncX3-type plasmids (Zhang et al., 2017; Yoon et al., 2018). 
These plasmids, which are often easily transferable, can facilitate 
the spread of blaKPC and blaNDM resistance genes by horizontal gene 
transfer among different bacterial populations, complicating 
clinical therapy and infection control.

Colistin, a cationic polypeptide, is regarded as an antibiotic of last 
resort for treatment of severe infections caused by CRE (Poirel et al., 
2017; Yang et al., 2020). However, the discovery of plasmid-mediated 
mobile colistin resistance (mcr) genes has triggered extensive concern 
due to the possibility of horizontal transfer of colistin resistance. The 
mcr-1 gene was the first mcr variant initially reported in China in 
2015 in Escherichia coli and Klebsiella pneumoniae isolates (Liu et al., 
2016). To date, various types of mcr genes (mcr-2 to mcr-10) have 
been identified worldwide in Enterobacteriaceae (Ling et al., 2020; 
Zhang et al., 2022). mcr-9 is closely related to mcr-3, with 65% amino 
acid identity and 99.5% nucleotide identity (Kieffer et al., 2019). It 
was first identified in a colistin-susceptible Salmonella enterica 
serotype typhimurium clinical isolate in the United States in 2019 
(Carroll et  al., 2019) and now has disseminated to various 
Enterobacteriaceae species, with global distribution in 21 countries 
across six continents (Li et  al., 2020). Surprisingly, reports on 
coexistence of mcr-9 and carbapenemase genes (such as blaNDM, 
blaVIM, blaKPC, blaIMP and blaOXA-48) in Enterobacteriaceae have been 
increasing worldwide (Chavda et  al., 2019; Yuan et  al., 2019; 
Kananizadeh et al., 2020; Liu et al., 2021; Simoni et al., 2021; Yao 
et al., 2022). These genes may be present in different gene cassettes 
on a single plasmid or different plasmids from one isolated strain. In 
this study, we  describe cooccurrence of three different MDR 
plasmids, pE1532-KPC, pE1532-NDM and pE1532-MCR, which 
carry the blaKPC-2, blaNDM-1, and mcr-9 genes, respectively, in a single 
carbapenem-resistant Enterobacter hormaechei clinical isolate. To the 
best of our knowledge, this is the first report of a clinical E. hormaechei 
isolate coharboring mcr-9 and the two most common carbapenemase 
genes, blaKPC-2 and blaNDM-1.

2. Materials and methods

2.1. Bacterial isolation and identification

Enterobacter hormaechei E1532 was isolated from hydrothorax 
and ascites samples of a patient in a teaching hospital in Henan, 
China, in 2015. Bacterial species were identified using the VITEK 2 
compact system (bioMérieux, France) as well as 16S rRNA 
sequencing. The presence of carbapenemase genes (Chen et al., 2015) 
and mcr genes (mcr-1 to mcr-10) (Rebelo et al., 2018; Borowiak et al., 
2020; Kim et al., 2021) was screened by PCR amplification using 
primers described previously, and the positive products were 
sequenced using an ABI Sequencer (Life Technologies, CA, 
United States). The genotype of strain E1532 was analyzed using the 
multilocus sequence typing (MLST) method to amplify and sequence 
the seven housekeeping genes (dnaA, fusA, gyrB, leuS, pyrG, rplB and 
rpoB) (Miyoshi-Akiyama et al., 2013), and sequence type (ST) was 

defined on the basis of seven allele numbers available on the MLST 
website.1

2.2. Whole-genome sequencing and 
sequence assembly

Total genomic DNA of E. hormaechei E1532 was extracted from 
cell pellets using a bacterial DNA kit (OMEGA, USA), and the 
purified DNA was subjected to whole-genome sequencing by a 
combination of PacBio RS (Pacifc Biosciences, CA, USA) and 
Illumina NovaSeq (Illumina, CA, USA) sequencing platforms. 
Paired-end DNA libraries were constructed with an average insert 
size of 400 bp (ranging from 300 to 500 bp) for Illumina sequencing, 
and shotgun DNA libraries were generated with a 15 kb insert size 
(ranging from 10 kb to 20 kb) for PacBio Biosciences sequencing. 
Clean reads were obtained after filtering the low-quality sequence 
data and then de novo assembled by Unicycler software (Wick et al., 
2017). The Illumina-generated short reads were utilized to correct 
the PacBio-generated long reads using the Pilon tool (Walker 
et al., 2014).

2.3. Genome annotation and 
bioinformatics analysis

Prediction and annotation of coding genes and pseudogenes 
was carried out using the RAST 2.0 algorithm (Brettin et al., 2015). 
Putative open reading frames (ORFs) were further assessed for 
functions by BLASTP and BLASTN (Boratyn et al., 2013) against 
the NCBI RefSeq (O’Leary et al., 2016) and UniProtKB/Swiss-Prot 
(Boutet et al., 2016) databases. The precise species assignment was 
further confirmed based on whole-genome sequencing using 
average nucleotide identity (ANI) analysis with the JSpeciesWS 
server. PlasmidFinder (Carattoli et al., 2014) was used to examine 
plasmid replicon type. The presence of antibiotic resistance genes, 
insertion sequences (ISs), transposons and integrons was analyzed 
in silico using the ResFinder (Bortolaia et al., 2020), CARD (Jia 
et al., 2017), ISfinder (Siguier et al., 2006), Tn Number Registry 
(Roberts et  al., 2008) and INTEGRALL (Moura et  al., 2009) 
databases. BLASTN and MUSCLE 3.8.31 (Edgar, 2004) were 
employed for alignment and comparison of the plasmid sequences 
analyzed in this study with highly homologous plasmid sequences 
publicly available in NCBI. The circular graph of plasmid sequences 
and linear comparative graph were constructed by Inkscape 0.48.1 
software.2

2.4. Plasmid transfer

The filter mating method was used for the plasmid conjugation 
assay (Ouyang et  al., 2018). Briefly, rifampicin-resistant E. coli 
EC600 was used as the recipient. Equal amounts of donor and 

1 http://pubmlst.org/ecloacae/

2 https://inkscape.org/en/
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recipient strains were mixed together, and mating was performed 
on the filter membranes of brain heart infusion (BHI) agar plates 
for 12–18 h at 37°C. The mixtures were spread on doubly selective 
agar plates containing rifampin together with indicated additional 
antibiotics for selecting an E. coli transconjugant carrying one of the 
following resistance markers: imipenem for blaKPC (pE1532-KPC) 
and blaNDM (pE1532-NDM), and azithromycin for mph(A) 
(pE1532-MCR). The presence of the resistance markers carried by 
transconjugants was confirmed by PCR amplification 
and sequencing.

For the electrotransformation experiment, streptomycin- and 
tetracycline-resistant E. coli TOP10 was selected as the recipient. 
Plasmid DNA was extracted using QIAGEN Plasmid Midi Kit 
(Qiagen, Germany) and transformed into TOP10 competent cells 
by electroporation. After reviving the bacterial cells for 1 h at 37°C 
and 200 rpm, positive electroporants carrying the blaKPC or blaNDM 
or mph(A) gene were selected on super optimal broth (SOB) agar 
plates containing imipenem or azithromycin, and further verified 
by PCR and sequence analysis.

2.5. Carbapenemase activity assay

The class A/B/D carbapenemase activity of the E1532 strain as 
well as its transconjugant and electroporant was assessed by the 
CarbaNP test as described in our previous study (Feng et al., 2022). 
Overnight bacterial cultures were seeded into MH broth 
supplemented with 4 μg/ml imipenem and incubated with 
continuous shaking until the bacterial density reached 1.0–1.4. Cell 
pellets were collected by centrifugation and subjected to washing 
with Tris–HCl twice. The sonication process was performed to lyse 
the bacterial cells. The supernatant from the cell lysis solution was 
added to substrates I–V at a ratio of 1:1 and then allowed to interact 
at 37°C for 1–2 h. The phenotypic results of carbapenemase activity 
were observed by color changes of the mixture.

2.6. Antimicrobial susceptibility testing

Minimum inhibitory concentrations (MICs) were determined 
using VITEK 2 System and AST-N334 cards for the following 
antimicrobial agents: amoxicillin/clavulanic acid, piperacillin/
tazobactam, cefuroxime, cefuroxime axetil, cefoxitin, ceftazidime, 
ceftriaxone, cefoperazone/sulbactam, cefepime, ertapenem, 
imipenem, amikacin, levofloxacin, tigecycline and trimethoprim/
sulfamethoxazole. For polymyxin B, the susceptibility test was 
performed with the broth microdilution method. The resistance 
results for tigecycline and colistin were judged according to the 
breakpoints of European Committee on Antimicrobial Susceptibility 
Testing (EUCAST)3; the breakpoints of other antibiotics were 
defined following the standard of the Clinical and Laboratory 
Standards Institute (CLSI). The E. coli standard strain ATCC 25922 
served as the quality control for susceptibility testing.

3 http://www.eucast.org/

2.7. Nucleotide sequence accession 
numbers

The complete sequences of chromosomes and plasmids have been 
submitted to the GenBank database under accession numbers 
CP114571 (chromosome), CP114573 (pE1532-KPC), CP114574 
(pE1532-MCR), CP114575 (pE1532-NDM), and CP114572 
(pE1532-4).

3. Results and discussion

3.1. Enterobacter hormaechei E1532 
coharboring blaKPC-2, blaNDM-1 and mcr-9 
genes

E. hormaechei E1532 was found to be resistant to all penicillins, 
cephalosporins, carbapenems, and fluoroquinolones and showed 
intermediate resistance to tigecycline; it remained sensitive to 
amikacin, polymyxin B and trimethoprim/sulfamethoxazole (Table 1). 
PCR screening and sequencing identification showed that 
E. hormaechei E1532 harbors two carbapenemase genes, blaKPC-2 and 
blaNDM-1, and a newly identified colistin resistance gene, mcr-9. MLST 
analysis revealed that strain E1532 belongs to ST93 (allelic profile: 
9–4–14-61-37-4-9), which is a globally disseminated high-risk clone 
that is frequently reported in China (Peirano et al., 2018; Zhao et al., 
2020; Chen et al., 2021).

Whole-genome sequencing revealed that strain E1532 has a single 
circular chromosome sequence of 4,869,794 bp with an average G + C 
content of 55.31% and contains a total of 4,717 predicted ORFs. A 
total of four plasmids, namely, pE1532-KPC, pE1532-NDM, 
pE1532-MCR and pE1532-4, were present in strain E1532, with 
circular closed DNA sequences of 39,461 bp, 53,769 bp, 308,217 bp, 
and 69,180 bp in length with 44, 62, 360, and 90 predicted ORFs, 
respectively (Supplementary Figure S1; Table 2). Each plasmid consists 
of backbone regions (responsible for plasmid maintenance, replication 
and/or conjugal transfer) and one or more accessory modules 
(acquired DNA regions associated with and bordered by mobile 
elements) inserted at different sites of the backbone regions 
(Supplementary Figure S1; Table 2). Antibiotic resistance genes were 
identified using ResFinder and CARD analysis. The chromosome of 
E1532 carries three intrinsic resistance genes involved in resistance to 
β-lactams (blaACT-7), aminoglycoside [aph(3′)-Ia] and fosfomycin 
(fosA). Plasmids pE1532-KPC, pE1532-NDM and pE1532-MCR 
harbor a total of 19 genes conferring resistance to β-lactams (blaKPC-2, 
blaNDM-1, blaSHV-12, blaDHA-1, blaTEM-1), aminoglycosides [aacC2, aphA1, 
aph(6)-Id, aph(3″)-Ib], tetracyclines [tet(A)], bleomycin (blaMBL), 
macrolide [mph(A)], fluoroquinolones (qnrB4), sulfonamide (sul1), 
tunicamycin (tmrB), colistin (mcr-9), quaternary ammonium 
(qacED1), tellurium (the ter locus), and mercuric (the mer locus) 
(Table  3). However, no resistance gene was found on plasmid 
pE1532-4, which only harbors a Tn3-family transposon remnant.

Plasmid pE1532-NDM was successfully transferred to E. coli by 
electrotransformation and conjugation experiments, obtaining the 
corresponding electroporant pE1532-NDM-TOP10 and 
transconjugant pE1532-NDM-EC600 (Table  1). In order to 
investigate the transmissible possibility of conjugative plasmid 
pE1532-NDM in different hosts, the conserved backbone sequences 
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of pE1532-NDM were aligned by BLASTN with the blaNDM-1-
harboring IncX3 plasmids available in GenBank. Among the top 100 
plasmids with the highest backbone sequence similarity of 
pE1532-NDM, the plasmids were selected based on the origin of 
bacterial species or hosts different from pE1532-NDM. A total of 11 
plasmids were included and they were mainly isolated from bacterial 
strains from human. In addition, there were also four plasmids from 
shrimp, chicken, hospital sewage and unknown source, respectively 
(Supplementary Table S1). The results of our analysis showed that 
IncX3 plasmids have an extensive host range. However, only the 

electroporant pE1532-KPC-TOP10, and not the transconjugant, was 
obtained by transferring pE1532-KPC into E. coli, which may 
be  because pE1532-KPC lacks the conjugal transfer genes in 
backbone regions (Supplementary Figure S1) and is not self-
transmissible (Compain et  al., 2014; Jing et  al., 2019). Repeated 
attempts failed to transfer pE1532-MCR into E. coli through 
conjugation and electroporation; this may be  attributed to the 
following facts: (1) pE1532-MCR is a 308 kb megaplasmid which 
limits the success of conjugation and electroporation. (2) the 
insertion event occurred within the two conjugal transfer regions 

TABLE 1 Antimicrobial susceptibility profiles of Enterobacter hormaechei E1532 and its transconjugants and electroporants.

Category Antibiotic MIC(μg/ml)/antimicrobial susceptibility

E1532 pE1532-
KPC-TOP10

pE1532-
NDM-
EC600

pE1532-
NDM-
TOP10

TOP10 EC600

Penicillins Amoxicillin/clavulanic 

acid

≥32/R ≥32/R ≥32/R ≥32/R 4/S ≤4/S

Piperacillin/

tazobactam

≥128/R ≥128/R ≥128/R ≥128/R ≤4/S ≤4/S

Cephalosporins Cefuroxime ≥64/R ≥64/R ≥64/R ≥64/R 8/S 16I

Cefuroxime axetil ≥64/R ≥64/R ≥64/R ≥64/R 4/S 16I

Cefoxitin ≥64/R ≥64/R ≥64/R ≥64/R ≤4/S ≤4/S

Ceftazidime ≥64/R 32/R ≥64/R ≥64/R ≤1/S ≤1/S

Ceftriaxone ≥64/R ≥64/R ≥64/R ≥64/R ≤1/S ≤1/S

Cefoperazone/

sulbactam

≥64/R ≥64/R ≥64/R ≥64/R ≤1/S ≤1/S

Cefepime ≥32/R 16/R 16/R 16/R ≤1/S ≤1/S

Carbapenems Ertapenem ≥8/R ≥8/R ≥8/R ≥8/R ≤1/S ≤1/S

Imipenem ≥16/R 8/R ≥16/R 8/R ≤1/S ≤1/S

Fluoroquinolones Levofloxacin ≥8/R ≤0.25/S 0.5/S ≤0.25/S ≤0.25/S 0.5/S

Aminoglycosides Amikacin ≤2/S ≤2/S ≤2/S ≤2/S ≤2/S ≤2/S

Glycylcycline Tigecycline 4/I ≤0.5/S ≤0.5/S ≤0.5/S ≤0.5/S ≤0.5/S

Sulfanilamides Trimethoprim/

sulfamethoxazole

40/S ≤20/S ≤20/S ≤20/S ≤20/S ≤20/S

Lipopeptide Polymyxin B 0.25/S 0.25/S 0.25/S 0.25/S 0.25/S 0.25/S

MIC = minimum inhibitory concentration; S = sensitive; R = resistant; I = intermediate.

TABLE 2 Genomic features of the four plasmids carried by strain E1532.

Feature pE1532-KPC pE1532-NDM pE1532-MCR pE1532-4

Incompatibility group IncR IncX3 IncHI2 IncFII

Total length (bp) 39,461 53,769 308,217 69,180

Total number of ORFs 44 62 360 90

Mean G + C content, % 55.67 49.08 47.48 52.97

Length of the backbone (bp) 12,034 34,724 230,863 69,180

Accessory modules The blaKPC-2 region
The blaNDM-1 region and 

ISKox3

The MDR-1 region, the MDR-2 

region, ISCfr9-ISCfr15, IS1B-

ISKpn26, the ISKpn21:∆Tn6363 

region, three separate copies of 

IS903B, ISKpn26, IS5, Tn6362, Tn2 

and ∆IS903B

The Tn3-family transposon 

remnant
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tra1 and tra2 might render this plasmid nonconjugative 
(Supplementary Figure S1). In a carbapenemase activity assay, strain 
E1532 showed class A + B activity, the pE1532-NDM-harboring 
electroporant and transconjugant class B activity, and the pE1532-
KPC-harboring electroporant A activity (data not shown). 
Phenotypic susceptibility testing showed these electroporants and 
transconjugant to be  resistant to all β-lactams tested, including 
carbapenems (Table 1), which was consistent with the presence of 
carbapenemase genes in these strains.

3.2. Comparative genomics of blaKPC-2-
carrying plasmid pE1532-KPC

The entire sequence of pE1532-KPC is highly similar to that of the 
reference IncR plasmid pHN84KPC (accession number KY296104), 
with 100% query coverage and > 99% nucleotide identity (Figure 1). 
pE1532-KPC and pHN84KPC share the most complete IncR 
backbone gene loci encoding plasmid replication initiation (repB) and 
plasmid maintenance (parAB, umuCD, retA, vagCD, resD). A single 

TABLE 3 Drug resistance genes in plasmids analyzed.

Plasmid Resistance gene Resistance phenotype Nucleotide position Accessory or 
backbone region 
located

pE1532-KPC blaKPC-2 β-lactam resistance 25,914-26,795 The blaKPC-2 region

tet(A) Tetracycline resistance 15,880-17,079

pE1532-NDM blaNDM-1 β-lactam resistance 17,826-18,638 The blaNDM-1 region

blaSHV-12 β-lactam resistance 9,324-10,183

blaMBL Bleomycin resistance 17,457-17,822

pE1532-MCR The ter locus Tellurium resistance 64,703-84,651 Backbone region

aacC2 Aminoglycoside resistance 156,517-157,377 The MDR-1 region

blaDHA-1 β-lactam resistance 137,136-138,275

blaSHV-12 β-lactam resistance 145,679-146,539

blaTEM-1 β-lactam resistance 150,685-151,545

mph(A) Macrolide resistance 158,436-159,341

qacED1
Quaternary ammonium 

resistance
139,376-139,858

qnrB4 Fluoroquinolone resistance 132,368-133,015

sul1 Sulfonamide resistance 139,852-140,691

tmrB Tunicamycin resistance 155,962-156,504

strA Aminoglycoside resistance 263,392-264,228 The MDR-2 region

strB Aminoglycoside resistance 264,228-265,031

mcr-9 Colistin resistance 252,943-254,562

aphA1 Aminoglycoside resistance 224,978-225,793 The ISKpn21:∆Tn6363 region

blaTEM-1 β-lactam resistance 115,557-116,417 Tn2

The mer locus Mercuric resistance 105,015-108,991 Tn6362

FIGURE 1

Linear comparison of plasmid pE1532-KPC with pHN84KPC (accession number KY296104). Genes are denoted by arrows. Genes, mobile elements 
and other features are colored based on function classification. Shading denotes shared regions of homology (>95% nucleotide identity).
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accessory module, the blaKPC-2 region containing two resistance genes, 
blaKPC-2 and tet(A), is inserted at a site between retA and vagD in the 
backbone of these two plasmids (Supplementary Figure S1). The 
blaKPC-2 region contains the tet(A)-carrying ΔTn1721 cassette 
(Allmeier et  al., 1992) and the blaKPC-2-carrying ΔTn6296 cassette 
(Jiang et al., 2010) flanked by the upstream IS1X3-IS903B-ΔIS903B 
region and the downstream Tn3-family transposon remnant-
ISKpn19-ΔISEc15 region (Figure 1). The only modular difference 
between these two plasmids is with regard to the copy number (21 in 
pHN84KPC, 27 in pE1532-KPC) of the 37-bp tandem repeat within 
interons, which is located behind the truncated replication initiation 
gene ΔrepA in the blaKPC-2 region.

3.3. Comparative genomics of blaNDM-1-
carrying plasmid pE1532-NDM

pE1532-NDM displays >99% nucleotide identity (with 100% 
query coverage) with the reference IncX3 plasmid pNDM-HN380 (Ho 
et al., 2012) obtained from K. pneumoniae isolate CRE380 in China 
(Figure  2A). pE1532-NDM and pNDM-HN380 have identical 
backbones that share a set of core genes for plasmid replication (repB 
and bis), partition (parA), maintenance (topB and stpA) and conjugal 
transfer (pilX genes) (Supplementary Figure S1). Each of them harbors 
two accessory modules, ISKox3 and the blaNDM-1 region, which are 
inserted at different sites of the plasmid backbone. All resistance genes 
are located in the blaNDM-1 region. This accessory resistance region 
(18 kb in length) originated sequentially as a truncated IS26-blaSHV-

12-IS26 unit, blaNDM-1-carrying ΔTn125, IS3000 and ΔTn3 (Figure 2B). 
The truncated IS26-blaSHV-12-IS26 unit was generated by deletion of 
yjbJ (partial)-yjbK-yjbL-yjbM genes and inversion of IS26 at the 3′ 
region from the prototype composite transposon-like IS26-blaSHV-

12-IS26 unit (Ford and Avison, 2004). ΔTn125 is a derivative of 
ISAba125-flanked composite transposon Tn125 (Poirel et al., 2012), 
lacking the ISAba125 element at the 3′ region and having an 
interrupted and truncated ISAba125 at the 5′ region by insertion of an 
IS5 element.

At least four major module differences were identified between 
the blaNDM-1 regions of pE1532-NDM and pNDM-HN380 (Figure 2B). 
First, the truncated IS26-blaSHV-12-IS26 unit in pE1532-NDM is 
inverted compared to pNDM-HN380. Second, the blaSHV-12 gene 
cannot form an ORF due to the absence of 1 bp, making it a 
pseudogene. Third, a 261-bp deletion at the 5′-terminal region of 
ΔISAba125 was found in pE1532-NDM. Fourth, direct repeats (DRs) 
have been lost at both ends of the IS5 element in pE1532-NDM.

3.4. Comparative genomics of the mcr-9-
carrying plasmid pE1532-MCR

The pE1532-MCR backbone is closely related to the first 
prototype IncHI2 plasmid R478 (Gilmour et al., 2004) from Serratia 
marcescens, with 95% query coverage and > 99% nucleotide identity, 
and to another IncHI2 plasmid, p505108-MDR (Shi et al., 2018) 
from Cronobacter sakazakii, with 98% query coverage and > 99% 
nucleotide identity (Supplementary Figure S2). These three 
plasmids share the core IncHI2 backbone, including the regions 
responsible for plasmid replication (repHIA, repHI2), partition 

(parAB, parMR) and conjugal transfer (tra1 and tra2 regions) 
(Supplementary Figure S1).

Linear comparison revealed that the following different regions 
are present among the backbones of pE1532-MCR, R478 and 
p505108-MDR (Supplementary Figure S2A). (1) An IS903B element 
in pE1532-MCR but a ΔIS903D element in p505108-MDR is inserted 
between parR and htdA relative to R478, leading to the interruption 
of the conjugal transfer region tra2. (2) An ISKpn26 element is 
inserted between the backbone genes orf2034 and orf222 in 
pE1532-MCR. (3) An IS5 element is inserted between orf1161 and 
hha in pE1532-MCR. (4) Two backbone regions, hipB-hipA-orf207-
orf411 and orf189-orf426-orf258, are inserted between orf1389 and 
orf609 in pE1532-MCR and p505108-MDR. (5) orf159 is interrupted 
by a Tn2 element in pE1532-MCR and p505108-MDR. (6) The klaB 
to orf534 region is truncated by insertion of the MDR-2 region in 
pE1532-MCR and p505108-MDR relative to R478, leaving only the 
remnant of the klaB and orf534 genes. (7) An IS903B element in 
pE1532-MCR but a ΔIS903D element in p505108-MDR is inserted 
between orf2385 and orf450, leading to the truncation of both genes. 
(8) A 377-bp insertion at the 3′-end of orf444 resulted in the 
replacement of orf444 with orf588 in pE1532-MCR and 
p505108-MDR. (9) The MDR-1 and MDR-2 regions are inserted into 
the boundary of ΔklaB and orf819, respectively, with inversion of the 
entire backbone region between ΔklaB and orf819 in pE1532-MCR.

To more clearly and intuitively observe the genetic features of the 
backbone region between ΔklaB and orf819 in these three plasmids, 
the ΔklaB to orf819 region in pE1532-MCR was reverted compared 
with that of R478 and p505108-MDR (Supplementary Figure S2B). 
The genetic differences among them were as follows: (1) An IS150 
element is located between the two backbone genes orf198 and ldrB in 
R478 but replaced by both the ISCfr9-ISCfr15 region and the orf612-
fieF-relB-relE backbone region in pE1532-MCR and 
p505108-MDR. (2) IS186B is lost between ldrB and orf321 in 
pE1532-MCR and p505108-MDR relative to R478. (3) Tn10 is inserted 
into orf300 in R478. (4) The traI gene in the conjugal transfer region 
tra1 is interrupted by a truncated IS903B in pE1532-MCR. (5) The 
IS1B-ISKpn26 region and ISKpn21-∆Tn6363 region are inserted into 
the mucA to orf1404 backbone region in pE1532-MCR, resulting in 
deletion of backbone genes between orf318-1 and mucA as well as 
truncation of mucA relative to R478; acquisition of the aphA1a region 
in p505108-MDR causes loss of the orf318-2 to retA backbone region 
as well as truncation of mucA. (6) orf258 is interrupted by an IS903B 
element in pE1532-MCR.

The differences described above involve not only backbone 
regions but also accessory modules. pE1532-MCR carries a total of 13 
accessory modules, and resistance genes are located in the MDR-1 
region (Figure 3), the MDR-2 region (Figure 4), the ISKpn21:∆Tn6363 
region (Figure  5), Tn6362 (Supplementary Figure S3) and Tn2 
(Supplementary Figure S3).

3.5. The MDR-1 region of pE1532-MCR

The MDR-1 region (Figure 3) harbors five antibiotic resistance 
loci: qnrB4-blaDHA-1 region (Yim et  al., 2013), integron remnant 
carrying ΔqacED1 and sul1, a truncated IS26-blaSHV-12-IS26 unit (Ford 
and Avison, 2004), aacC2-tmrB region (Partridge et al., 2012), and a 
truncated IS26-mph(A)-IS6100 unit (Liang et  al., 2017). 
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IS26-blaSHV-12-IS26 is an IS26-flanked extended-spectrum β-lactamase 
(ESBL) resistance unit lacking direct repeats (DRs) at both ends. A 
number of IS26-based resistance units have been reported with 
diverse resistance genes (Partridge, 2011). IS26 can mediate movement 
of antibiotic resistance genes and formation of composite transposons, 
which contribute to MDR region assembly (Harmer and Hall, 2016; 
Harmer et al., 2020). The IS26-blaSHV-12-IS26 unit in the MDR-1 region 
has undergone truncation of the upstream IS26 element and deletion 
of its 14-bp IRR (inverted repeat right).

Tn1722 belongs to a Tn3-family unit transposon harbored in the 
tetracycline resistance transposon Tn1721 (Allmeier et al., 1992) and 

includes tnpA, tnpR, res and mcp genes bounded by 38-bp IRL 
(inverted repeat left) and IRR. The ΔTn1722 element in the MDR-1 
region is a derivative of Tn1722 with deletion of mcp and IRR, which 
is also found in pCRE3-KPC (Dong et  al., 2020) and plasmid 
unnamed3 (accession number CP027150). The IS26-mph(A)-IS6100 
unit contains a macrolide resistance region mph(A)-mrx-mphR(A) 
(Noguchi et al., 2000) bracketed by IS26 and IS6100 elements. These 
two IS elements, which have almost identical 14-bp IRs, belong to the 
IS6 family, and the homologous recombination mediated by them 
promotes integration of this resistance unit into the MDR region, 
similar to the IS26-bound resistance unit.

A

B

FIGURE 2

Comparison of plasmid pE1532-NDM with pNDM-HN380. (A) Linear comparison of the two sequenced plasmids pE1532-NDM and pNDM-HN380 
(accession number JX104760). (B) The blaNDM-1 region from pE1532-NDM and comparison with related regions. Genes are denoted by arrows. Genes, 
mobile elements and other features are colored based on functional classification. Shading denotes shared regions of homology (≥90% nucleotide 
identity). Numbers in brackets indicate nucleotide positions within the corresponding plasmids. The accession numbers of the Tn125 and IS26-blaSHV-12-
IS26 unit for reference are JN872328 and CP003684, respectively.
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3.6. The MDR-2 region of pE1532-MCR

The MDR-2 region of pE1532-MCR (Figure 4) is highly similar to 
the MDR-1 region of p505108-MDR (97% query coverage and > 99% 
nucleotide identity), with a reverse array of the orf168 to intI1 region 
and with the same orientated IS26 downstream of interrupted In0. Both 
MDR regions harbor a mcr-9 gene, and the genetic environments of 
mcr-9 are identical to each other. Mcr-9 is flanked by IS903D and IS26 
elements, both belonging to the IS6 family, which play a vital role in 
dissemination of resistance genes. The genes upstream of mcr-9 include 
rcnR, rcnA, pcoE and pcoS. However, only the wbuC gene is located 
downstream of mcr-9, and a two-component system encoding the genes 
qseB and qseC, which are involved in mcr-9 expression (Kieffer et al., 

2019), was not found. The lack of qseB-qseC regulatory genes in plasmid 
pE1532-MCR may explain the phenomenon that strain E1532 carrying 
mcr-9 is sensitive to polymyxin B. The gene composition arrayed as 
rcnR-rcnA-pcoE-pcoS-IS903-mcr-9-wbuC is the core structure of mcr-9 
resistance cassettes in the mcr-9-carrying IncHI2 plasmids from 
different Enterobacteriaceae (Li et al., 2020). The different encoding 
genes and IS elements located downstream of mcr-9 are the main causes 
leading to the diverse genetic context of mcr-9 in IncHI2 plasmids.

In addition to mcr-9, other resistance genes (strA, strB) are present 
in the MDR-2 region. The class 1 integron In0 (accession number 
U49101) from Pseudomonas aeruginosa plasmid pVS1 is an ancestor 
of more complex integrons with a weak PcW promoter and an 
unoccupied integration site attI in 5′-CS but no gene cassette array 

FIGURE 3

The MDR-1 region from pE1532-MCR and comparison with related regions. Genes are denoted by arrows. Genes, mobile elements and other features 
are colored based on functional classification. Shading denotes shared regions of homology (≥90% nucleotide identity). Numbers in brackets indicate 
nucleotide positions within the corresponding plasmids. The accession numbers of the IS26-blaSHV-12-IS26 unit, IS26-mph(A)-IS6100 unit and Tn1722 
for reference are CP003684, KY270852 and X61367, respectively.

FIGURE 4

The MDR-2 region from pE1532-MCR and comparison with related regions. Genes are denoted by arrows. Genes, mobile elements and other features 
are colored based on functional classification. Shading denotes shared regions of homology (≥90% nucleotide identity). Numbers in brackets indicate 
nucleotide positions within the corresponding plasmids. The accession numbers of Tn5393c and In0 for reference are AF262622 and U49101, 
respectively.
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(Bissonnette and Roy, 1992). ΔIn0 from the MDR region of 
pE1532-MCR/p505108-MDR contains the 5′-CS composed of the 
integrase gene intI1 and promoter gene and is bordered by IRi 
(inverted repeat at the integrase end) and IRt (inverted repeat at the 
tni end), which resulted from insertion of ΔIS6100 and Tn5393c 
remnant (Tn3-family transposon) carrying the aminoglycoside 
resistance genes strA and strB (L'Abee-Lund and Sorum, 2000).

3.7. The ISKpn21:ΔTn6363 region of 
pE1532-MCR

The ISKpn21:ΔTn6363 region (Figure 5) is composed of ISKpn21 
and ΔTn6363 and has undergone two different transposition events: 
(1) The ISNCY family element ISKpn21 with an IRL-tnpA-tnpB-IRR 
structure is integrated at a site between the two backbone genes 
orf318-2 and orf1404 in pE1532-MCR and bordered by 5-bp DRs. (2) 
The transposon ΔTn6363 is inserted at a site between tnpB and the 
IRR of ISKpn21, splitting ISKpn21 into two parts and leaving 9-bp 
DRs at both ends of ΔTn6363. Tn6363 (accession number KY978628) 
is an IS903B-flanked composite transposon that possesses an IS903B-
aphA1-orf894-yqhD-orf585-IS903B structure (Shi et  al., 2018). 
Insertion of an additional element ΔIS903B resulted in a 1-bp deletion 
of IS903B upstream of Tn6363, thus generating ΔTn6363 with three 
IS903B elements. ΔTn6363 is a derivative of Tn6363 which carries 
aminoglycoside resistance gene aphA1, the embedding of ΔTn6363 
into ISKpn21 mediated by IS903B facilitates the horizontal transfer 
and transmission of antibiotic resistance gene in bacterial populations.

4. Conclusion

This is the first report of coexistence of the blaKPC-2-carrying IncR 
plasmid, blaNDM-1-carrying IncX3 plasmid and mcr-9-carrying IncHI2 
plasmid recovered from the ST93 multidrug-resistant E. hormaechei 
clinical isolate E1532. These three coexisting MDR plasmids carry a 

large number of resistance genes, rendering the E1532 isolate resistant 
to almost all antibiotics tested, including carbapenems. The mcr-9 
gene, which is involved in resistance to the last-resort antibiotic, 
should be given sufficient attention because it has become widely 
disseminated worldwide among various species of Enterobacteriaceae. 
Therefore, epidemiological analysis should be performed to monitor 
the spread of mcr-9-positive strains. Moreover, most of these plasmid-
mediated resistance genes are located in or flanked by various mobile 
genetic elements, such as transposons, insertion sequences and 
integrons, which facilitate acquisition and horizontal transfer of 
antibiotic resistance genes across bacterial populations. Not all 
plasmids can transfer themselves, but non-conjugative plasmids can 
be mobilized with the help of other conjugative plasmids present in 
the same donor cell. Therefore, there is the possibility of cotransfer of 
blaKPC-2-, blaNDM-1-, and mcr-9-carrying plasmids. The main limitation 
in this study is that we did not apply the conjugation assay to evaluate 
the cotransfer of these three plasmids, which needs to be confirmed 
by further study. Anyway, the cotransfer and coexistence of mcr-9 and 
carbapenemase genes in E. hormaechei isolates limit the choice of 
antibiotics, which will arise a huge risk to clinical treatment and global 
public health. Further surveillance is necessary to achieve better 
insight into the prevalence and dissemination mechanism of these 
coexisting blaKPC-2-, blaNDM-1-, and mcr-9-harboring plasmids among 
clinical isolates.
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