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Emerging antimicrobial resistance (AMR) among Gram-positive pathogens, 
specifically in Staphylococcus aureus (S. aureus), is becoming a leading public 
health concern demanding effective therapeutics. Metabolite modulation can 
improve the efficacy of existing antibiotics and facilitate the development of 
effective therapeutics. However, it remained unexplored for drug-resistant 
S. aureus (gentamicin and methicillin-resistant), primarily due to the dearth 
of optimal metabolite extraction protocols including a protocol for AMR-
associated metabolites. Therefore, in this investigation, we have compared the 
performance of the two most widely used methods, i.e., freeze-thaw cycle (FTC) 
and sonication cycle (SC), alone and in combination (FTC + SC), and identified the 
optimal method for this purpose. A total of 116, 119, and 99 metabolites were 
identified using the FTC, SC, and FTC + SC methods, respectively, leading to the 
identification of 163 metabolites cumulatively. Out of 163, 69 metabolites were 
found to be associated with AMR in published literature consisting of the highest 
number of metabolites identified by FTC (57) followed by SC (54) and FTC + SC 
(40). Thus, the performances of FTC and SC methods were comparable with no 
additional benefits of combining both. Moreover, each method showed biasness 
toward specific metabolite(s) or class of metabolites, suggesting that the choice 
of metabolite extraction method shall be decided based on the metabolites of 
interest in the investigation.
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1. Introduction

Antimicrobial resistance (AMR) among bacterial pathogens has become a leading cause of 
morbidity and mortality and hence a global public health concern demanding immediate action 
to develop strategies to combat such antimicrobial resistant difficult-to-treat bacterial infections 
(Dhingra et  al., 2020). This recent trend indicates the emerging prevalence of Multidrug-
resistant (MDR) is not only among Gram-negative (i.e., Klebsiella pneumoniae, Acinetobacter 
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baumannii, and Pseudomonas aeruginosa, etc.) but also Gram-positive 
bacterial pathogens [primarily methicillin and gentamicin-resistant 
Staphylococcus aureus (MRSA)] making them also difficult to treat 
(Bassetti et al., 2019; Mulani et al., 2019). Tremendous efforts are being 
made to understand the pathogen and disease biology and develop 
relevant diagnostics and therapeutics for the effective treatment of 
Gram-negative pathogens; however, the same has been comparatively 
limited for Gram-positive pathogens (Vazquez-Guillamet and Kollef, 
2014; Breijyeh et al., 2020).

World Health Organization (WHO) and the centers for disease 
control and prevention (CDC) have placed MRSA under a list of serious 
threat causing drug-resistant pathogens (WHO, 2021). MRSA alone has 
been responsible for more than 100,000 deaths worldwide in 2019 
globally (Oxford, U.o, 2019). In India, the prevalence of MRSA has been 
recorded to be around 30–70% with high mortality rates among patients 
developing MRSA bacteremia (Antimicrobial Resistance, C, 2022). 
Originally, MRSA was common in the healthcare setting contributing 
to nosocomial/hospital-acquired (HA-MRSA) infections like those 
associated with surgical procedures, indwelling catheters, or prosthetic 
devices (Mehta et al., 2020). However, over the last decade, there has 
been an upsurge of community-associated MRSA (CA-MRSA) 
infections also like bone, joint and skin infections (Masimen et al., 
2022). These HA- and CA-S. aureus infections are spread through direct 
contact with an infected wound or contaminated hands and can be fatal 
if remains untreated (Masimen et al., 2022). Further, limited therapeutic 
options and an increasing rate of emergence of AMR even against the 
available last-resort antibiotics have worsened the problem. Altogether, 
S. aureus infection is associated with a greater occurrence of 
complications, longer hospital stays, duration of therapy, as well as 
higher costs of treatment (Lee et al., 2018).

Therefore, understanding the molecular changes driving 
antibiotic resistance among Gram-positive bacteria, specifically 
S. aureus, has become critically important. This can be achieved using 
various new-generation biological tools, such as genomic, 
transcriptomic, proteomic, and metabolomics. However, 
metabolomics allows the identification and quantification of 
metabolites that are the end product of any genomic- and proteomic-
based biological activity of an organism at a given point of time and 
hence provide a characteristic chemical fingerprint of a specific 
cellular process (Xiao et al., 2012). Recently, studies have shown that 
modulation of the pathogen’s metabolome can be used to deal with 
the emerging problem of AMR. One recent example is the conjugating 
antibiotics with small metabolites like aminoglycosides with fructose 
and fumarate, resulting in increased potency of aminoglycosides 
against S. aureus and Escherichia coli (Rosenberg et  al., 2020). A 
central metabolite of the energy-generation pathway, pyruvate, has 
been reported to be associated with the virulence and pathogenicity 
of S. aureus, indicating it as a potential target for controlling infection 
(Harper et al., 2018). Further exogenous administration of L-valine, 
L-leucine, L-isoleucine, and L-proline in S. aureus bloodstream 
infection animal models has also been shown to have anti-infective 
effects (Pang et al., 2020). A decrease in intracellular ATP levels has 
been linked to the development of the S. aureus persister phenotype 
making them resistant to antibiotics (Conlon et al., 2016). However, 
existing knowledge of target(s) for regulating metabolomic 
modulation to treat resistant infections is still limited, owing to 
limited attempts to investigate the comprehensive metabolome of 
S. aureus (Kumar et al., 2022). This may potentially be due to the 

unavailability of the appropriate protocols and pipeline for 
investigating the metabolome of the Gram-positive bacteria, S. aureus 
(specifically drug-resistant strains), including the very first step of 
extracting AMR-associated metabolites.

Therefore, the goal of this study was to determine the optimal 
method for extraction of AMR-associated metabolites from S. aureus 
because the method of metabolite extraction dictates the possible 
range of metabolites that can be detected in the sample and thus has 
a large impact on the potential outcome(s) of the metabolomic 
studies. Most of the metabolomic investigations employ FTC or 
SC-based methods for extracting bacterial metabolites; however, 
their efficacy for extraction of AMR-associated metabolite from 
Gram-positive bacteria has not been investigated yet (Conlon et al., 
2016). In this study, we have employed both methods, i.e., FTC and 
SC individually as well as their combination FTC followed by SC 
(FTC + SC) to extract the metabolites from the S. aureus pathogen. 
Further, Electrospray Ionization-Liquid Chromatography-Mass 
Spectrometry/Mass Spectrometry (ESI-LC–MS/MS; Orbitrap Fusion 
Tribrid, Thermo-Scientific), a highly sensitive and advanced mass-
spectrometer was used to potentially increase the metabolomic 
coverage. Finally, the list of identified metabolites was subjected to an 
intensive literature search for finding the potential association of 
identified metabolites with AMR. Altogether, this information was 
utilized to identify the optimal metabolite extraction method for 
investigating AMR-associated metabolites.

2. Materials and methods

2.1. Harvesting of Staphylococcus aureus 
cell pellets

The primary culture of S. aureus (ATCC®33592) was inoculated 
in 5 ml Mueller Hinton Broth (MHB), followed by incubation 
for approximately 16 h at 37°C at 220 rpm. The secondary culture was 
inoculated (1% from primary culture) in fresh MHB and incubated 
till the exponential growth phase (Optical density, OD600nm:~0.6–0.7, 
i.e., 4 h post-inoculation) was achieved. Approximately 107 cells 
(OD-based measurement) were harvested using centrifugation and 
washing with LC–MS grade cold water and kept at −80°C. The cell 
pellets were generated for 6 independent biological replicates. Since 
the cellular architecture and composition of member pathogens 
among a species are highly expected to be similar, a single strain of 
S. aureus was used for the study.

2.2. Bacterial metabolism quenching and 
extraction

For metabolite extraction, the stored cell pellet was thawed for 
10 min on ice, followed by resuspension in 500 μl of mass spectrometry 
(MS) grade chilled methanol (Sigma). To evaluate the metabolites 
extraction efficiency of three extraction methods, i.e., FTC, SC, 
FTC + SC, 13C-labeled L-valine (40 ng/ml), an internal standard, was 
added to each sample before metabolite extraction (Kumar et  al., 
2022). For the freeze-thaw cycle-based metabolite extraction method, 
the resuspended cells were subjected to repeated freeze-thaw cycles 
(10 min at −80°C followed by 10 min on ice) three times. For the 
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sonication-based metabolite extraction method, the mixture was 
sonicated for 2 min at 35 A° (10-s on-and-off cycles). Similarly, for 
FTC + SC, the resuspended cell pellet was subjected to a freeze-thaw 
cycle three times and followed by a sonication cycle as described 
above. The sample mixture following FTC, SC, or FTC + SC methods 
was collected as supernatant after centrifugation at 12,500 RPM for 
10 min (4°C), aliquoted and stored at −80°C till further analysis. The 
metabolites were extracted using each method (FTC, SC and 
FTC + SC) from 6 independent biological replicate samples.

2.3. Separation and quantitation of 
metabolites using ESI-LC–MS/MS

The standard workflow for metabolite separation and 
measurement using ESI-LC–MS/MS was as followed. An aliquot 
(100 μl) of the sample was vacuum dried and the pellet was 
resuspended in 3:17, methanol: water mixture (25ul), followed by 
vortexing for 15 min, and 10 min centrifugation at 11000 rpm at 
4°C. Data acquisition was done on C18 Reversed Phase HPLC 
Columns (C18) and Hydrophilic interaction LC (HILIC) columns 
with positive and negative mode separately. The collected metabolites 
were separated using C18 (HSS T3) and HILIC (XBridge BEH Amide) 
columns on UPLC ultimate 3,000 maintained at 40°C and 35°C 
temperature, respectively. A gradient of mobile phase A consisting of 
water +0.1% formic acid and mobile phase B (methanol + 0.1% formic 
acid) was used as a mobile phase for the C18 column. For the HILIC 
column, 20 mM ammonium acetate in the water of pH 9.0 (mobile 
phase A) and 100% acetonitrile (mobile phase B) were used for 
separation. For separation in the reverse phase, a gradient of 1% 
mobile phase B to 99% mobile phase B over 14 min (flow rate of 
0.3 ml/min) was set and for the HILIC column, 85% mobile phase B 
to 10% B over 16 min (flow rate of 0.35 ml/min) was used. 5ul sample 
was injected into the column and for data acquisition. The Orbitrap 
Fusion Tribrid Mass Spectrometer (Thermo-Scientific) equipped with 
heated electrospray ionization (HESI) source was used for processing 
the sample using the following settings: 4000 positive mode spray 
voltage, 35,000 V for negative mode, 60–900 m/z mass range, AGC 
(Automatic gain control) was targeted at 100,000 ions. For data 
acquisition, 120,000 resolutions in MS1 mode and 30,000 resolutions 
in data-dependent MS2 scan mode were used. For MS, 50 ms was used 
as the maximum injection time while for MS/MS, an AGC target of 
20,000 ions and a maximum injection time of 60 ms was used.

2.4. Metabolites identification and data 
analysis

The untargeted workflow of Progenesis QI software for 
metabolomics from Water Corporation was used at default settings for 
acquiring the data and its analysis. The MetaScope plugin of Progenesis 
QI metabolites was used for matching the mass, fragmented ions 
pattern and retention time of identified compounds with a list of 950 
metabolites from our in-house library followed by an online spectral 
library search to confirm the identified metabolites. Peak detected in 
≥4 replicates (out of 6 independent biological replicates) with intensity 
≥100 (confidence interval->95%) receives an identification by spectral 
match. Further, ±1 min and 5 ppm retention time error for MS and 

MS/MS with fragmentation pattern match were also considered as a 
criterion for identifying metabolites (Supplementary Table 1).

For data analysis, the list of identified metabolites in HILIC and 
C18 (both positive and negative mode) was combined, and duplicates 
were removed (Supplementary Table 2). MetaboAnalyst 5.0 was used 
for statistical and functional analysis like principal component 
analysis (PCA) and heat map analysis. Outlier intensities of 
metabolite(s) were excluded and the data were loaded in a matrix and 
statistical analysis was performed using peak intensities thereby using 
a statistical filter of interquartile range. Sample normalization was 
performed using “normalization by sum” methods followed by data 
transformation using log transformation (base 10) thereby scaling the 
data using Pareto scaling (mean-centered and divided by the square 
root of the standard deviation of each variable) (shown in 
MetaboAnalyst report, i.e., Supplementary Data sheet 3). Univariate 
analysis was performed using one-way analysis of variance (ANOVA) 
and post-hoc tests using a value of p (FDR) cutoff of ≤0.05. 2-D PCA 
was performed displaying 95% confidence regions to observe the 
inner clusters and find the apparent outliers. Hierarchical clustering 
heat maps were prepared using t-test/one-way ANOVA and 
Euclidean distance measure and Ward clustering method.

For quantitation, the peak intensity average of replicates for each 
metabolite extraction method (SC, FTC, and FTC + SC) was 
considered and used to identify differences among the extraction 
method. Chemical class-based analysis and functional categorization 
of metabolites were done using Metabolomics Workbench.1

2.5. Identification of AMR-associated 
metabolites

A majority of antibiotics work by targeting cellular processes like 
(1) cell wall synthesis, (2) cell metabolism, (3) nucleotide biosynthesis 
and/or (4) protein synthesis. So, it is evident that establishing and 
identifying metabolites associated with these processes can help us in 
understanding the metabolic fingerprint and mechanism of antibiotic 
resistance. Therefore, a literature search to identify the role of each 
metabolite in nucleotide synthesis, protein synthesis, cell wall 
biosynthesis, cell proliferation (potential representative of resistant 
phenotypes as they can grow even in presence of selective pressure, 
i.e., antibiotics) and cell death (representative drug sensitive bacterial 
population) was performed using Google Scholar and PubMed and 
the resulting information was utilized to fetch the AMR-associated 
metabolites and followed by data interpretation.

3. Results

3.1. Identification of metabolites

Metabolites extracted from S. aureus using three methods, FTC, 
SC, and their combination FTC + SC, were separated using UPLC 
ultimate 3,000 (C18and HILIC column), detected and quantified 
using an Orbitrap Fusion Mass Spectrometer and identified using the 

1 https://www.metabolomicsworkbench.org/
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untargeted workflow of Progenesis QI software for metabolomics 
(Water Corporation). The list of identified non-polar and polar 
metabolites from the C18 and HILIC columns, respectively, was 
merged to get a collated list of metabolites extracted from each 
method-FTC, SC, and FTC + SC (Table 1).

The data of identified metabolites were subjected to PCA analysis to 
identify the distribution of the metabolomic profiles generated using 
FTC, SC and FTC + SC methods (Table  1). Noticeable differences 
between the three extraction protocols (3 distinct clusters) were observed 
indicating the characteristic fingerprint of each method (Figure 1A). The 
separation and clustering in PCA analysis also indicated the biasness of 
the individual method for different classes of metabolites and the quality 
of the sample generated for metabolomics experiments, respectively. 
Overall, a total of 116, 119, and 99 metabolites were identified using the 
FTC, SC, and FTC + SC methods of metabolite extraction, respectively, 
leading to the identification of 163 metabolites cumulatively (Tables 1, 2).

Overall, 62 metabolites were common among all three methods. 
FTC and SC yielded 25 common metabolites, 14 were common 
between FTC + SC and SC methods, and eight metabolites were 
identified by both FTC and FTC + SC methods (Figure 1B). Whereas 
21 metabolites were uniquely identified in the FTC method followed 
by 18 unique metabolites by the sonication method, and only 15 
unique metabolites by FTC + SC (Table 2).

3.2. Chemical classification of identified 
metabolites

All the metabolite extraction methods (FTC, SC, and FTC + SC) 
predominantly enabled the identification of different chemical classes 
of amino acids followed by saturated fatty acids and dicarboxylic acid 
[Figures 1–4 (Supplementary File-4)]. Similar pattern was observed 
in uniquely identified metabolites.

The dominant class of metabolites identified as amino acids (29% 
by FTC and 27% by SC and FTC + SC) followed by saturated fatty acids. 
Interestingly, the class “Naphthalene carboxylic acid” was uniquely 
identified in the FTC + SC method only (Figure 2). However, uniquely 
identified metabolites from individual methods showed biases toward 
specific chemical classes/subclass of metabolites (Figure 2).

3.3. Differential abundance of identified 
metabolites from FTC, SC, and FTC + SC 
method

The difference in intensity of metabolites was observed with 
different methods of extraction (Figure 3 and Supplementary Figure 5). 

A few metabolites were observed to be more intense in a specific 
method compared to others (Figure 4). For example, Alloisoleucine, 
nonanoate, palmitoleate, leucine, sucrose, tyrosine, glutamate, and 
prolylleucine were more abundant in the FTC method. Fucose, 
risperidone, hexazinone, and isoleucine were found to be  more 
abundant in the SC method. Decanoate, succinate, leucylproline, and 
melibiose were found to be higher in intensity in FTC + SC. A few 
metabolites were identified by two methods. For example, maltose, 
suberate, pentadecanoic acid, palmitoleic acid, arachidate, fipronil, 
adenosine, and urocanate were more abundant in FTC and 
SC. Phenylalanine, pyruvic acid, sebacic acid, arabinose, palatinose, 
fumaric acid, laurate, palmitic acid, and serine were found to be more 
abundant in FTC + SC and SC methods. Guanine, azelaic acid, 
linoleate, adenine, and uracil were highly abundant in FTC and 
FTC + SC methods. Whereas a few metabolites like carnitine and 
glucose were identified by all three methods. This altogether indicates 
the biasness of metabolite extraction methods toward particular 
metabolite(s).

3.4. AMR-associated metabolites

Out of 163, a total of 69 metabolites were found to be related with 
AMR-associated phenotypes (cell proliferation and cell death) 
(Table 3). Of these, 57, 54, and 40 AMR-associated metabolites were 
found in metabolite samples extracted from FTC, SC or FTC + SC 
method, whereas 12, 7, and 2 were unique to each method (Table 3).

4. Discussion

Infections caused by Gram-positive bacteria have become a 
serious public health threat causing high morbidity and mortality 
(Jubeh et al., 2020). Limited treatment options and rapid development 
of resistance to even the last-line antibiotics is the main reason for 
deaths, especially in the case of S. aureus (MRSA infections) 
(Chambers and Deleo, 2009; Alos, 2015). Besides enormous efforts, 
very few has been discovered over the last few decades, and this 
necessitates identifying new strategies to combat the emerging 
problem of AMR (WHO, 2020). Thus, understanding the molecular 
changes driving AMR among S. aureus becomes very important. 
Metabolomics can decode the real biochemical state of any organism 
and help in analyzing the emergence and/or spread of AMR 
phenomena (Pinu et  al., 2019). To date metabolomics has been 
employed to identify new metabolic pathways (Deng et al., 2020), 
identification of bacterial species/strains (Zhang and Zhu, 2022), 
study the influence of external factors on bacteria (Tang, 2011), and 

TABLE 1 Number of identified metabolites with respect to different metabolite extraction methods and chromatographic surfaces (polar/non-polar).

Metabolite 
extraction method

Total metabolites 
identified from C18

Total metabolites 
identified from HILIC

Common among 
C18 and HILIC

Total metabolites

FTC 71 55 10 116

SC 68 61 10 119

FTC + SC 49 54 4 99

Total 188 171 24 335

The table contains all metabolites data, overlapping/similar metabolites were not removed while preparing this table.
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in some cases reported to be of diagnostic use to detect bacterial 
infections (Fernández-García et al., 2018). However, so far, very few 
studies and efforts have been made to understand the spread and/or 
emergence of AMR and this may be primarily due to the unavailability 
of appropriate protocols and pipelines for investigating global and 
AMR-associated metabolites. As of now, even the performance of 
existing protocols for extracting AMR-associated intracellular 
metabolites from Gram-positive pathogen, S. aureus, are not 
established and hence the optimal method for the purpose 
remains unknown.

4.1. Analysis of metabolite extraction 
method and identified metabolites

The metabolites were extracted from S. aureus (gentamicin and 
methicillin resistant) using the two most commonly used protocols, 
i.e., FTC, and SC, alone and in the combination [FTC followed by SC 
(FTC + SC)] and identified using ESI-LC–MS/MS (Orbitrap Fusion 
Tribrid Mass Analyzer), a highly sensitive and advanced mass-
spectrometer to potentially achieve increased metabolomic coverage. 
Further, we  have used 2 different Liquid Chromatography (LC) 
columns, i.e., HILIC and C18 which are specific for separating 
compounds with different physico-chemical properties were also 
used. Generally, HILIC columns are very well known for separating 
polar amino acids, organic acids, sugars, phosphorylated sugars, 
nucleobases, nucleotides, phosphorylated metabolites, hydrophilic 
vitamins, and coenzymes (Galeano Garcia et al., 2019). C18 columns 

are usually employed to separate semi-polar and non-polar 
compounds like alkaloids, flavonoids, phenolic acids, and other 
glycosylated species (Liu et al., 2019). Data analysis from individual 
LC columns (HILIC and C18) revealed that C18 enabled a higher 
number of metabolite identification compared to HILIC among all the 
metabolite extraction methods used (Table 1). This may potentially 
be  because of poor retention of very polar metabolites during 
chromatographic separation and hence is in line with published 
literature (Harrieder et  al., 2022). Only a few metabolites were 
common among the metabolites identified using C18 and HILIC 
columns. A total of 163 metabolites were cumulatively identified using 
all chromatographic surfaces and extraction methods. The SC method 
showed the highest number of metabolites though comparable with 
FTC among the total identified metabolites (116 by FTC and 119 by 
SC out of a total of 163 metabolites). The most likely reason for low 
yield in FTC + SC methods might be  the degradation of already 
extracted metabolites during sonication. Among 163 metabolites, 21, 
18, and 15 were uniquely identified in FTC, SC, and FTC + SC 
methods indicating the potential bias of the method toward specific 
metabolite(s) (Table 2). Chemical class-based functional categorization 
and analysis revealed that amino acids were the major chemical class 
of metabolites identified by all methods. The FTC method was 
observed to be more biased toward saturated fatty acids (17%), and 
disaccharides (17%) (Supplementary Figure  2). The SC method 
showed biasness toward hexoses (2%), C24 bile acids (2%), and 
pyrimidines (3%) (Supplementary Figure  3). Disruption of the 
peptidoglycan layer (mesh-like network of amino acids and sugar) 
during metabolite extraction might be the possible reason for yielding 

FIGURE 1

Multi-variate analysis of identified metabolites. (A) Principal component analysis (PCA) showing score plots of the metabolic differences between 3 
methods (consisting a total 6 independent biological replicates for each method), red: freeze-thaw Cycle (FTC), green: Sonication Cycle (SC), blue: 
freeze-thaw Cycle followed by Sonication Cycle (FTC + SC). All three methods clustered distinctly having replicates of each method together indicating 
the consistency of sample preparation and downstream analysis. (B) Venn diagram representing unique and common metabolites among the three 
different methods of metabolite extraction [freeze-thaw cycle (FTC), Sonication Cycle (SC) and freeze-thaw cycle followed by Sonication Cycle 
(FTC + SC)]. A total of 62 metabolites were common among all 3 methods, whereas 21, 18, and 15 were uniquely identified in FTC, SC, and FTC + SC, 
respectively, indicating the potential biasness of the individual methods. Data from n ≥ 4 (out of six independent biological replicates were used in this 
analysis). One-way ANOVA was used to select the significant metabolites, i.e., 163 total metabolites (cutoff value of p ≤ 0.05) for the analysis.

https://doi.org/10.3389/fmicb.2023.1152162
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sin
g

h
 et al. 

10
.3

3
8

9
/fm

icb
.2

0
2

3.1152
16

2

Fro
n

tie
rs in

 M
icro

b
io

lo
g

y
0

6
fro

n
tie

rsin
.o

rg

TABLE 2 List of identified metabolites specific to metabolite extraction protocols (FTC, SC, and FTC + SC) as well as commonly identified metabolites among all methods.

Common metabolites Freeze thaw Sonication Freeze thaw + sonication

S. no Metabolite name S. no
Metabolite 

name S. no
Metabolite 

name S. no
Metabolite 

name S. no Metabolite name S. no Metabolite name

1
1-(Carboxymethyl)

cyclohexanecarboxylic Acid
22 Dipentyl phthalate 43 N-acetylmethionine 1 3-methyladenine 1 2-Hydroxy-4-methylpentanoic acid 1

16-Hydroxyhexadecanoic 

acid

2 1-Phenyl-2-butanone 23 Diphenylamine 44 N-acetylserine 2
3-Phosphoglyceric 

acid
2

Tetrahydroxy-5-alpha-pregnan-20-

one 3,21-diacetate
2 1-Hydroxy-2-naphthoate

3
2′-Deoxyuridine 5′-mono-phos-

phate
24 Elaidate 45 Nad 3 Abietic acid 3 3-Oxocholic acid 3

3-Hydroxy-3-methylglutaric 

acid

4 2-Methyl-S-benzothiazole 25 Ethyl paraben 46
N-alpha-acetyl-L-

lysine
4 Alanine 4

4-{[3-(Diethylamino)propyl]

amino}-4-oxobut-2-enoic acid
4 3-Hydroxypropanoic acid

5 2-Naphthalenesulfonic acid 26 Glucose 47 N-Epsilon-acetyllysine 5 Alloisoleucine 5 Acetylenedicarboxylic acid 5 Decanoate

6 3-Hydroxyphenylacetic acid 27 Glutamic acid 48 Norvaline 6 Azelate 6 Adipic acid 6 Erythronolactone

7 3-Tert-Butyladipic acid 28 Glutamine 49 Oleamide 7 Erucate 7 Dihydrouracil 7 Leucylproline

8 6-Carboxyhexanoate 29 Glyceraldehyde 50 O-phosphoserine 8 Glutamate 8 Ethylmethylacetic acid 8 Lithocholyltaurine

9 Ab-chminaca metabolite M6 30 Glyceric acid 51 Penbutolol 9 Leucine 9 Isoleucine 9 Melibiose

10 Adenine 31 Guanine 52 Phosphonoacetate 10 Mag 10 Linoleic acid 10 N-acetylaspartate

11 Adenosine monophosphate 32 Heptadecanoate 53 Phthalic acid 11 Methyl jasmonate 11 Melatonin 11 Peg N12

12 Alpha-lactose 33 Homoserine 54 Pyroglutamate 12 Nonanoate 12 N-acetyl-Dl-methionine 12 Suberic acid

13 Aspartate 34 Hydrochlorothiazide 55 Ribose 13 Palmitoleate 13 N-alpha-acetyl-L-asparagine 13 Succinate

14 Aspartic acid 35 Lactic acid 56 Salicylic acid 14 Peg N10 14 Peg N8

14 Triphenylphosphine oxide

15 Benzophenone 36 Malic acid 57 Serine 15 Pge2 15 P-toluenesulfonic acid

16 Betaine 37 Myristate 58 Stearate 16 Prolylleucine 16 Risperidone

17 Bmpea 38

N-(4-methoxy-5-

morpholino-2-

nitrophenyl)-N-(2-

pyridyl)amine

59 Suberate 17 Stearic acid 17 Tartrate

18 Carnitine 39 N-acetylaspartic acid 60 Uracil 18 Sucrose

18 Taurodeoxycholic acid

19 Citroflex A-4 40 N-acetylhistidine 61
Uridine-5-

monophosphate
19 Trehalose

20 Dibutyl maleate 41 N-acetyl-L-aspartic acid

62 Urocanic acid

20 Tyrosine

21 Dihydrosphingosine 42 N-acetyl-L-glutamine 21

Uridine 

5′-diphospho-N-

acetylglucosamine
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a high number of amino acids, dipeptides, sugar derivatives like 
hexoses, disaccharides, and sugar acids (Vollmer et  al., 2008). 
However, a combination of FTC + SC methods showed an enrichment 
of hydroxy fatty acids (28%) (Supplementary Figure 4). This altogether 
indicates the potential bias of each method for investigating specific 

metabolites or classes of metabolites. Therefore, the method of 
metabolite extraction shall primarily be chosen based on the specific 
metabolite(s) of interest or classes of metabolites. A few attempts have 
been made by researchers to establish the metabolome of this clinically 
relevant Gram-positive pathogen, S. aureus. Recently, 109 metabolites 

FIGURE 3

Heatmap profile depicting the relative expression levels of 163 metabolites (selected using one-way ANOVA test with cutoff value of p ≤ 0.05) from all 
three different extraction methods, i.e., freeze-thaw Cycle (FTC), Sonication Cycle (SC) and freeze-thaw Cycle followed by Sonication Cycle (FTC + SC) 
as indicated. Each column represents a specific biological replicates sample and row represent the metabolite. The raw intensities of metabolites from 
n ≥ 4 (from six independent biological replicates) were parsed by Pareto scaling (mean-centered and divided by the square root of the standard 
deviation of each variable) and rendered using the MetaboAnalyst 5.0 software. The clustering of the rows is based on Euclidean distance measure and 
Ward clustering method. A few metabolite clusters were observed to be more intensely expressed (indicated by Red) in a specific method compared to 
others showing biasness of the method(s). The information of the members in these clusters was utilized to explore their AMR-related biological 
function. The color is representing log10 transformed metabolite intensities (red: highest; blue: lowest).

FIGURE 2

Chemical class analysis of identified metabolites. Pie-Chart of metabolite chemical class composition, identified using three different metabolite 
extraction methods n ≥ 4 (out of 6 independent experiments, selected using one-way ANOVA test with cutoff value of p ≤ 0.05) biological replicates 
were utilized to analyze the chemical class distribution. (A) freeze-thaw Cycle; (B) sonication Cycle; and (C) freeze-thaw Cycle followed by Sonication 
Cycle. The major metabolite class identified using each method was amino acids, followed by saturated fatty acids, dicarboxylic acids and phenolic 
acids (only major classes are shown in the figure). FA, fatty acids; TCA acids, trichloroacetic acids.
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(RN450) and 107 (450 M) metabolites were identified using cold 
methanol and vortexing (vigorously for ~1 min) based metabolite 
extraction method with HPLC coupled with a TSQ Quantiva Triple 
Quadrupole mass spectrometer in (methicillin-resistant S. aureus) 
MRSA and (methicillin sensitive S. aureus) MSSA strains, respectively, 
after exposure to a sublethal dose of antibiotic (ampicillin, kanamycin, 
norfloxacin) (Schelli et al., 2017). However, the number of identified 
metabolites was low compared to our study potentially due to the use 
of only the HILIC column, one extraction method, i.e., vortexing 
(instead of freeze-thaw and vortexing or sonication) and the 
low-sensitive equipment (Schelli et  al., 2017). Another attempt to 
differentiate MSSA and MRSA biofilm and planktonic phenotypes 
using an (Nuclear magnetic resonance spectroscopy) NMR-based 
metabolomics study has been reported. They have identified a total of 
120 metabolites (Ammons et  al., 2014). Although the reason for 
identifying a lower number of metabolites in this study might 
be because of the technology used, NMR is already known to be less 
sensitive than ESI-LC–MS/MS (Ammons et al., 2014). Among them, 
19 and 26 common metabolites were identified when compared to our 
study, respectively, (Table  4 and Figure  5) (Ammons et  al., 2014; 
Schelli et al., 2017). Similarly, a total of 173 metabolites were identified 
in MRSA and MSSA using a combination of hydrophilic interaction 
liquid chromatography and PFP columns (pentafluorophenyl-propyl) 
coupled with high-resolution mass spectrometry (Aros-Calt et al., 
2019). The possible reason for yielding a higher number of metabolites 
in comparison to our study may be  due to a bigger library size 
compared to our in-house library (~950 metabolites). Notably, none 
of the above-discussed studies have mentioned the identified 
AMR-associated metabolites.

4.2. Analysis of AMR-associated 
metabolites

Of the identified 163 metabolites, 69 (42.0%) were observed to 
be associated with AMR in published literature (Table 3). Among 
these, the majority of identified AMR-associated metabolites were 
primarily linked with cell wall biosynthesis (52.1%), followed by 
cellular metabolism (14.4%), nucleotide biosynthesis (11.5%), and 

protein synthesis (21.7%) indicating the potential bias of the method 
of metabolite extraction or the technique. A comparison of 
identified AMR-associated metabolites list with previously reported 
study has shown only 16 and 19 common metabolites (Table 4) 
(Ammons et al., 2014; Schelli et al., 2017). Interestingly, the FTC 
method yielded a slightly higher number of AMR-associated 
metabolites (57 metabolites) compared to SC (54 metabolites) with 
42 commonly identified metabolites. Whereas only 40 
AMR-associated metabolites were identified using the FTC + SC 
method potentially due to the degradation of extracted metabolites 
(after FTC) during sonication. This altogether indicates the 
suitability of both the methods, FTC or SC, for investigating 
AMR-associated metabolites in S. aureus and Gram-positive 
pathogens; however, the metabolite of interest shall be  key in 
choosing the method for metabolite extraction.

4.3. Analysis of metabolite extraction 
methods between Gram-positive pathogen, 
Staphylococcus aureus and Gram-negative 
pathogen, Klebsiella pneumoniae

In this investigation, the maximum number of metabolites from 
S. aureus were identified using SC (119 metabolites) and subsequently 
by FTC (116 metabolites) and FTC + SC (99 metabolites). Whereas for 
K. pneumoniae, the maximum number of metabolites were identified 
by the FTC (151) method followed by FTC + SC (132 metabolites) and 
SC (103 metabolites; Supplementary Table  2) (Kumar et  al., 2022). 
Notably, the number of metabolites identified in K. pneumoniae was 
more when compared to S. aureus and the potential reason remains 
unknown. Among these, only a few metabolites were commonly 
identified between S. aureus and K. pneumoniae (26 by FTC, 45 by SC 
and 31 by FTC + SC). A similar pattern was observed in AMR-associated 
metabolites. This supports that the metabolomic architecture and 
AMR-associated metabolites among S. aureus (a Gram-positive 
pathogen) may be different than the K. pneumoniae (a Gram-negative 
pathogen). This also suggests that the optimal method for extracting 
metabolites from Gram-positive pathogens may be different than the 
method for Gram-negative pathogens.

FIGURE 4

Pictorial representation of peak intensities of identified metabolites (selected using one-way ANOVA, means ± SD, with cutoff value of p ≤ 0.05) using 
three different metabolite extraction methods (FTC, SC and FTC + SC). The data represents the metabolites (intensity) from the n ≥ 4 (out of six 
independent biological replicate-Supplementary Table 1) samples. FTC, freeze-thaw cycle; SC, sonication cycle; FTC + SC, freeze-thaw cycle followed 
by sonication cycle.
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TABLE 3 Comparative overview of identified antimicrobial resistance (AMR)-associated metabolites among three different methods of metabolite extraction used in the study.

Peak intensity of AMR-associated metabolites and method of detection

S. no. Cell wall biosynthesis Bacterial strain and 
species

FTC (Intensity ± standard 
deviation)

SC (Intensity ± standard 
deviation)

FTC + SC 
(Intensity ± standard 

deviation)

References

1 Pentadecanoic Acid Actinomycetes 2,347 ± 849 3195.2 ± 602.5 - Kumari et al. (2022)

2 Carnitine Escherichia coli 16756.2 ± 3614.4 21936.2 ± 3016.3 14811.4 ± 5519.2 Eichler et al. (1996)

3 Phthalic acid Staphylococcus arlettae 2709.1 ± 907.8 2901.3 ± 519 2382.4 ± 586 Acharyya et al. (2021)

4 Nonanoate Escherichia coli 1076.4 ± 210.8 - - Lee et al. (2022)

5 Stearate Actinobacteria 94998.9 ± 10206.5 77041.9 ± 35251.8 74,741 ± 10727.8 Tan et al. (2022)

6 Benzophenone Rhizobium 1062.1 ± 51.5 1040.6 ± 48.1 1050.8 ± 69.4 Zhang et al. (2022)

7 Betaine Listeria monocytogenes 125,016 ± 6628.1 124601.5 ± 11719.1 113966.6 ± 6,515 Whiteley et al. (2017)

8 Oleamide Pseudomonas aeruginosa 2824.6 ± 98.3 2666.7 ± 212.2 2219.3 ± 210.5 Pyke (2022)

9 Trehalose Selaginella lepidophylla

291.2 ± 97.4 - -

Vanaporn and Titball 

(2020)

10 Sucrose Klebsiella pneumoniae 2119.8 ± 923.8 - - Kumar et al. (2011)

11 Maltose Vibrio alginolyticus 2505.4 ± 944.7 764.6 ± 113.8 - Jiang et al. (2020)

12 Palmitoleic acid Mycobacterium tuberculosis 2222.2 ± 239.6 1694.5 ± 307.5 - Morris et al. (2005)

13 Uridine-5-monophosphate Pseudomonas aeruginosa 1425.2 ± 212 1388.5 ± 239.1 1433.6 ± 81.9 Niu and Tan (2015)

14 Heptadecanoate Klebsiella pneumoniae 618.1 ± 232.2 2260.7 ± 189.2 3408.2 ± 1251.1 Kumar et al. (2022)

15 Abietic Acid Streptococcus mutans 248 ± 84.3 - - Ito et al. (2020)

16 Aspartic Acid Streptococcus faecalis ATCC 

9790 1116.5 ± 118.1 1126.7 ± 107 706.3 ± 125.8

Rahmanian et al. (1971)

17 Malic Acid Aeromonas hydrophila 995.2 ± 147.4 1274.5 ± 363.4 1369.5 ± 276.3 Yao et al. (2016)

18 Dihydrosphingosine Porphyromonas gingivalis 2520.4 ± 744.8 2611.6 ± 1170.9 3130.8 ± 1997 Ranjit et al. (2022)

19 Diphenylamine Bacillus licheniformis, Bacillus 

subtilis 1731.9 ± 123.6 1826.2 ± 166.7 1594.6 ± 94

Salton and Schmitt (1967)

20 Elaidate Escherichia coli and Klebsiella 

pneumoniae 9651.2 ± 1323.1 14,726 ± 3837.2 10965.1 ± 4004.4

Stahl et al. (2020)

21 Carvone Hafnia alvei 779.6 ± 23.8 - 754.7 ± 30.6 Li et al. (2018)

22 Myristate Escherichia coli 4434.1 ± 436.6 7039.8 ± 1414.1 6271.2 ± 1988.9 Somerville et al. (1996)

23 N-Acetylaspartic Acid Clostridium acetobutylicum 618.1 ± 185.5 728.1 ± 80.1 719.4 ± 84.7 Reith et al. (2011)

24 N-Acetyl-L-Glutamine Escherichia coli 2064.4 ± 122.4 - - Konopka (2012)

(Continued)
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TABLE 3 (Continued)

Peak intensity of AMR-associated metabolites and method of detection

S. no. Cell wall biosynthesis Bacterial strain and 
species

FTC (Intensity ± standard 
deviation)

SC (Intensity ± standard 
deviation)

FTC + SC 
(Intensity ± standard 

deviation)

References

25 N-Acetylmethionine Escherichia coli 345.2 ± 119.9 739.2 ± 55.4 451.4 ± 34.1 Viola et al. (2015)

26 Phosphonoacetate Pseudomonas fluorescens 1423.2 ± 449 1464.8 ± 231 1560.7 ± 488.6 Kulakova et al. (2001)

27 Palmitic Acid Xanthomonas oryzae - 131,350 ± 12548.4 84982.3 ± 3847.9 Wang et al. (2021)

28 Palmitate Vibrio alginolyticus 117837.2 ± 10,837 229951.2 ± 64518.4 - Liu et al. (2019)

29 Aspartate Aeromonas hydrophila 2142.3 ± 154.8 2472.7 ± 253.8 2237.4 ± 660.6 Zhao et al. (2018)

30 Lysine Thermotoga maritima, 

Escherichia coli 172.9 ± 42.8 376.8 ± 110.7 -

Serganov et al. (2008)

31 Pge2 Staphylococcus aureus 1,066 ± 257.1 - - Wang et al. (2017)

32 Linoleic Acid Staphylococcus aureus - 11023.3 ± 11921.9 - Antti et al. (2013)

33 Stearic Acid Vibrio spp. 824.6 ± 213.6 - - Liu et al. (2019)

34 N-Acetyl-Dl-Methionine Escherichia coli

- 530.2 ± 139.05 -

Usuda and Kurahashi 

(2005)

35 N-Acetylglutamic Acid Pseudomonas chlororaphis O6 - 619.1 ± 53.9 483 ± 87.4 Park et al. (2018)

36 Uridine Diphosphate-N-

Acetylglucosamine

Corynebacterium glutamicum 2239.6 ± 203.3 1523.1 ± 440.3 902.1 ± 143 Gauttam et al. (2021)

Total 31 29 23

Cellular metabolism

37 Urocanate Pseudomonas aeruginosa 168.8 ± 38.8 374.3 ± 95.7 - Zhang et al. (2014)

38 Urocanic Acid Pseudomonas aeruginosa 1092.1 ± 306.8 1677.2 ± 419.6 584.9 ± 119.5 Zhang et al. (2014)

39 Arabinose Mycobacterium tuberculosis - 520.8 ± 112.2 174 ± 51.3 Wolucka (2008)

40 Citrate Streptococcus diacetilactis 280 ± 77.3 514.4 ± 179.7 - Harvey and Collins 

(1963)

41 Glutamate Listeria monocytogenes 646.1 ± 203.6 - - Feehily and Karatzas 

(2013)

42 Glutamine Salmonella 1331.2 ± 303.9 1306.5 ± 162.6 336.7 ± 38.6 Yong et al. (2021)

43 Glyceric Acid Staphylococcus aureus and 

Pseudomonas aeruginosa

277.9 ± 117.8 303.3 ± 92.7 175.8 ± 38.4 Thomas et al. (2016)

44 Leucylproline Bifidobacterium bifidum - - 314 ± 175.9 Berg et al. (2015)

45 Fucose Klebsiella pneumoniae 3968.6 ± 7013.9 3495.5 ± 511.1 - Hudson (2022)

(Continued)
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Peak intensity of AMR-associated metabolites and method of detection

S. no. Cell wall biosynthesis Bacterial strain and 
species

FTC (Intensity ± standard 
deviation)

SC (Intensity ± standard 
deviation)

FTC + SC 
(Intensity ± standard 

deviation)

References

46 Glyceraldehyde Stenotrophomonas maltophilia 8322.3 ± 1120.3 13281.7 ± 2500.2 6,880 ± 984.1 Gil-Gil et al. (2022)

Total 6 8 6

Nucleotide metabolism

47 Adenosine Vibrio splendidus 693 ± 154.7 530 ± 120.6 - Li et al. (2023)

48 Ribose Staphylococcus aureus 1413.4 ± 299.8 2034.2 ± 296.8 1068.7 ± 152.4 Baysarowich et al. (2008)

49 Adenine Escherichia coli 933.4 ± 90.3 407 ± 70 1420.3 ± 346.2 Holt et al. (2017)

50 Adenosine monophosphate Salmonella enterica 692 ± 81.8 786.2 ± 110.7 1086.6 ± 196 Pontes and Groisman 

(2019)

51 Guanine Staphylococcus aureus 880.3 ± 227.9 487.4 ± 100.3 1099.8 ± 110.8 Dersch et al. (2017)

52 Uracil Methicillin-resistant 

Staphylococcus aureus (MRSA)

281.8 ± 23.9 285.3 ± 36.5 476 ± 88.9 Fan et al. (2023)

53 Uridine 539;-Diphospho-N-

Acetylglucosamine

Bacillus subtilis 2239.6 ± 203.3 - - Patel et al. (2023)

54 Deoxyuridine monophosphate Escherichia coli 371.1 ± 54.3 1016.1 ± 482.1 772.9 ± 317.2 Zampieri et al. (2017)

Total 7 7 5

Protein synthesis

55 3-Phosphoglyceric acid Aeromonas caviae 549.7 ± 96.2 - - Wang et al. (2023)

56 Glutamic acid Pseudomonas chlororaphis O6 9577.1 ± 3,662 9769.6 ± 613.1 6497.5 ± 986.6 Park et al. (2018)

57 Alloisoleucine Clostridioides difficile 20562.5 ± 4961.2 - - Robinson et al. (2019)

58 Isoleucine Edwardsiella piscicida - 2854.6 ± 951.3 - Ye et al. (2018)

59 NAD Chromobacterium 725 ± 147.2 2858.6 ± 494.9 2939.5 ± 412.2 Banerjee et al. (2017)

60 Proline Escherichia coli 2674.8 ± 664.2 3196.7 ± 1046.7 - Lin et al. (2019)

61 Leucine Edwardsiella piscicida 737.4 ± 173.2 - - Ye et al. (2018)

62 3-Hydroxyphenylacetic Acid Pseudomonas aeruginosa 360.5 ± 32.6 336.8 ± 54.9 346.3 ± 83.1 Pahalagedara et al. (2020)

63 Glycerophosphocholine Klebsiella pneumoniae and 

Mycoplasma

339.6 ± 116.6 - 397 ± 77 Low et al. (2018)

64 Homoserine Variovorax paradoxus 189.9 ± 39.3 402.8 ± 99.8 250.3 ± 78.4 Leadbetter and Greenberg 

(2000)

65 Methylmalonate Pseudomonas aeruginosa 337.1 ± 29.1 436.1 ± 64.8 - Su et al. (2010)

(Continued)

TABLE 3 (Continued)
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5. Conclusion

The increasing emergence of AMR among Gram-positive pathogens 
such as S. aureus is becoming a global health concern and urgently 
demands strategies to control it. Understanding the metabolomic 
footprint of antibiotic-resistant/sensitive pathogens has been shown to 
improve our understanding of the emergence/spread of AMR superbugs. 
However, very few efforts have been made in this direction possible due 
to the lack of appropriate methods of metabolite extraction.

Therefore, in this investigation, we have compared the performance 
of the two most common methods, i.e., FTC and SC alone and in 
combination (FTC + SC), for extracting metabolites from S. aureus 
(gentamicin and methicillin-resistant) using a highly sensitive and 
advanced HPLC-coupled mass-spectrometer (ESI-LC–MS/MS). The SC 
and FTC methods were observed to identify a comparable number of 
total metabolites as well as AMR-associated metabolites and hence may 
be utilized for investigating the metabolome of S. aureus or other Gram-
positive bacteria after further validation. FTC + SC gave a lower yield of 
metabolites possible due to the degradation of already extracted 
metabolites by FTC during sonication. The methods of metabolite 
extraction were also observed to have biasness toward specific 
metabolite(s) or class of metabolites (“Tryptamines” was unique to the 
SC method, “C20 isoprenoids and Jasmonic acids” were unique to FTC, 
and “Naphthalenes” were unique to FTC + SC method) and hence can 
potentially impact the overall finding of the metabolomics-based studies. 
Therefore, the method of metabolite extraction shall be primarily chosen 
based on the metabolites of interest in the investigation. Altogether, our 
data can help in designing/planning pathway specific/directed 
metabolomics studies which could improve understanding of the 
emergence/spread of AMR superbugs and ultimately contribute to 
improving the efficacy of existing antimicrobial therapies.
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TABLE 4 Comparison of metabolites [total and antimicrobial resistance (AMR) associated] identified from our study versus other reported studies.

All metabolites

Total metabolites 
identified in Schelli 
et al. study Schelli 
et al. (2017)

Common 
metabolites 

identified in Schelli 
et al. versus our 

study

Total metabolites 
identified in our 

study

Common 
metabolites 

identified in Ammons 
et al. versus our 

study

Total metabolites 
identified in Ammons 
et al. study Ammons 

et al. (2014)

137 19 163 26 120

AMR associated metabolites

20 16 69 19 26

FIGURE 5

Venn diagrams representing a comparison of metabolites identified from our study versus previously published studies in the domain. In study-1 
(Ammons et al.), 26 metabolites were found to be common in total metabolites and 19 metabolites were common in AMR-associated metabolites with 
our study. In study-2 (Schelli et al.), 19 metabolites were found to be common in total metabolites and 16 metabolites were common in AMR-
associated metabolites with our study.
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