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Legume crop rotation is often adopted in rice cultivation to improve soil 
productivity. However, little is known about the role of microbes under legume 
rotation in affecting soil productivity. To elucidate this, a long-term paddy cropping 
experiment was set up to study the relationship between crop yield, soil chemical 
properties, and key microbial taxa under a double-rice and milk vetch rotation. 
Milk vetch rotation significantly improved soil chemical properties compared to 
no fertilization treatment, and soil phosphorus was a major factor correlated with 
crop yield. Long-term legume rotation increased soil bacterial alpha diversity 
and changed soil bacterial community. After milk vetch rotation, the relative 
abundances of Bacteroidota, Desulfobacterota, Firmicutes, and Proteobacteria 
increased while those of Acidobacteriota, Chloroflexi, and Planctomycetota 
decreased. Moreover, milk vetch rotation increased the relative abundance of 
phosphorus-related gene K01083 (bpp), which was significantly correlated with 
soil phosphorus content and crop yield. Network analysis showed that taxa of 
Vicinamibacterales were positively correlated with total phosphorus and available 
phosphorus, which was a potential taxon contributing to the availability of soil 
phosphorus stock. Our results indicated that milk vetch rotation could enrich 
key taxa with latent phosphate-solubilizing ability, increase the content of soil 
available phosphorus, and finally enhance crop yield. This could provide scientific 
guidance for better crop production.
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1. Background

Rice is a crucial staple crop for more than half of the world’s population, and China is a 
significant producer, responsible for 18.5% of global cultivation area and 28.0% of global 
production output. Ensuring sustainable rice production is imperative for global food security 
(Zhou et al., 2020). Increasing demand to feed the huge population is driving the search for more 
efficient and eco-friendlier cropping regimes (Godfray et al., 2010), and legume rotation is a 
widely applied measure (Zhao et al., 2022). With a long planting history, legume manure has an 
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integrative effect on soil abiotic properties and crop production (Yang 
et al., 2022). The symbiotic legume root nodules with rhizobium are 
responsible for soil nitrogen fixation, improving soil nitrogen supply 
(Dong et al., 2021). Additionally, legumes can take up nutrients in 
deeper soil due to deep roots and supply these nutrients after being 
plowed into soil (Xue et  al., 2016). Milk vetch is an important 
leguminous crop in traditional agricultural production. It can improve 
the effectiveness of soil nutrients and promote the absorption and 
accumulation of nutrients by crops (Solangi et al., 2019). However, 
there is limited knowledge about the biotic effect of legume rotations. 
Since soil microbes play crucial roles in soil nutrient cycling (Jiao 
et  al., 2019), determining how soil microbes and their functions 
respond to legume rotation can help to accurately predict changes in 
soil productivity.

Crop rotation can regulate the soil microbial community, mainly 
through specific root exudates and litter input (Panettieri et al., 2020), 
and consequently enrich specific microbial consortia (Xiong and Lu, 
2022) and perform different functions. For example, the selective 
effect of specific substrates on microbial communities can induce a 
shift of nutrient metabolism via changing the activity of certain 
enzymes (Peng et  al., 2023). Research on community-level sole-
carbon-source utilization properties of soil microbes showed that 
legume rotation altered the carbon source preference of the microbial 
community (Aschi et al., 2017). However, determining the general 
function of microbes could mask the heterogeneous roles of key 
microbes in soil nutrient cycling under crop rotation. The prediction 
of microbial community genes based on the phylogenetic similarity 
between taxa and reference sequences could be used to produce a 
latent abundance table containing information on microbial multiple 
functions (Czech et al., 2022), thus shedding light on the possible 
shift in microbial metabolism after legume rotation.

To investigate the selective effect of legume rotation on microbial 
consortia and their reaction to soil nutrient cycling and crop 
production, we performed a long-term legume rotation experiment. 
The relationships between soil key microbial taxa, chemical properties, 
and rice yield under different cropping regimes were determined. The 
phylogenetic prediction method for bacterial function genes was also 
applied to determine the reaction of key taxa to nutrient cycling. 
We  hypothesized that long-term legume rotation would enrich 
specific microbial groups with specific functions. We  further 
hypothesized that the enriched functional groups have potential to 
alter soil nutrient cycling after legume rotation.

2. Materials and methods

2.1. Site description and sampling

The samples were collected from a long-term paddy cropping 
experiment site in Yingtan City (28°15′30″N, 116°55′30″E), Jiangxi 
Province in China. This site has a subtropical monsoon climate with 
mean temperature of 17.6°C and mean precipitation of 1795 mm 
annually. The soil of the site is paddy soil developed on quaternary red 
clay. Double-cropped rice was cultivated on the site for about 30 years, 
and all agronomic practices were very similar between treatments 
except for cropping regime.

Three cropping and fertilization regimes with three replications 
were applied: (1) CK, double-rice with no fertilization; (2) NPK, 

double-rice with mineral fertilization (230 kg N, 136 kg P2O5, and 84 kg 
K2O per ha per year); and (3) NPKGM, double-rice and milk vetch 
rotation with mineral fertilization (230 kg N, 136 kg P2O5, and 84 kg 
K2O per ha per year). Milk vetch (Astragalus sinicus L.) was planted 
after harvest of the later rice crop and plowed during flowering stage, 
where 5,000 kg of fresh milk vetch (dry weight 2,500 kg) ha−1 year−1 
was applied.

The later rice crop was harvested, husked, and weighed in 
November 2017, and the rice yield of each plot was calculated after 
measuring the water content. Five surface soil samples (0–20 cm) were 
collected using an earth-boring auger in a ‘X’ pattern and merged into 
one soil sample for each plot after rice harvest. Each soil sample was 
sieved through 2 mm and divided into two parts: one part was 
air-dried for physiochemical assay, and the other was stored at −40°C 
for DNA extraction.

2.2. Soil chemical property measuring

Soil pH was determined using a pH meter in a 1:2.5 of soil and 
water suspension. The total nitrogen (TN) content in soil was 
determined using the Kjeldahl method (Pansu and Gautheyrou, 2006). 
The available nitrogen (AN) was determined using the alkali 
hydrolysis and micro diffusion method (Pansu and Gautheyrou, 
2006). Total phosphorus (TP) and available phosphorus (AP) were 
determined by vanadium-molybdate photometric method, and total 
potassium (TK) and available potassium (AK) were determined by 
inductively coupled plasma-atomic emission spectrometry (Pansu and 
Gautheyrou, 2006). Soil organic carbon (SOC) was determined using 
potassium dichromate oxidation with an external heating method 
(Pansu and Gautheyrou, 2006).

2.3. Soil DNA extraction and sequencing

Each 1 g soil sample was weighed, and soil microbial DNA was 
extracted according to the manufacturer’s instructions using 
FastDNA™ Spin Kit (MP Biomedicals, Santa Ana, CA, USA). The 
hyper-variable region (V4–V5) of prokaryotic 16S rRNA was 
amplified using the primers 515F (5′-GTGCCAGCMGCCGC 
GGTAA-3′) and 907R (5′-CCGTCAATTCCTTTGAGTTT-3′) with 
barcodes. All PCR reactions were carried out with 15 μL of Phusion® 
High-Fidelity PCR Master Mix (New England Biolabs), 0.2 μM of 
forward and reverse primers, and about 10 ng of template 
DNA. Thermal cycling consisted of initial denaturation at 98°C for 
1 min, followed by 30 cycles of denaturation at 98°C for 10 s, annealing 
at 50°C for 30 s, and elongation at 72°C for 30 s, with a final step of 
72°C for 5 min. The samples after PCR amplification were sequenced 
on an Illumina NovaSeq platform, and 250-bp paired-end reads were 
generated. The raw reads were denoised, dereplicated, and clustered 
using a VSEARCH pipeline. High-quality sequences of 84,811–
141,764 reads per sample were obtained, and we  finally obtained 
12,913 operational taxonomic units (OTUs). A trained Naïve Bayes 
classifier based on the Silva 138 database was deployed to classify the 
OTU sequences (Quast et al., 2013; Bolyen et al., 2019). After filtering 
the non-bacterial sequences, 12,673 OTUs were prepared for 
downstream analysis. All the raw sequences tested in the study were 
uploaded to the NCBI SRA database (accession no., PRJNA957222).
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Bacterial community gene abundances were predicted using 
Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States (Douglas et al., 2020), and a final list of 7,425 latent 
function genes and their abundances were obtained. The shifts of three 
phosphorus-related genes (K00117, gcd; K01083, bpp; and K06137, 
pqqC) and taxa contributing up to 80% of their abundance 
were analyzed.

2.4. Data analysis

One-way analysis of variance was applied to the differences 
between soil chemical properties and crop yields among treatments. 
Pearson correlations were calculated using function ‘rcorr’ of the R 
package ‘Hmisc.’ The bacterial Shannon and richness indices were 
calculated using functions ‘diversity’ and ‘estimateR’ of the R package 
‘vegan,’ respectively. Constrained principal coordinate analysis 
(CPCoA) was adopted to display the discrepancies of bacterial 
community structure between treatments using function ‘capscale’ of 
the R package ‘vegan.’ A network containing TP, AP, rice yield, and 
OTUs contributing to the previously selected phosphorus-related 
genes was constructed based on the Pearson correlations with 
p < 0.001 (Supplementary Figure S1). Subnetworks characterizing 
correlations per sample were obtained later, and topological indexes 
of every subnetwork were calculated (Supplementary Table S1). To 
determine the functional groups related to nutrient cycling, a 
subnetwork containing TP, AP, rice yield, and taxa directly related to 
them was obtained from the initial network. The network was 
constructed using the R package ‘igraph,’ and the network graphic 
was constructed using the Gephi program.

3. Results

3.1. Effect of milk vetch rotation on soil 
chemical properties and rice yield

The NPK and NPKGM treatments increased soil nutrient content 
and rice yield. The NPKGM significantly increased pH, SOC, TN, TP, 
AP, AK, and rice yield compared to CK (p < 0.05) (Table 1).

Pearson correlation analysis showed associations between rice 
yield and soil chemical properties (Figure  1). Among all soil 
chemical properties, pH, TP, AP, and AK were significantly 
correlated with crop yield, and pH was significantly correlated with 
TP, AP, and AK.

3.2. Effect of milk vetch rotation on soil 
bacterial community structure

Although not significant, the richness and Shannon indices of 
the bacterial community were higher in the NPKGM than in CK 
and NPK treatments (Figures 2A,B). The CPCoA showed that the 
bacterial community changed in the different cropping regimes 
(Figure 2C), with principal coordinates 1 and 2 explaining 76.62 
and 27.38% of the total variance, respectively. Further analysis 
showed that the legume rotation increased the relative abundances 
of Bacteroidota, Desulfobacterota, Firmicutes, and Proteobacteria but 
reduced those of Acidobacteriota, Chloroflexi, and Planctomycetota 
(Figure 2D).

3.3. Effect of milk vetch rotation on 
phosphorus-related genes

The predicted absolute abundances of the enriched genes 
were in the following order in all treatments: K00117 
(gcd) > K06137 (pqqC) > K01083 (bpp) (Figure 3). The abundance 
of K00117 was highest in NPK and lowest in CK. The abundance 
of K06137 was highest in CK and lowest in NPK. Moreover, 
abundance of K01083 was higher in NPKGM than in CK and 
NPK. Correlation analysis showed that K00177 had no significant 
correlation with TP, AP, or crop yield (p > 0.05, 
Supplementary Figure S1); however, K01083 was significantly 
positively correlated (and K06137 was negatively correlated) with 
TP, AP, and crop yield (p < 0.05).

Bryobacterales, Solibacterales, Vicinamibacterales, Rhizobiales, 
and Pedosphaerales were the top five taxa contributing most to 
K00117 abundance. Xanthomonadales, Flavobacterales, 
Streptomycetales, Gemmatimonadales, and Myxococcales were the top 
five taxa contributing most to K01083. Acidobacteriales, Rhizobiales, 
Nitrospirales, Burkholderiales, and Caulobacterales were the top five 
taxa contributing most to K06137. Bryobacterales, Solibacterales, and 
Pedosphaerales contributed more K00117 genes in CK, while 
Vicinamibacterales and Rhizobiales contributed more K00117 in 
NPKGM. Gemmatimonadales and Myxococcales contributed more 
K01083 genes in NPK, while Xanthomonadales, Flavobacterales, and 
Streptomycetales contributed more K01083  in 
NPKGM. Acidobacteriales and Rhizobiales contributed more K06137 
genes in CK, while Nitrospirales contributed more K06137 genes in 
NPK. Burkholderiales and Caulobacterales contributed more 
K06137 in NPKGM.

TABLE 1 Soil physiochemical properties and rice yield after different fertilization treatments.

Treat pH SOC TN TP TK AN AP AK Yield

1:2.5 g kg−1 g kg−1 g kg−1 g kg−1 mg kg−1 mg kg−1 mg kg−1 kg/ha

CK 5.59 ± 0.03b 7.69 ± 0.88b 0.93 ± 0.07b 0.86 ± 0.07b 15.21 ± 0.71a 77.18 ± 7.35a 44.39 ± 6.13b 92.50 ± 21.36b 4391.08 ± 478.15b

NPK 6.42 ± 0.10a 8.75 ± 1.64ab 1.09 ± 0.26ab 1.41 ± 0.15ab 14.07 ± 1.46a 95.55 ± 24.10a 88.56 ± 9.22a 202.50 ± 19.53a 6692.23 ± 340.47a

NPKGM 6.60 ± 0.10a 10.35 ± 1.26a 1.32 ± 0.11a 1.56 ± 0.04a 14.99 ± 1.19a 101.68 ± 9.25a 99.40 ± 8.07a 237.50 ± 43.37a 7059.08 ± 393.03a

SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; TK, total potassium; AN, available nitrogen; AP, available phosphorus; AK, available potassium; CK, double-rice with no 
fertilization; NPK, double-rice with mineral fertilization (230 kg N, 136 kg P2O5, and 84 kg K2O per ha per year); and NPKGM, double-rice and milk vetch rotation with mineral fertilization 
(230 kg N, 136 kg P2O5, and 84 kg K2O per ha per year). Different letters indicate a significant difference between treatments at p < 0.05.
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3.4. Relationships between soil phosphorus 
content, crop yield, and 
phosphorus-related taxa

The Balaban Index and Topological Index showed no significant 
difference between treatments, while the positive edges/negative edges 
ratio in CK was significantly higher than other treatments 
(Supplementary Table S1). Thirteen OTUs belonging to six orders 
were directly correlated with TP, AP, or crop yield, and four orders 
were correlated with TP, AP, or both (Figure 4). Nodes belonging to 
Gemmatales were negatively correlated with TP, AP, and crop yield, 
while nodes belonging to Vicinamibacterales were positively correlated 
with TP and AP. From the order Polyangiales, OTU 6233 had a 
positive correlation with TP and AP, while OTU 8505 was negatively 
correlated with AP. The OTU 2853 was positively correlated with AP, 
while another Acidobacteriales (OTU 7944) was negatively correlated 
with AP (Supplementary Figure S2).

4. Discussion

4.1. Rotation of milk vetch changed soil 
chemical properties and crop yield

Consistent with previous research (Zhang et al., 2023), long-term 
rotation of milk vetch increased double-rice yield. The significant positive 

relationship between rice yield and phosphorus content indicates that the 
higher phosphorus level was responsible for the high productivity of the 
rotation soil. The research site is subtropical China, which is dominated 
by phosphorus limitation (Yu et al., 2018), thus, AP supply could enhance 
crop production. As well as phosphorus content, pH and AK were 
positively related to crop yield. Soil pH is a crucial factor regulating soil 
nutrient availability (Xue et al., 2019) and the microbial community (Liu 
et al., 2018), while the potassium stock in subtropical red soil experiences 
strong leaching, leading to demand for potassium. Therefore, improving 
soil pH and K availability likely led to the yield increase.

Milk vetch rotation increased soil phosphorus content, similar to 
results of Li et al. (2018). Researchers found that legume rotation 
improved the humification of SOC (Virk et al., 2021) and could inhibit 
phosphorus migration, activate fixed phosphorus, improve the 
distance of phosphorus movement, and finally improve the effective 
phosphorus content in soil (Xu et  al., 2017; Wulanningtyas et  al., 
2021). The higher pH in the rotation treatment also likely improved 
phosphate availability (Barrow and Lambers, 2022). Moreover, the 
milk vetch roots could reach deeper soil, providing more phosphorus 
to the surface soil (Zhang et al., 2022).

4.2. Rotation of milk vetch changed soil 
bacterial community

Cropping regimes such as legume rotation have important effects 
on bacterial community diversity and composition (Zheng et  al., 

FIGURE 1

Pearson correlations between crop yield and soil properties. SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; TK, total potassium; 
AN, available nitrogen; AP, available phosphorus; AK, available potassium.
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2021). Similar phenomena were found in our study, and the higher 
richness and Shannon indices in the NPKGM treatment indicated that 
the milk vetch rotation increased microbial diversity (Benkwitt et al., 
2020). We  found that milk vetch rotation increased the relative 
abundance of high nitrogen affinity taxon Bacteroidota, possibly due 
to the higher TN content in the NPKGM treatment (Li W. L. et al., 
2022), and Proteobacteria, which is the source of many enzymes and 
usually participates in the biological cycling of mineral elements in 
soil to maintain soil fertility (Chaudhry et al., 2012; Li W. L. et al., 
2022). In addition, both Bacteroidota and Proteobacteria are eutrophic 
bacteria, which benefit from eutrophic environments in the NPKGM 
treatment (Fierer et al., 2007). Related studies show that lower soil pH 
led to higher Firmicutes abundance (Li Y. Z. et al., 2022; Palansooriya 
et al., 2022), which contrasts with our study in which Firmicutes was 
enriched in NPKGM at higher pH. Firmicutes can also benefit from a 
high source-availability environment, whose content increases with 
abundance of nutrients (Vanwonterghem et al., 2016; Zhou et al., 
2021); in our study, Firmicutes may have responded more to nutrients 
than pH.

Hu et al. (2022) found that Chloroflexi was negatively correlated 
with TN content, consistent with our results of lower Chloroflexi 
abundance in the NPK and NPKGM treatments. As typical 
copiotrophic taxa, both Acidobacteria and Planctomycetota usually 

dominate in barren conditions (Fierer et al., 2007; Shelyakin et al., 
2022) and thus were enriched in our CK treatment.

4.3. Keystone taxa and their predicted 
function promoted soil phosphorus 
metabolism under double-rice and milk 
vetch rotation

Unlike the recognition that phosphate-solubilizing 
microorganisms were responsible for soil AP (Chen et  al., 2023), 
K00117 (gcd) and K06137 (pqqC), known as genes that encode 
enzymes to mediate the resolving of soil phosphate, had 
non-significant or even negative correlations with soil AP and TP in 
CK or NPK in our study. Only K01083 (bpp) was positively correlated 
with AP and TP in NPKGM. A possible mechanism was the phosphate 
released from soil minerals being easily leached from red paddy soil 
under high precipitation (Peng et  al., 2020), while the organic 
phosphorus released from milk vetch rotation could remain longer in 
soil (Zhao et  al., 2013), hence we  observed a significant positive 
correlation between K01083 and soil phosphorus content even when 
the abundance of K01083 was low (Jorquera et al., 2013). In addition, 
encoding phytases that catalyze the hydrolysis of plant-sourced 

FIGURE 2

Bacterial community (A,B) diversity and (C,D) structure under different fertilization treatments: (A) richness index, (B) Shannon index, (C) CPCoA of soil 
bacterial community under different fertilization treatments, and (D) soil bacterial composition in phylum level under different fertilization treatments. 
CK, double-rice with no fertilization; NPK, double-rice with mineral fertilization (230 kg N, 136 kg P2O5, and 84 kg K2O per ha per year); and NPKGM, 
double-rice and milk vetch rotation with mineral fertilization (230 kg N, 136 kg P2O5, and 84 kg K2O per ha per year).
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phytate (Lu et al., 2022) and taxa containing bpp could benefit in soil 
with greater plant litter input (Liu X. et al., 2022). This can also further 
explain the enrichment of bpp in the NPKGM treatment.

Moreover, evidence showed that high pH and high AP content 
could reduce the abundances of taxa with genes encoding phoD such 
as Gemmatales, since we found a negative correlation between AP and 
Gemmatales. Nodes belonging to Acidobacteriales had an opposite 
correlation with AP and AP-related taxa, indicating that different 
specific taxa belonging to Acidobacteriales might play different roles 
in phosphorus metabolism (Cui et al., 2022; Liu H. et al., 2022). Strong 
correlations were found between Polyangiales and AP (Figure 3). As a 
predator belonging to the phylum Myxococcota, it can be inferred that 
Polyangiales might benefit in a high-nutrition environment which 
provides more microorganisms. Among the taxa concerned with 
phosphorus content, Vicinamibacterales was the only taxon that was 
purely positively correlated with AP and rice yield in the network 
analysis. It was reported that Vicinamibacterales could encode pit that 

participated in the assimilation of phosphate and prevented the loss 
of AP in an extreme leaching environment (Wu et al., 2022). Our 
study indicated that legume rotation may influence soil element 
cycling, especially phosphorus cycling, by enriching certain key 
species and key functional genes to increase phosphorus availability 
and ultimately promote crop yield.

5. Conclusion

Our milk vetch rotation improved the physiochemical properties 
and crop yield of the paddy soil. In addition, this rotation altered the 
soil bacterial community, especially some groups closely associated 
with phosphorus-related functional genes. Network analysis showed 
that taxa belonging to six phyla were associated with TP, AP, and crop 
yield. Taken together, milk vetch rotation could enrich key taxa 
encoding phytase, increase soil AP content, and ultimately improve 

FIGURE 3

Circular plot of abundance of phosphorus-related genes K00117 (gcd), K01083 (bpp), and K06137 (pqqC) and the average abundance of genes 
contained by taxa. CK, double-rice with no fertilization; NPK, double-rice with mineral fertilization (230 kg N, 136 kg P2O5, and 84 kg K2O per ha per year); 
and NPKGM, double-rice and milk vetch rotation with mineral fertilization (230 kg N, 136 kg P2O5, and 84 kg K2O per ha per year).
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crop yield. This could provide scientific guidance for better crop 
production. However, we were mainly interested in the relationship 
between changes and interactions of soil characteristics and microbial 
communities and crop yield. In future studies, it is recommended to 
focus on the expression of relevant functional genes to obtain direct 
evidence that nutrient cycling is closely related to rice yield.
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