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Background: Increasing evidence suggests that people with Coronavirus Disease 
2019 (COVID-19) have a much higher prevalence of Acute Myocardial Infarction 
(AMI) than the general population. However, the underlying mechanism is not yet 
comprehended. Therefore, our study aims to explore the potential secret behind 
this complication.

Materials and methods: The gene expression profiles of COVID-19 and AMI were 
acquired from the Gene Expression Omnibus (GEO) database. After identifying the 
differentially expressed genes (DEGs) shared by COVID-19 and AMI, we conducted 
a series of bioinformatics analytics to enhance our understanding of this issue.

Results: Overall, 61 common DEGs were filtered out, based on which 
we established a powerful diagnostic predictor through 20 mainstream machine-
learning algorithms, by utilizing which we could estimate if there is any risk in a 
specific COVID-19 patient to develop AMI. Moreover, we explored their shared 
implications of immunology. Most remarkably, through the Bayesian network, 
we inferred the causal relationships of the essential biological processes through 
which the underlying mechanism of co-pathogenesis between COVID-19 and 
AMI was identified.

Conclusion: For the first time, the approach of causal relationship inferring was 
applied to analyzing shared pathomechanism between two relevant diseases, 
COVID-19 and AMI. Our findings showcase a novel mechanistic insight into 
COVID-19 and AMI, which may benefit future preventive, personalized, and 
precision medicine.
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Introduction

The emergence of the novel coronavirus 2019 (COVID-19) has 
triggered a global pandemic and posed unprecedented pressure on 
healthcare systems worldwide (Haldane et al., 2021; Lal et al., 2021). 
Today, it is well-realized that the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is the pathogen virus that causes 
COVID-19 and can further worsen it into severe lower respiratory 
tract infections in many mammals. Recently, many studies have 
pointed out that since the main target of the SARS-CoV-2 virus is the 
ACE receptor, a broadly existing surface receptor on diverse cell types 
across the whole human body, patients with COVID-19 infection are 
seemingly at a much higher risk of various life-threatening disease 
onset, such as cardiomyopathy, neuropathy, etc. (Kuderer et al., 2020; 
Lee et al., 2020; Rugge et al., 2020; Grivas et al., 2021; Li F. et al., 2021; 
Safiabadi Tali et al., 2021). However, although increasing evidence has 

shown that COVID-19 patients have an increased risk of sudden heart 
attacks, its connections with acute myocardial infarction (AMI) have 
not yet been identified to date. In fact, myocardial infarction, a heart 
muscle’s inability to receive enough oxygen and nutrients due to 
sudden blockage of the arteries, is one of the significant invisible 
hands of such heart diseases (Roth et al., 2017; Tsao et al., 2022). 
Statistically speaking, it is estimated that up to 8.3% of COVID-19-
infected individuals may develop acute myocardial infarction, which 
is more than twice the incidence in the general population (Kumar 
et al., 2021; Toscano et al., 2021). Given the potential risk of AMI onset 
in the COVID-19-positive population, understanding such 
mechanisms is crucial. Hence, we  investigated the shared 
pathomechanism between COVID-19 and AMI in the present study. 
We  obtained gene expression profiles from the Gene Expression 
Omnibus (GEO). Having identified differentially expressed genes 
(DEGs) shared by COVID-19 and AMI, we performed a series of 
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bioinformatics analyses to enhance the current understanding of this 
issue. We  even developed a strong AMI diagnostic predictor for 
COVID-19-positive patients. From this end, we first attempted to 
identify the in-depth causal relationship between the two diseases 
based on their shared pathomechanism. As a result, our findings may 
provide further insight into future research and clinical practice 
regarding COVID-19 and AMI.

The general design of the present study is visualized in 
Graphical abstract.

Materials and methods

Data acquisition, preparation, and statistic 
management

GEO1 is an extensive gene expression database for various diseases 
that is freely available in the public domain. For COVID-19, we used 
the GSE164805 for analytics (Zhang et  al., 2021). For AMI, 
we  integrated GSE29111, GSE60993, GSE109048, GSE29532, 
GSE19339, GSE48060, GSE66360, and GSE97320 as a merged dataset 
(Silbiger et al., 2013; Suresh et al., 2014; Park et al., 2015; Muse et al., 
2017; Gobbi et al., 2019). The normalization and calibration were done 
through the “normalizeBetweenArrays” function of the R package, 
“limma,” for both COVID-19 and AMI datasets 
(Supplementary Data S1). The analyses above were conducted by 
different R software packages and the integrative Python package 
“sklearn” (Pedregosa et al., 2011). If not specifically mentioned, the 
statistic test used in the analytics is the Wilcoxon rank sum test. 
Notably, within some figures, *, **, and *** may occur, indicative of a 
p-value < 0.05, 0.01, and 0.001, respectively.

Identification of common DEGs between 
COVID-19 and AMI

In the present study, differential expression analysis was 
performed using the R package, “limma” (Ritchie et al., 2015). To 
avoid omission, DEGs were screened at a threshold of p-value < 0.05 
and Log2 |fold change| > 1.00. After screening out the DEGs for 
COVID-19 and AMI, we crossed them to find common DEGs.

Machine learning

The selection of feature genes to build the diagnostic predictor is 
crucial. In the present study, we first used the “RFE” algorithm to 
determine the ideal number of genes for formal modeling. Then 
we  combined the linear algorithm, “LASSO,” with the non-linear 
algorithm, “Random Forest,” to narrow the list of potential genes of 
interest. As a result, the selected feature genes would be processed to 
construct the formal model (i.e., the AMI diagnostic predictor for 
COVID-19 patients).

1 www.ncbi.nlm.nih.gov/geo

For formal modeling, the whole AMI merged dataset was 
randomized and then separated into a training set and a test set at a 
ratio of 7.5:2.5. According to the “no-free-lunch” theorem, if one 
machine learning algorithm outperforms the others on a specific 
assessment, it should sacrifice certain points on the other assessment 
measurements (Wolpert and Macready, 1997). In short, nothing is 
perfect. However, through the exhaustive try-in of the mainstream 
machine learning algorithms and elucidation of different algorithms, 
we  were able to choose the best one in general. Therefore, in the 
present study, 20 machine-learning algorithms, including Linear 
Regression, Ridge Regression, RidgeCV, Linear LASSO, LASSO, 
ElasticNet, BayesianRidge, Logistic Regression, SGD, SVM, KNN, 
Naive Bayes, Decision Tree, Bagging, Random Forest, Extra Tree, 
AdaBoost, GradientBoosting, Voting, and ANN, were compared 
and evaluated.

Decision curve analysis

Usually, clinical models are absolutely and mathematically 
evaluated by the values of ROC-AUC, Accuracy, Precision, Recall, and 
F1-score without considering clinical outcomes. To overcome this 
disadvantage, Decision curve analysis (DCA) is used to compare the 
clinical benefits gained by employing different diagnostic predictors 
(Vickers and Elkin, 2006; Vickers et al., 2019). The more superior the 
curve localizes, the better prediction it outputs from the clinical aspect.

Analysis of the immune microenvironment

CIBERSORT2 was used to assess the abundance of various 
infiltrating immune cells (Chen et  al., 2018; Craven et  al., 2021). 
Overall, 22 immune cell types were quantified. Correlation analysis 
between the immune cell types and GLS and SLC31A1 was done by 
the Pearson method. The visualization was created by the R package 
“ggplot2.”

Functional enrichment analysis

Functional enrichment analysis included Gene Ontology (GO) 
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. The R package, “clusterprofiler” was used to carry out the 
functional enrichment analysis based on the common DEGs (Wu 
et al., 2021). The borderline criteria for selecting top enriched GO 
terms and KEGG pathways was with a significant adjusted 
p-value < 0.05.

Causal relationship inferring

When studying gene expression profiling, inferring gene 
regulatory networks’ causality is crucial for investigating underlying 
molecular mechanisms. Herein, based on functional enrichment, 

2 https://cibersort.stanford.edu/
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we  leveraged an advanced AI-essential R package, “CBNplot” to 
uncover the hidden secrets between COVID-19 and AMI (Sato 
et al., 2022).

Results

Identification of common DEGs between 
COVID-19 and AMI

For the GSE164805 dataset, 3,421 DEGs were found, among 
which there were 1,527 genes upregulated and 1,894 genes 
downregulated (Figure 1A). For the merged AMI dataset, we identified 
1,091 DEGs, including 483 upregulated genes and 608 downregulated 
genes (Figure  1B). By taking the intersection of DEGs of the 
GSE164805 dataset and the merged AMI dataset, there were 61 

common DEGs found, which were visualized by Venn diagrams 
(Figure 1C; Supplementary Figure S1).

Pre-modeling: Integrative approach for 
feature genes selection

Since the mathematical relationship between the predictors 
and the outcome was unknown, we combined both linear (i.e., 
LASSO) and non-linear (i.e., Random Forest) methods to filter 
out the most promising genes for formal modeling after 
determining the ideal number of genes that the RFE algorithm 
should use. As a result, 5 genes were believed to be the best option 
since, after this point, the RMSE-value fluctuated on a tiny scale, 
suggesting only little changes in the predictive powerfulness 
occurred (Figure  2A). On the other hand, the Random Forest 
algorithm ranked the importance of each top 20 genes, in which 

A

C

B

FIGURE 1

Identification of common DEGs between COVID-19 and AMI. (A,B) Volcano plots demonstrated the upregulated and downregulated DEGs of the 
COVID-19 dataset and merged AMI dataset. (C) Venn diagram shows the 61 common DEGs.
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THBD, IL1R2, GCA, KBTBD7, and KMT5B were the uppermost 
(Figure  2B). Furthermore, the LASSO narrowed down the 
binormal deviance to the minimum (Figure 2C) and allocated a 
coefficient to each gene (Figure 2D), also showing the top 20 most 
weighted genes (Figure 2E). After that, we selected the overlapping 
genes from the top 20 genes given by the Random Forest algorithm 
and the LASSO for formal modeling.

Formal modeling: Establishing an AMI 
diagnostic predictor for COVID-19 patients

Herein, we  attempted 20 different machine learning methods 
currently under service in the field so that the data, in terms of the 
predictive performance and property, could be  fit as optimally as 
possible. Consequently, Extra Tree exerted the maximum performance 

A

B

C

D

E

FIGURE 2

Integrative Approach for Feature Genes Selection. (A) Scree plot demonstrating the fluctuation of the RMSE value against the number of variants (i.e., 
feature genes) involved in formal modeling. (B) Lollipop plot shows each top 20 feature gene’s importance by the Random Forest algorithm. (C,D) Dot 
plots and curves demonstrate the binormal deviance changes and coefficient allocation process against the value of Log Lambda, respectively. 
(E) Bubble plot showing the importance of each top 20 feature genes by LASSO.
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regarding the Accuracy, Precision, Recall, and F1-score, followed 
immediately by Random Forest, and then SVM (Figures  3A–D; 
Supplementary Figure S2). In addition, the value of ROC-AUC of 
Extra Tree was the highest among the candidates, up to 0.892 in the 
test dataset (Figure 3E). Meanwhile, cardiac troponin, a gold standard 
biomarker for AMI, only possessed a ROC-AUC value of 0.62. 
Therefore, it was deemed that the Extra Tree algorithm was much 
superior (Figure 3F).

Exploration of the feature genes’ 
implications in immunology

With the help of the CIBERSORT platform, it was observed that 
in COVID-19-positive patients, Plasma Cells, Activated CD4 Memory 
T Cells, CD8 T Cells, both Activated and Resting Dendritic Cells, M0 
Macrophages, and Neutrophils were statistically different from that in 
COVID-19-negative patients (Figure  4A). Interestingly, besides 

A B

C D

E F

FIGURE 3

Multifaceted evaluation of 20 mainstream machine-learning diagnostic predictors. (A–D) The Radar plot demonstrates accuracy, recall, and F1-score 
measurement in the train and test sets, respectively. (E) Receiver Operative Curve (ROC), in which each predictor’s Area Under Curve (AUC) value was 
compared. Generally, an AUC value over 0.7 was considered a good predictive performance. (F) ROC of the cardiac troponin.
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Resting Dendritic Cells, CD8 T Cells were less abundant in COVID-
19-positive patients. For AMI, Plasma Cells, Activated CD4 Memory 
T Cells, CD4 Naïve Cells, both Activated and Resting Dendritic Cells, 
both Activated and Resting Mast Cells, both Activated and Resting 
NK Cells, Macrophage M2, Eosinophils, and Neutrophils were 
statistically different from that in healthy controls (Figure 4B). Then, 
the 5 shared differentially regulated immune cells (i.e., Plasma Cells, 
Activated CD4 Memory T Cells, both Activated and Resting Dendritic 
Cells, and Neutrophils) were screened out. They underwent a 
correlation analysis with the feature genes (Figure 4C). Subsequently, 
it was found that the GCA gene was statistically associated with all 5 
shared differentially regulated immune cells, and Neutrophils were 
statistically associated with all the feature genes. However, except for 
Resting Dendritic Cells, the GCA gene was negatively correlated with 
the other shared differentially regulated immune cells, hindering it 

might serve as an inhibitor in the immune system activation in the 
shared pathomechanism of COVID-19 and AMI.

Functional enrichment analysis and causal 
relationship inferring

First, a traditional functional enrichment analysis was performed, 
in which we identified 6 statistically significant GO terms and 1 KEGG 
pathway. The enriched GO terms included “hyaluronan metabolic 
process,” “interleukin-1-mediated signaling pathway,” “regulation of 
heterotypic cell–cell adhesion,” “activation of immune response,” and 
“positive regulation of heterotypic cell–cell adhesion” (Figure 5A). The 
KEGG pathway was “Fluid shear stress and atherosclerosis” from 
which the more precise subpathway was “Atherogenesis” (Figure 5B). 
Then, we  employed the R package “CBNplot” to infer the causal 
relationships between them, the results of which could be verified 
through probabilistic inferring and classification according to the 
explanation of Sato et al. (Figure 5C). Herein, we found that “activation 
of immune response” served as a core within the interactive network 
and exhibited the most robust causal relationship with the 
“interleukin-1-mediated signaling pathway,” indicative of their 
significance in the co-pathogenesis of COVID-19 and AMI. The 
direction was from “activation of immune response” to “interleukin-
1-mediated signaling pathway.” The details are visualized in 
Figures 5D,E. By observing the genes involved and the directions of 
the vectors, it was thought that IL1B seemingly played the most 
critical role.

Discussion

Cardiovascular disease is an essential cause of the global burden 
of death, far exceeding cancer. Most of these deaths were due to acute 
myocardial infarction (AMI; Roth et al., 2017; Tsao et al., 2022). At the 
same time, with the gradual severity of the epidemic, like similar 
epidemic diseases, COVID-19 has also brought more adverse 
complications (Anastasiou et al., 2012; Del Sole et al., 2020; Li et al., 
2020, 2022; Lippi et al., 2020; Li X. et al., 2021; Ramphul et al., 2021a,b; 
Chai et al., 2022). Accumulating evidence shows that the prevalence 
of AMI in COVID-19 patients is much higher than that in the 
uninfected population (Kumar et al., 2021; Toscano et al., 2021). This 
compels us to look for the mechanisms underlying the interaction 
between these two diseases and to explore the potential behind this 
complication. As a result, we  found potential drug targets for 
COVID-19 and its related AMI, leaving a theoretical basis for 
diagnosing and treating related diseases.

We obtained gene expression data for COVID-19 and AMI from 
the GEO database. On this basis, 61 shared differentially expressed 
genes (DEGs) were screened out, and a series of systematic and 
bioinformatics analyzes were performed. We also developed a robust 
predictor from 20 mainstream machine-learning algorithms to 
estimate the risk of AMI in COVID-19 patients. Most notably, we infer 
causal relationships among the most important biological processes 
through Bayesian networks. Through these processes, we identified 
mechanisms underlying the co-pathogenesis of COVID-19 and AMI.

Among all DEGs, THBD, IL1R2, GCA, KBTBD7, and KMT5B 
were found to be most important in the LASSO and the Random 

A

B

C

FIGURE 4

Immunological implications of the feature genes. (A) Comparison of 
infiltrating immune cells in patients who were COVID-19-positive 
and-negative. (B) Comparison of infiltrating immune cells in patients 
with AMI and healthy controls. (C) Correlation analysis of feature 
genes and the 5 shared differentially regulated immune cells.
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Forest algorithm. THBD and its encoded thrombomodulin play an 
important role in forming venous thrombosis and vascular 
inflammation (Ireland et al., 1997; Doggen et al., 1998; Anastasiou 
et al., 2012). They also have unique roles in other non-thrombotic 
cardiovascular diseases such as AMI. Zhao et al. have reasoned that 
IL1R2 is a common marker gene of myocardial infarction, especially 

closely related to immune infiltration in AMI patients (Zhao et al., 
2020). GCA drives coronary ischemia and promotes the development 
of immune cell arterial inflammation (Akiyama et al., 2021). KBTBD7 
is now one of the most promising targets in the AMI. The researchers 
targeted and regulated KBTBD7 through various measures to inhibit 
inflammation, cardiac dysfunction, and maladaptive remodeling after 

A

C D

E

B

FIGURE 5

Functional Enrichment Analysis and Causal Relationship Inferring. (A) Interactive network demonstrating the interactions between the feature genes 
and the enriched GO terms and KEGG pathways. (B) Detailed KEGG pathway, “Fluid shear stress and atherosclerosis,” activated genes are marked in 
red. (C) Interactive network demonstrating the interactions between the different GO terms and KEGG pathways with directions. The directions of the 
arrows indicate the causal relationship. (D,E) Complex causal relationship inferred within the enriched GO terms, “activation of immune response” and 
“interleukin-1-mediated signaling pathway.”
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myocardial infarction with weak downstream p28 and NF-κB 
signaling. One example of such a complex network is the work of 
Yang et al. in 2018, in which they found that MiR-21 suppressed AMI 
by targeting KBTBD7 and controlling p38 and NF-κB signaling 
pathways (Qian et  al., 2011; Liu et  al., 2015; Yang et  al., 2015). 
Interestingly, KMT5B is considered in traditional biological science 
to be a key gene regulating stem cell and neurological development 
(Chen et  al., 2022; Hulen et  al., 2022). Only recently has it been 
discovered that it plays a vital role in vascular endothelial cell 
inflammation and angiogenesis (Guo et  al., 2015). The above-
mentioned key DEGs reveal the disease characteristics of AMI caused 
by COVID-19 to a certain extent. They may prove that COVID-19 
can induce thrombosis and even AMI formation through vascular 
inflammation triggered by cell inflammation.

Inspired by the latest advancement in artificial intelligence, 
we traversed 20 mainstream machine learning algorithms to fit the 
data and improve performance (Wolpert and Macready, 1997; Xie 
et al., 2023). We  found that Extra Tree had the highest predictive 
performance. For further validation, we  compared it to cardiac 
troponin, a recognized gold standard biomarker for AMI. Interestingly, 
we found that the predictive power of Extra Tree (AUC = 0.892) was 
much higher than that of cardiac markers such as cardiac troponin 
(AUC = 0.62). This indicates that the Extra Tree predictor has a very 
high accuracy for AMI diagnosis in COVID-19 patients, posing a 
challenge to traditional biomarkers and inspiring us to mine out more 
potential but promising novel biomarkers in the future.

In addition, we explored the immunological association between 
these two diseases. We found that the highly active immune cells were 
nearly identical in both diseases. Plasma Cells, Activated CD4 
Memory T Cells, Activated and Resting Dendritic Cells, and 
Neutrophils are key secretory cells of cellular immune factors. It is 
believed that the excessive inflammatory response and cytokine storm 
induced by the virus can lead to myocardial injury, which may be one 
of the key factors in the occurrence of AMI after COVID-19.

The highly active “activated immune response” and “interleukin-
1-mediated signaling pathway” verified our previous findings to a 
certain extent. Both DEGs and immunoassays confirmed that the 
disease of COVID-19 and AMI is immune-focused and can even 
be specific to the activation of IL1-related immune pathways. In the 
post-coronavirus epidemic era or the long coronavirus era, we can 
start from this immune pathway to explore the key damage pathways 
of COVID-19  in the circulatory system and then find new 
preventive measures.

A limitation of this study is that we could not model COVID-19 
and AMI disease in animals due to the level of laboratory safety 
required by COVID-19. However, as an exploratory pioneer study, for 
the first time in history, we have applied a causal inference approach to 
studying the shared pathogenesis of COVID-19 and AMI. Our findings 
demonstrate novel mechanistic insights into COVID-19 and AMI that 
may aid future prevention, personalized and precision medicine.
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