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Phage therapy is a viable alternative to antibiotics for treating microbial infections, 
particularly managing drug-resistant strains of bacteria. One of the major 
challenges in designing phage-based therapy is to identify the most appropriate 
potential phage candidate to treat bacterial infections. In this study, an attempt 
has been made to predict phage-host interactions with high accuracy to identify 
the potential bacteriophage that can be used for treating a bacterial infection. 
The developed models have been created using a training dataset containing 
826 phage- host interactions, and have been evaluated on a validation dataset 
comprising 1,201 phage-host interactions. Firstly, alignment-based models have 
been developed using similarity between phage-phage (BLASTPhage), host–host 
(BLASTHost) and phage-CRISPR (CRISPRPred), where we  achieved accuracy 
between 42.4–66.2% for BLASTPhage, 55–78.4% for BLASTHost, and 43.7–80.2% 
for CRISPRPred across five taxonomic levels. Secondly, alignment free models 
have been developed using machine learning techniques. Thirdly, hybrid models 
have been developed by integrating the alignment-free models and the similarity-
scores where we achieved maximum performance of (60.6–93.5%). Finally, an 
ensemble model has been developed that combines the hybrid and alignment-
based models. Our ensemble model achieved highest accuracy of 67.9, 80.6, 85.5, 
90, and 93.5% at Genus, Family, Order, Class, and Phylum levels on validation 
dataset. In order to serve the scientific community, we  have also developed a 
webserver named PhageTB and provided a standalone software package (https://
webs.iiitd.edu.in/raghava/phagetb/) for the same.
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Introduction

Bacterial infections pose a major threat to public health across the globe. According to 
recent reports around, 1.27 million people died in 2019 of bacterial infections due to 
antimicrobial-resistance (Antimicrobial Resistance, 2022). In the last few decades, the heavy 
consumption and misuse of antimicrobial and antibacterial drugs have exacerbated the current 
crisis (Fair and Tor, 2014; Ventola, 2015). It has been observed in recent studies that several novel 
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bacterial strains are emerging which are resistant to existing antibiotics 
(Magiorakos et  al., 2012). Therefore, researchers are looking for 
alternative approaches to tackle this issue. One such approach is 
“phage therapy” where phages infect and lyse bacterial strains 
(Sulakvelidze et al., 2001; Lin et al., 2017; Furfaro et al., 2018; Gordillo 
Altamirano and Barr, 2019). One of the major challenges in designing 
phage therapy is to identify the most efficient bacteriophage that can 
lyse a target strain of bacteria (Roucourt and Lavigne, 2009; Yang 
et al., 2014). Currently, several techniques are available to measure the 
phage-host interactions such as RNA-sequencing, microfluidic-PCR, 
PhageFISH, and flow cytometry. In addition, spot test and agar overlay 
assay are used nowadays to match the phage-bacteria. Though these 
experimental techniques are highly accurate in identification of 
phage-bacteria interaction but they are costly and time consuming 
(Alvarez-Barrientos et al., 2000; Tadmor et al., 2011; Leskinen et al., 
2016; Barrero-Canosa and Moraru, 2019; Grainha et al., 2020).

Thus, there is a need to develop computational methods that can 
predict the correct bacteriophage to treat a bacterial strain. In other 
words, there is a need to develop a method that can predict phage-host 
interaction (bacteriophage-bacteria) with high precision. In order to 
address this problem, a large number of methods have been developed 
in the past. Broadly, these methods can be  classified into three 
categories - alignment-based, alignment-free and hybrid methods. 
The following are the brief description of major techniques developed 
in the past for predicting host-phage interaction. WIsH is an 
alignment-free tool that predicts prokaryotic hosts of phages using 
their genomic sequences (Galiez et al., 2017). VirHostMatcher-Net 
(Wang et  al., 2020) is an hybrid method that combine several 
alignment-free and alignment-based features to construct a 
two-layered network model. SpacePHARER (Zhang et al., 2021) and 
VirSorter (Roux et al., 2015) use CRISPRs for predicting phage-host 
interaction in the prokaryotic genomes. PredPHI (Li et  al., 2021) 
utilizes phage-host protein-based features for predicting phage-host 
interactions using deep convolutional networks. Despite several 
methods developed in the past decade for predicting phage-host 
interaction, their accuracy is far from satisfactory. Moreover, these 
existing methods do not provide user-friendly webserver facilities 
(Roux et al., 2015; Galiez et al., 2017; Wang et al., 2020; Li et al., 2021; 
Zhang et al., 2021). Hence, there is a challenge to develop methods 
that can predict phage-host interaction with high accuracy. In order 
to complement the existing methods, we have tried to develop an 
ensemble method for predicting phage-host interactions. Our 
proposed ensemble method combines alignment free (machine 
learning) and alignment-based (BLAST) techniques to predict phage-
host interaction across all five taxonomic levels.

To maintain scientific standards and compare our approach with 
existing methods, we  developed and evaluated our models on 
benchmark datasets used in a recent study (Wang et  al., 2020). 
We have applied several machine learning techniques to develop the 
prediction models. One of the main objectives of this study is to 
facilitate researchers working in the field of phage therapy by 
identifying potential phage candidates that might be suitable to lyse 
drug-resistant bacterial strains and thus helping in narrowing down 
the search for suitable phages. Thus, we  developed PhageTB 
(Webserver and Standalone Software) that contain three major 
modules; (i) host for a phage, (ii) phage-host interaction and (iii) 
phage for a host. The first module allows the users to predict the 
bacterial strain (i.e., host) from a phage genome sequence. The second 

module (Phage-host interaction) allows the user to predict whether a 
given phage and bacterial strain will interact or not. The third module, 
phage for a host, allows a user to predict the most appropriate phage 
that can lyse a given strain of bacteria.

Materials and methods

Dataset collection and pre-processing

In the present study, datasets used for training and validation were 
obtained from a recent study VirHostMatcher-Net (Wang et al., 2020). 
The training dataset comprises 826 phages and their corresponding 
hosts (till the strain level), out of which 817 infect bacteria while nine 
infect archaea. The chosen dataset is such that each phage has a unique 
interaction with a bacterial strain. Aggregating the strain to a higher 
taxonomic level (till Genus, Phylum etc.) allows each phage to have 
multiple target hosts. Originally, we obtain around 1,462 phage entries 
and their corresponding hosts as the original testing dataset. However, 
the original testing dataset has one major issue that it contains phage-
host pairs where some of the bacterial hosts belong to a genus that 
does not fall in the genera of the bacterial hosts of the training phage-
host pairs. Evaluation of such phage-host interaction is not prudent as 
we  do not have reference hosts representing such genera in the 
training phage-host pairs. Ideally, the test dataset should only contain 
the phage-host interactions, where the host information is available in 
our reference training data. Hence, we modified the original testing 
dataset and called it as the testing dataset, by removing the phage-host 
pairs whose hosts belong to a genus, not represented in the set of hosts 
from the training phage-host pairs. Out of the 1,462 phage-host pairs, 
there were 261 phage-host interactions which were not present in the 
training interactions. Hence, we removed 261 pairs and get 1,201 
phage-host interactions in the testing dataset. Finally, our training 
dataset incorporates 826 phage-host interactions, and the testing 
dataset has 1,201 phage-host interactions. To make an unbiased 
comparison with the existing methods, we also evaluate our approach’s 
performance on the original testing dataset (See 
Supplementary materials). Figure 1 highlights the number of distinct 
Phylum, Classes, Orders, Families and Genera the bacterial hosts 
belong to, in at least one inter-action in the training, testing, and 
original testing datasets.

Outline of the study

In this study, we have developed three alignment-based methods 
using BLAST called BLASTHost, BLASTPhage and CRISPRPred (See 
Figure 2C). These alignment-based methods are based on top hits of 
BLAST search. Alignment based predictions are sometimes 
inadequate when we  do not get any significant hit, in such cases 
alternative predictions can help. Therefore, we also create machine 
learning models that we used for predicting the hosts for phages. 
We also developed a hybrid method that combines a machine-learning 
based model with similarity scores (bit-scores from BLAST 
alignments) (See Figure 2B). Finally, an ensemble method has been 
developed that combines all alignment-based models with the hybrid 
method in a sequential method (Figure 2A). Predictions from the 
ensemble model are made in a staged sequential manner. First, 
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predictions for all phages are made using BLASTPhage. We assign 
hosts corresponding to the top hit for the phages where the e-value of 
alignment is within a predetermined threshold. Next, for the 
remaining phages, we  make the predictions using BLASTHost. 
We assign hosts to the phages where the e-value of alignment with the 
top hit is within a predetermined threshold. Third, for the phages 
whose hosts have not yet been assigned, we make predictions from the 
hybrid model and assign hosts for phages where the prediction scores 
from the model are above a threshold. Finally, for all remaining phages 
whose host could not be  predicted, we  assign hosts based on 
predictions from CRISPRPred.

Alignment-based methods

Most of the alignment-based methods exploit sequence similarity 
between genomes of phages and their hosts. The most widely used 
method for searching for similar sequences is BLAST (McGinnis and 
Madden, 2004). We  employed BLAST-based predictions at three 
levels, i.e., BLASTPhage, BLASTHost, and CRISPRPred. In the case of 
BLASTPhage, phage’s genome sequence is searched against a database 
of phages whose interacting host is already known. This database is 
referred to as the reference phage database in our study and it was 
created using training dataset comprising the information about the 
phages and their respective interacting hosts. Then, the phage 
sequences in the testing dataset are searched against the reference 
phage database using BLAST at different e-values. The host 
corresponding to the top BLAST hit of a phage is assigned as the 
predicted host for the query phage. In summary, the BLASTPhage 
model predicts the host based on similarity in the query and target 
phage. In the case of BLASTHost, the sequence of a phage is searched 
in database of 185 host sequences used in the training dataset. The top 
hit from this alignment task is assigned as the potential host. CRISPR 

systems play a vital role during the infection process of phages and 
infection prevention by the hosts. As a prevention strategy, prokaryotes 
place a fragment of the genome of an infecting phage as a spacer in the 
CRISPR array, which is a recognizable repeat region in the genome. 
Such a sequence indicates a recent infection and thus can be used as a 
potential signal for predicting hosts. CRISPR Recognition Tool (CRT) 
(Bland et al., 2007) is used to identify CRISPR locus in the bacterial 
genomes using a reference host database. We  extracted CRISPR 
sequences using the CRT tool and created a reference CRISPR 
database. The test dataset genomes are aligned with the reference 
CRISPR database using BLAST, where the host corresponding to the 
top hit is predicted as the potential host. In the case of CRISPR 
alignment we have utilized the BLAST short-task parameter as used 
in a previous study (Biswas et al., 2013). We termed this approach of 
alignment as the CRISPRPred model.

Generation of features

To develop machine-learning models for prediction, it is necessary 
to generate fixed-length feature representations for all phage 
sequences. The phage genome sequences are polymers of four 
nucleotides (A, T, G, C) and have a wide range of variations in length. 
One of the commonly used techniques to generate fixed-length feature 
representation for a sequence is to calculate the frequency of 
nucleotide sub-sequences or k-mers. For example, one can calculate 
the frequency of individual nucleotides in a sequence, and the 
sequence is thus represented by a vector of dimension four. In this 
case, the total number of k-mer is 4 (41), where the subsequence or 
k-mer length is one. Similarly, the frequency of di-nucleotides (i.e., 
AA, AC, AG, AT, CA, CC) can be calculated, where the total number 
of k-mers will be 16 (42), with the k-mer length being two. One of the 
limitations of these frequency-based features is that they are biased by 

FIGURE 1

Distribution of data in training, testing, and original testing datasets at different taxonomic levels.
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the length of the sequence and the noise in the sequence. Thus, 
we  used modified frequency words, subtracting the frequency of 
k-mers by chance in that sequence (Reinert et al., 2009). The following 
formulae were used to compute the modified frequency of k-mers, 
which is used.

 f f fm o c= −  (1)

 
f P Lc w= × − −( ){ }k 1

 
(2)

 
P pw i

k
i= =Π 1  

(3)

Where fm, f0, and fc are modified, the original and chance frequency 
of a k-mer w, respectively. Pw is the probability of k-mer w, pi is the 
probability of a nucleotide i in the k-mer w, L is the sequence length 
or the number of nucleotides in the sequence, and k is the length of 
k-mer w.

Machine learning model

Several machine learning classifiers were implemented for 
predicting the hosts for bacteriophages and compared to develop the 
best-performing model. We have implemented various techniques 
including Random Forest (RF), Gaussian Naive Bayes (GNB), Logistic 
regression (LR), Support vector machine (SVM) with a linear kernel, 
eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), 
K-Nearest Neighbor (KNN), and Multi-layer Perceptron (MLP). 
These classification techniques were implemented using the python-
library scikit-learn (Pedregosa et al., 2012).

Hybrid model

We utilize machine learning models at the third level for the 
remaining phages, i.e., those whose host could not be predicted using 
the BLASTPhage and BLASTHost method. We  term this level of 
prediction as the hybrid model. Due to the coevolution of phages and 
their hosts, their genetic compositions are highly similar. Thus, a given 
phage significantly overlaps with its putative host at the genomic level. 

A

B C

FIGURE 2

Overall structure of algorithms used in this study; (A) Ensemble method (B) Hybrid model (C) Alignment-based method.
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Therefore, similar hosts will likely be infected by the same phage, or 
similar phages will likely infect the same host. We have used the base 
machine-learning model prediction probabilities 
Pr Prb

i for i M= = …



1,  for all hosts, where M is the total number 

of hosts in the reference host database and Pr
i  (prediction probability 

for the ith bacteria) which varies between 0 to 1. In addition, we have 
added the similarity-scores (SIM) i.e., bit-scores from BLAST 
alignment tasks between phage-phage, phage-host, and host–host 
databases using a weighted sum to the prediction probabilities from 
the base machine-learning model. Further, we have used the Pro  to 
calculate the final prediction probabilities for all bacterial hosts.

 
Pr Pro b PH q HH sSIM v H SIM h= −( ) + ( ) −( ) + ( )( )1 1γ α α γ, ,H

  
(4)

Where, SIM SIM and SIMPP PH HH,  denote phage-phage, 
phage-host, and host–host similarity scores, where SIM v HPH ,( )  
gives an M-Dimensional vector that gives the similarity scores of 
phage v with all hosts in the set H h h hM= …[ ]1 2, ,  of reference hosts. 
Similarly, SIM h HHH ,( )  also gives an M-Dimensional vector 
denoting the similarity of the host h with all other hosts in set H. vq  
corresponds to the input query phage, hs  represents the host of most 
similar phage in the training dataset based on SIMPP , and Prb  is 
the prediction probabilities from the base model. Here, α and γ are the 
weighting parameters used in the given equation and are determined 
experimentally during cross-validation using grid search over the 
value range of 0 to 1 with step size of 0.1. The final predictions from 
the hybrid model were calculated using Equation 5.

 
Predicted Host v argmax hh o ( ) = ( )Pr

 
(5)

Ensemble model

In order to improve the prediction accuracy, without 
compromising the coverage we have used an ensembled approach, 
generating predictions using combinations of different models. Here, 
we  integrate alignment-based, alignment-free models. At first, 
we calculate predictions from BLASTPhage and assign host against 
phages where the e-value of alignment is within a threshold. Similarly, 
this process was repeated for remining phages using BLASTHost. 
Next, we  compute predictions from the hybrid model for phages 
where final prediction score is above a threshold (See Equation 5). 
Finally, for the remaining phages, predictions are made 
using CRISPRPred.

Evaluation parameters

We evaluate the performance of our approach on the original 
testing dataset, which comprises 1,462 phage samples. Moreover, 
we have also evaluated the performance of the generated models on 
the modified testing dataset containing 1,201 phage samples. We also 
compare our approach with past studies in terms of prediction 
accuracy for correctly predicting hosts binned by taxonomic levels 
from Genus to Phylum. The prediction accuracy is defined as the 

fraction of phages whose hosts were identified correctly out of the 
total phages at a given taxonomic level.

 
Accuracy Number of Correct Predictions

Total number of test
=

   

     samples
×100

 
(6)

 

Probability of correct prediction
Number of Correct Predic

   

   
=

ttions
Total number of predictions   

×100

 
(7)

Webserver architecture

A web server named as ‘PhageTB’1 is developed to predict the 
bacterial hosts, host-phage interactions, and lytic phage for a 
bacterium. The front end of the web server was developed by using 
HTML5, JAVA, CSS3 and PHP scripts. It is based on responsive 
templates which adjust based on the size of the device. It is compatible 
with almost all modern devices such as mobile, tablet, iMac, 
and desktop.

Results

Predictions from BLASTPhage, BLASTHost 
and CRISPRPred

Sequence alignment of phage and host genomes is the primary 
method for assigning hosts to phages from a set of known hosts. For 
this purpose, we employed BLAST technique, where first we vary the 
degree of alignment by changing the threshold on the e-value. For the 
query phages where we  get a sequence match, we  observe the 
prediction accuracies improved when the e-value threshold is reduced, 
but the overall recall decreases. However, we could not predict hosts 
using this method for all phages, as shown in Figure 3, the coverage 
decreases as we  decrease the e-value threshold and the sequence 
match becomes more specific. When aligning the phage genomes in 
the original testing dataset with the reference phage genome database, 
and assigning the host based on the top hit, we attained the prediction 
accuracies of 45.2, 56.2, 62.8, 67.5, and 71.2% at Genus, Family, Order, 
Class and Phylum levels, respectively (Supplementary Table S1).

Similarly, on aligning the phage genomes with the reference host 
genome database and assigning the top hit as the predicted host, 
we obtained accuracies of 34.8, 42.3, 49.7, 57.0, and 62.8% at Genus, 
Family, Order, Class, and Phylum levels, at e-value 1.00E-02 
(Supplementary Table S1). As reported in Table  1, we  obtained 
accuracies of 42.4, 50.5, 57.2, 61.4, and 66.2% across the five taxonomic 
level using BLASTHost method at e-value 1.00E-02. Similarly, 
BLASTPhage attained accuracies of 55.0, 66.4, 71.4, 74.9, and 78.4% 
at Genus, Family, Order, Class, and Phylum levels, respectively on the 
test dataset. Further predictions were made by aligning phage 

1 https://webs.iiitd.edu.in/raghava/phagetb/
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A B

C

FIGURE 3

Variation in probability of correct prediction (A) BLASTPhage (B) BLASTHost and (C) CRISPRPred at different e-values.

TABLE 1 Prediction of five taxonomic levels of bacterial host using alignment-based models on validation dataset.

E-value Method Cov 
(%)

Taxonomic Level

Genus Family Order Class Phylum

PCP(%) Acc(%) PCP(%) Acc(%) PCP(%) Acc(%) PCP(%) Acc 
(%)

PCP 
(%)

Acc 
(%)

1.00E-06

BLASTHost 50.45 67.00 33.81 79.21 39.97 87.29 44.05 90.43 45.63 96.53 48.71

BLASTPhage 70.77 74.12 52.46 88.24 62.45 93.41 66.11 95.53 67.61 98.24 69.53

CRISPRPred 21.57 87.64 18.90 92.66 19.98 93.82 20.23 96.14 20.73 97.30 20.98

1.00E-05

BLASTHost 53.46 66.98 35.80 78.82 42.13 87.07 46.54 90.34 48.29 96.26 51.46

BLASTPhage 72.11 72.98 52.62 87.07 62.78 92.49 66.69 94.69 68.28 97.58 70.36

CRISPRPred 38.30 70.22 26.89 85.00 32.56 91.09 34.89 96.30 36.89 98.04 37.55

1.00E-04

BLASTHost 58.28 67.14 39.13 78.29 45.63 86.86 50.62 90.00 52.46 96.00 55.95

BLASTPhage 75.52 70.67 53.37 85.12 64.28 90.74 68.53 93.72 70.77 97.35 73.52

CRISPRPred 51.87 66.45 34.47 81.22 42.13 90.37 46.88 95.83 49.71 97.59 50.62

1.00E-03

BLASTHost 64.45 63.31 40.80 74.81 48.21 84.75 54.62 89.41 57.62 95.22 61.37

BLASTPhage 77.10 69.76 53.79 84.23 64.95 89.96 69.36 93.30 71.94 97.19 74.94

CRISPRPred 62.53 60.59 37.89 74.43 46.54 85.75 53.62 92.01 57.54 94.67 59.20

1.00E-02

BLASTHost 71.36 59.51 42.46 70.83 50.54 80.16 57.20 86.11 61.45 92.88 66.28

BLASTPhage 81.77 67.31 55.04 81.57 66.69 87.37 71.44 91.65 74.94 95.93 78.43

CRISPRPred 73.77 54.40 40.13 68.62 50.62 80.59 59.45 88.94 65.61 92.44 68.19

1.00E-01

BLASTHost 71.44 59.44 42.46 70.75 50.54 80.07 57.20 86.01 61.45 92.77 66.28

BLASTPhage 81.77 67.31 55.04 81.57 66.69 87.37 71.44 91.65 74.94 95.93 78.43

CRISPRPred 90.67 46.83 42.46 58.59 53.12 69.15 62.70 79.89 72.44 85.40 77.44

Cov(%): Coverage in percentage; Acc(%): Accuracy in percentage; PCP(%): Probability of Correct Prediction
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genomes with CRISPR sequences extracted from host genomes. The 
predictions from CRISPRPred were very accurate for smaller e-value 
thresholds indicating precise predictions up to the Genus level, but at 
the same time the coverage (fraction of phages for which predictions 
could be made) was relatively small. This implied that although highly 
accurate predictions can be made using CRISPR signals but such 
predictions are not possible for all phages. We observe that in the case 
of the original test dataset (See Supplementary Table S1) and modified 
test datasets, the prediction accuracies were improved at the level of 
class and phylum in comparison with BLASTHost and BLASTPhage 
methods (refer to Table 1).

Performance of machine learning models

In order to develop various machine learning models, i.e., 
Decision Tree (DT), Random Forest (RF), Gaussian Naive Bayes 
(GNB), XGBoost, Logistic Regression (LR), Multi-layer perceptron 
(MLP), and Support Vector Machine (SVM), we extracted the features 
fm  using Equation 1 with k = 6, from the phage genomes and using 

these features, we  predicted the bacterial hosts for phages in the 
testing dataset. As represented in Table 2, on modified test dataset, 
LR-based models performed best among all other classifiers. In order 
to improve the performance further, we  integrated the prediction 
score of the best model, i.e., LR with similarity scores, i.e., BLAST bit 
scores and observed that there is a significant improvement in the 
predictive accuracies. The parameters for the hybrid model were 
found by varying the weighting parameters α and γ in Equation 4. 
We achieved the best performance at α = 0.9 and γ = 0.6. On original 
test dataset, the prediction accuracies of the hybrid model 
(LR + similarly score) are 49.7, 64.7, 75.3, 84.8, and 90.6% across the 
five taxonomic levels, respectively, (Supplementary Table S2). On the 
other side, the hybrid model evaluated on the modified test dataset, 
outperformed all other classifiers with an improved accuracies of 60.6, 
75.8, 82.0, 89.7, 93.5% at Genus, Family, Order, Class, and Phylum 
levels, respectively, (See Table 2).

Performance of ensemble models

In order to improve the performance of the models mentioned 
above, we have used the ensemble approach, where we have generated 

predictions from combinations of the different models. Here, we have 
tried combinations of BLASTPhage, BLASTHost, CRISPRPred and the 
Hybrid Model and validated the accuracies at different taxonomic 
levels on both the testing datasets. We observe improvements across 
all the taxonomic levels as we  progressively add the different 
prediction methods to the overall framework. Host prediction 
accuracy was markedly higher than individual components. For 
higher-order taxonomic levels (Class and Phylum) combination of 
BLAST and the hybrid model-based predictions also got comparable 
results. However, for lower and more specific levels, the best- 
performing approach was the one that combines all prediction 
methods. Our proposed ensembled model (BLASTPhage + 
BLASTHost + CRISPRPred + Hybrid Model) outperforms the existing 
approaches across all taxonomic levels, correctly predicting 61.6, 74.4, 
80.5, 85.7, and 91.2%, respectively, for original test dataset 
(Supplementary Table S3) and 67.9, 80.6, 85.5, 90.0, and 93.5% for test 
dataset at Genus, Family, Order, Class and Phylum levels. The e-value 
thresholds for BLASTPhage (1.00E-10), BLASTHost (1.00E-20), 
CRISPRPred (1.00E-2), and the prediction probability threshold for 
the hybrid models is 0.6 (Table 3).

Contributions to the scientific community

To serve the scientific community, we  integrate our best-
performing models in a webserver called “PhageTB.” This tool 
incorporates three major modules (i) Hosts for bacteriophages (ii) 
Interaction of phage-host pair and (iii) Lytic phage for a bacterial host. 
The first module “Hosts for bacteriophages” allows users to choose 
four predictive methods, i.e., BLASTPhage, BLASTHost, CRISPRPred, 
and Hybrid Model. Users need to provide the query genome sequence 
and the tool predict the bacterial hosts using the reference host 
database. The second module “Interaction of phage-host pair” predicts 
whether a pair of phage and bacteria are likely to interact based on 
their genome sequences. Users need to provide genome sequences of 
phage and bacteria in the FASTA format. Our tool predicts the 
interactions between the query sequences, by first, predicting the host 
of the query phage using the first module and then using sequence 
alignment between the predicted and query hosts to determine 
whether the query pair interact or not. The third module “Lytic phage 
for a bacterial host” predicts bacteriophages corresponding to query 
bacterial sequences. The input genome sequence is searched against 

TABLE 2 Prediction of five taxonomic levels of bacterial host using machine learning and hybrid models on modified test dataset.

Machine learning methods Taxonomic levels (Accuracy %)

Genus Family Order Class Phylum

Decision Tree (DT) 22.30 30.50 34.70 45.70 55.90

Gaussian Naive Bayes (GNB) 24.30 32.00 35.20 42.90 45.60

XGBoost (XGB) 37.20 44.20 48.20 53.20 57.80

Random Forest Classifier (RF) 38.80 46.10 51.00 55.70 59.20

Linear SVM (SVM) 51.80 62.10 65.60 71.00 73.50

K-Nearest Neighbor (KNN) 49.20 61.60 67.60 73.20 78.50

Multi-layer perceptron (MLP) 49.20 63.50 69.10 76.10 80.00

Logistic Regression (LR) 54.80 68.10 72.50 77.70 80.80

Hybrid Model (Similarly-scores + LR) 60.60 75.80 82.00 89.70 93.50
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the reference database of phage-host interactions, where first we align 
the query sequence with genome sequences of bacteria that are known 
hosts for some bacteriophages. The top hit bacteria from the reference 
database are the most similar bacteria to the query, and thus the query 
is likely to be infected by the phage associated with the top hit. The 
webserver “PhageTB” was implemented using HTML, CSS, and PHP 
and has multi-device compatibility, and provides an easy-to-use and 
user-friendly interface. The open-source web server is available at 
https://webs.iiitd.edu.in/raghava/phagetb. The command line 
standalone can be found on GitHub at https://github.com/raghavagps/
phagetb.

Case study: Prediction of lytic phages

Predicting lytic phages that can be  used (solely or with other 
agents) for treatment of multi-drug resistance bacterial infections is a 
major problem of concern for the scientific community (Lin et al., 
2017; Kortright et al., 2019). In this case study we identify suitable 
phage-based treatments for drug-resistant bacterial infections using 
our webserver PhageTB to predict the lytic phages corresponding to 
the six ESKAPE Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter species (Santajit and Indrawattana, 2016; 
Mulani et  al., 2019) bacteria. ESKAPE comprises six well-known 
highly virulent antibiotic-resistant bacterial pathogens. Here we have 

downloaded the genome assemblies of each of the six bacteria from 
NCBI2 and predict the specific phage. We utilize the default parameters 
of the third module, “Lytic phage for a bacterial host” of PhageTB, to 
predict the phages that are likely to infect a bacterium. Table 4 and 
Supplementary Table S4 represents the predicted phages with 
GenBank ID for five out of six ESKAPE bacteria. We could not predict 
any lytic phage against Pseudomonas aeruginosa bacteria, which 
could be attributed to the use of strict thresholds for the individual 
models. We have evaluated the predictions of our tool with existing 
studies and clinical trials (El Haddad et al., 2019; Mulani et al., 2019). 
These findings can be  extended to other drug-resistant bacterial 
strains and thus utilized to expedite the process of finding suitable 
phages for the treatment of drug-resistant bacterial infections where 
the lytic phages are not known beforehand.

Comparison with other methods

Comparing this newly developed method with the existing tools 
is crucial to understand the merits and demerits. There are several 
methods available such as VirHostMatcher-Net, PHP, Phirbo, and 
PredPHI as shown in Table 5. Therefore, we compare the performance 
of our method with three existing tools PHP (Lu et  al., 2021), 

2 https://www.ncbi.nlm.nih.gov/assembly/

TABLE 3 Prediction of five taxonomic levels of bacterial host using ensembled models.

Method Taxonomic Level (Accuracy %)

Genus Family Order Class Phylum

BLASTPhage + BLASTHost 59.40 70.10 73.90 75.50 78.60

BLASTHost + Hybrid Model 65.00 78.10 83.10 89.90 93.90

BLASTPhage + Hybrid Model 62.60 75.80 82.40 89.80 93.60

CRISPRPred + Hybrid Model 61.10 74.10 80.50 86.40 90.10

BLASTPhage + BLASTHost + Hybrid Model 65.70 78.60 84.30 90.70 94.00

BLASTHost + CRISPRPred + Hybrid Model 65.50 76.60 81.70 86.80 90.90

BLASTPhage + CRISPRPred + Hybrid Model 66.70 79.20 84.60 89.80 93.50

BLASTPhage + BLASTHost + CRISPRPred + Hybrid Model 67.90 80.60 85.50 90.00 93.50

TABLE 4 Lytic phage prediction by phageTB on ESKAPE bacteria.

Bacteria Predicted phage (GenBank ID) Evidence (Ref)

Enterococcus faecium AB746912 Lee et al. (2019)

Staphylococcus aureus DQ289556 Fish et al. (2016)

Klebsiella pneumoniae CP000711 Manohar et al. (2018)

Acinetobacter baumannii AB746912 Badawy et al. (2020)

Pseudomonas aeruginosa No-Prediction -

Enterobacter CP000711 Manohar et al., 2018
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VirHostMatcher-Net (Wang et  al., 2020), and Phirbo (Zielezinski 
et  al., 2021), due to the prediction at all five taxonomic levels is 
available in only these tools. As shown in Figure  4, PhageTB 
outperform previous studies at each taxonomic level, with an accuracy 
of 67.90, 80.60, 85.5, 90.0, and 93.5% at Genus, Family, Order, Class, 
and Phylum levels. The prediction accuracies of other tools are 
provided in Figure 4.

Discussion and conclusion

Phage therapy is a leading alternative to antibiotics for the 
treatment of bacterial infections as most pathogenic strains are now 
showing resistance to numerous known antibiotics (Topka-Bielecka 
et  al., 2021). The development of phage therapy requires the 
identification and isolation of a large number of bacteriophages. 

Phages are generally specific to bacterial species as well as their strains 
which is an advantage of this therapy as it will only kill the pathogenic 
bacteria, leaving out the natural bacteria required for the human body. 
The highly specific nature of bacteriophages necessitates the collection 
and characterization of their known and potential hosts and the 
interactions between them (Gorski et al., 2018, 2020). There have been 
several studies in the past that have tried to identify and predict the 
hosts of phages and their interactions like WIsH, VirHostMatcher-Net, 
SpacePHARER, VirSorter, and PredPHI (Roux et al., 2015; Galiez 
et al., 2017; Wang et al., 2020; Li et al., 2021; Zhang et al., 2021). 
Despite this, the presently available methods cannot accurately predict 
the taxonomic classes of the phage and hosts. To bridge this gap and 
achieve better performance in predicting the phage-host interactions, 
we developed a method called PhageTB that uses both alignment-
based and alignment-free features to predict the hosts from query 
genomic sequences of bacteriophages.

TABLE 5 Comparison of PhageTB with the existing phage-host interaction prediction methods.

Tool PhageTB PHP VirHostMatcher-Net Phirbo PredPHI

Webserver Yes No No No No

Standalone Yes Yes Yes Yes Yes

Genus Yes Yes Yes Yes No

Family Yes Yes Yes Yes No

Order Yes Yes Yes Yes No

Class Yes Yes Yes Yes No

Phylum Yes Yes Yes Yes No

Phage2Host Yes Yes Yes Yes Yes

Host2Phage Yes No Yes No No

Phage2Phage Yes No Yes No No

FIGURE 4

Comparison of performance of our method with existing tools at different taxonomic levels.
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PhageTB is a hierarchical prediction method that stacks four 
predictive methods to predict the phage-host interactions across five 
levels–Genus, Family, Order, Class, and Phylum. These methods 
include BLASTPhage, BLASTHost, the Hybrid model, and 
CRISPRPred. BLASTPhage, BLASTHost, employ BLAST alignment-
based predictions for query sequences against reference hosts and 
phages, respectively, and the CRISPRPred approach uses CRISPR 
based alignment to predict the same. In cases where there is a shortage 
of phage or bacterial sequence data, traditional alignment-based 
methods may be unreliable in predicting rare phage-host interactions. 
However, machine learning models can be  used to address this 
limitation. The Hybrid Model predicts the host based on the machine 
learning classifier and similarity scores. These four methods combined 
can accurately predict the host-phage interactions and outperform the 
previously developed methods to predict phage-host interactions 
namely PHP, VirHostMatcher-Net, and Phirbo when tested on the 
dataset containing 1,462 phage-host interactions (Wang et al., 2020; 
Lu et al., 2021; Zielezinski et al., 2021). We obtained accuracies of 67.9, 
80.6, 85.5, 90.0, and 93.5% for Genus, Family, Order, Class, and 
Phylum, respectively, using the ensemble model which is better than 
the abovementioned methods. Additionally, it must be noted that the 
proposed tool has limitations regarding its ability to predict the 
evolution of bacterial resistance to phages, as it assumes that any 
phage used in the prediction can infect any bacteria without taking 
into consideration any developed resistance and does not explicitly 
identify phage resistance. The approaches combined in PhageTB 
provide accurate predictions for phage-host interactions making it a 
valuable tool for the scientific community working in this field 
worldwide to identify phages that might be suitable to combat the 
crisis of antibiotic resistance. With the increasing availability of 
metagenome samples, new methods for identifying phages and 
determining their hosts are required. We believe that PhageTB will 
prove to be an effective tool in finding specific hosts for the phages 
which can be potentially helpful in the development of phage therapy 
by facilitating as a useful filter to narrow down target phages and 
hosts, ecology research, viral metagenomics analysis, and human gut 
microbiocenosis research among others. PhageTB is an easy-to-use 
method of assigning hosts to bacteriophages, studying their 
interactions, and narrowing down the search space for candidate 
phages that can successfully lyse the query bacteria and thus 
be utilized in phage therapy for treating bacterial infections caused by 
it. Our tool is freely accessible at https://webs.iiitd.edu.in/raghava/
phagetb/, and the Python standalone package is available at GitHub 
https://github.com/raghavagps/phagetb.

Limitation of the study

In the current study, we have developed an in-silico tool for the 
prediction of phage-host interactions using ensemble learning 
approach. Due to the limitation in the available datasets we have not 
considered phage-host receptors and prophages for developing the 
prediction models. Moreover, we  were not able to discriminate 
interacting and bacterial resistant strains. In future, we will update this 
tool by incorporating new features and experimentally validated data, 
in order to generate a highly accurate and reliable method for 
designing phage-based therapy.
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