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Identification of associations
between lncRNA and drug
resistance based on deep learning
and attention mechanism

Meihong Gao and Xuequn Shang*

School of Computer Science, Northwestern Polytechnical University, Xi’an, China

Introduction: Abnormal lncRNA expression can lead to the resistance of tumor

cells to anticancer drugs, which is a crucial factor leading to high cancer

mortality. Studying the relationship between lncRNA and drug resistance becomes

necessary. Recently, deep learning has achieved promising results in predicting

biomolecular associations. However, to our knowledge, deep learning-based

lncRNA-drug resistance associations prediction has yet to be studied.

Methods: Here, we proposed a new computational model, DeepLDA, which

used deep neural networks and graph attention mechanisms to learn lncRNA and

drug embeddings for predicting potential relationships between lncRNAs and drug

resistance. DeepLDA first constructed similarity networks for lncRNAs and drugs

using known association information. Subsequently, deep graph neural networks

were utilized to automatically extract features from multiple attributes of lncRNAs

and drugs. These features were fed into graph attention networks to learn lncRNA

and drug embeddings. Finally, the embeddings were used to predict potential

associations between lncRNAs and drug resistance.

Results: Experimental results on the given datasets show that DeepLDA

outperforms other machine learning-related prediction methods, and the deep

neural network and attention mechanism can improve model performance.

Dicsussion: In summary, this study proposes a powerful deep-learning model

that can e�ectively predict lncRNA-drug resistance associations and facilitate the

development of lncRNA-targeted drugs. DeepLDA is available at https://github.

com/meihonggao/DeepLDA.

KEYWORDS

lncRNA-drug resistance associations, deepneural networks, graph attentionmechanisms,

similarity networks, embeddings

1. Introduction

Long non-coding RNA (lncRNA) is a transcript longer than 200 nucleotides, which

is transcribed from the genome, cannot be translated into functional proteins, and has

heterogeneity in organisms (Mattick and Rinn, 2015; Koch, 2017; Bridges et al., 2021; Zhao

et al., 2021). More andmore lncRNAs have been proven to affect various biological processes

to cause cancer through transcription initiation, transcriptional and post-transcriptional

regulation, and are no longer the so-called “transcriptional noise" (Long et al., 2017; Peng

et al., 2017; Jiang et al., 2019; Gao et al., 2021, 2022b). In addition, cancer is the leading cause

of death worldwide (Bray et al., 2020; Ferlay et al., 2021; Gao and Shang, 2022b; Xia et al.,

2022). The current primary therapeutic approach for cancer is chemotherapy, which uses

chemical drugs to treat patients. However, tumor cells can become resistant to chemotherapy
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during treatment, leading to treatment failure (Rebucci and

Michiels, 2013; Hu et al., 2019; Rehman et al., 2021). Thus, drug

resistance is still a significant challenge in cancer therapy, and its

underlying mechanisms have not been fully elucidated.

LncRNAs have recently been identified as a novel mechanism

of drug resistance and have received extensive attention in cancer

research (Bester et al., 2018; Sun et al., 2019; Barth et al., 2020;

Jiang et al., 2020; Singh et al., 2022; Zhou et al., 2022). The

abnormal expression of lncRNA can lead to the resistance of

tumor cells to anticancer drugs, which is a crucial factor leading

to high cancer mortality. For example, lncRNA HOTAIR is found

to be upregulated in tumors, such as breast cancer, gastric cancer,

esophageal cancer, and leukemia (Xue et al., 2016; Zhu et al., 2022).

It not only participates in the formation of multidrug resistance of

tumor cells but also is closely related to the degree of malignancy

and poor prognosis of tumors. In addition, the overexpression

of lncRNA UCA1 in urothelial carcinoma is associated with

chemotherapy resistance, and silencing lncRNA UCA1 can inhibit

the migration and invasion of non-small cell lung cancer cells and

reverse the drug resistance of cancer cells (Wang et al., 2017; Liu

et al., 2019). Furthermore, lncRNA DILA1 is associated with the

drug resistance of breast cancer cells, which makes cancer cells

resistant to tamoxifen by inhibiting the degradation of cyclin D1

(Shi et al., 2020). Overall, there is a close relationship between

lncRNA and drug resistance, and the study of lncRNA-drug

resistance association becomes crucial.

Some databases have provided experimentally validated

lncRNA-drug resistance association data (Dai et al., 2017; Li et al.,

2020). However, existing information is small compared with the

unknown one. Although biological experiments can identify new

lncRNA-drug resistance associations, they are challenging due to

high time and financial costs. Computational methods can predict

potential associations between lncRNAs and drug resistance, but

to our knowledge, only two related works have been proposed.

One is LRGCPND (Li et al., 2021), which infers the relationship

between noncoding RNAs and drug resistance based on linear

residual graph convolution. The other is GSLRDA (Zheng J. et al.,

2022), which uses light graph convolutional networks (GCNs),

data augmentation, and self-supervision to identify associations

between ncRNAs and drug resistance. There is still much for

exploration in lncRNA-drug resistance association prediction. In

recent years, machine learning has achieved remarkable results

in predicting biomolecular association, such as lncRNA-gene

association (Zhang et al., 2020; Zhao et al., 2020; Gao and Shang,

2022a; Gao et al., 2022a), lncRNA-miRNA association (Liu et al.,

2020; Zhang et al., 2021a,b), miRNA-drug resistance association

(Huang et al., 2020; Niu et al., 2022; Zheng K. et al., 2022), and

ncRNA-drug resistance association (Li et al., 2021; Zheng J. et al.,

2022). Inspired by this, machine learning methods can be used to

predict potential lncRNA-drug resistance associations to explore

the impact of lncRNAs on the drug resistance of cancer cells.

In this study, we proposed a deep learning-based computational

model, DeepLDA, which used deep neural network and graph

attention mechanism to learn embeddings of lncRNAs and drugs

for predicting potential lncRNA-drug resistance associations. We

first used the known relationship between lncRNAs and drug

resistance to construct similarity networks for lncRNAs and

drugs. Subsequently, deep GCN were used to automatically extract

features from multiple attributes of the raw data of nodes. These

features were then used as input to graph attention network

(GAT) module for embedding learning. Finally, lncRNA and drug

embeddings were used to predict potential associations between

lncRNAs and drug resistance. Experimental results show that the

prediction performance of DeepLDA is better than other ncRNA-

drug resistance association prediction methods, and the deep

neural network and attention mechanism are proved to improve

the model performance. In summary, this study proposes a new

computational model that can effectively complete the task of

lncRNA-drug resistance association prediction, help to understand

the lncRNA-related drug resistance mechanism, accelerate drug

development, and promote the development of targeted therapy.

2. Materials and methods

We designed a new computational model, DeepLDA, to

predict candidate lncRNA-drug associations based on deep learning

and graph attention mechanism (Figure 1). Firstly, lncRNA-

drug resistance association data were collected and preprocessed

(Figure 1A). Then, we proposed a deep learning module based on

graph neural network and graph attention mechanism to learn

lncRNA and drug embeddings (Figure 1B). Finally, these learned

embeddings were used to identify potential associations between

lncRNAs and drug resistance (Figure 1C).

2.1. Data collection and experimental setup

LncRNAs-drug resistance associations were collected from

NoncoRNA (Li et al., 2020) and ncDR (Dai et al., 2017) datasets.

Here, experimentally validated association terms were extracted

for subsequent prediction analysis. After preprocessing, these

items are transformed into association networks (Table 1). As

we can see in Table 1, the number of lncRNAs, drugs, and

lncRNA-drug resistance associations in the NoncoRNA-related

association network are 3,601, 71, and 3,802, respectively. In

the ncDR-related association network, the numbers of lncRNAs,

drugs and lncRNA-drug resistance associations are 162, 31, and

184, respectively.

The model was evaluated on balanced and unbalanced datasets.

On the unbalanced dataset, we used all LncRNA-drug association

items for a more practical simulation. Here, all negative samples

were selected for training and testing. Due to the limited

understanding of the regulatory relationship between lncRNAs and

drug resistances, the number of positive samples was much lower

than that of negative samples, which resulted in an imbalance

of samples. On balanced datasets, the same amount of negative

samples was sampled as the positive sample before training and

testing. During training and testing, we performed 10-fold cross-

validation, as shown in our previous study (Gao et al., 2022a).

Finally, four metrics, the AUC, AUPR, F1-score, and MCC, were

calculated to evaluate model performance.
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FIGURE 1

Overview of DeepLDA. (A) Known lncRNA-drug resistance association network. (B) Graph neural networks are used to initially learn lncRNA and drug

features. Graph attention mechanism are used to learn lncRNA and drug embeddings. (C) Using learned embeddings to predict association scores

for lncRNA-drug resistance items.

TABLE 1 Details of lncRNA-drug resistance associations.

Dataset LncRNA Drug LncRNA-drug resistance

NoncoRNA 3,599 71 3,802

ncDR 162 31 184

2.2. Similarity calculation

We obtained lncRNA and drug features through lncRNA-

drug resistance association information. Specifically, we assumed

that lncRNAs with similar functions have similar drug resistance

patterns. The similarity between lncRNAs was calculated using the

Gaussian kernel function as follows:

Gl(i, j) = exp
(

−αl‖A(i, :)− A(j, :)‖2
)

(1)

αl =
1

m

m
∑

k=1

‖A(k, :)‖2 (2)

whereA ∈ Rm×n represents the known lncRNA-drug resistance

associations, ‖X‖ represents the Euclidean distance from X to

the origin, and m and n represent the number of lncRNAs and

drugs related to the association network, respectively. Similarly, we

calculated the similarity between drugs as follows:

Gd(i, j) = exp
(

−αd‖A(:, i)− A(:, j)‖2
)

(3)

αd =
1

n

n
∑

k=1

‖A(:, k)‖2 (4)

Finally, we obtained similarity featuresGl ∈ Rm×m for lncRNAs

and Gd ∈ Rn×n for drugs.

2.3. Embedding learning

We designed a deep learning module based on graph neural

network and graph attention mechanism to learn lncRNA and drug

embeddings (Figure 1B). GCN was used to initially extract lncRNA

features, and its layer propagation formula is as follows:

Xl = softmax

(

ÂlReLU

(

ÂlXW
(0)
l

)

W
(1)
l

)

(5)

where Âl = D̃l
− 1

2 ÃlD̃l
− 1

2 , Ãl = Gl + I and I represents

the identity matrix, D̃l represents the degree matrix of matrix

Ãl, and W
(0)
l

and W
(1)
l

represents layer-specific weight matrices.

Further, we learned lncRNA embeddings via the graph attention

mechanism. Here, the input to the GAT is Xl ∈ Rm×r =

{Exl1 , Exl2 , · · · , Exlm}, and the attention coefficient between lncRNA li
and lncRNA lj is defined as follows:

elilj = a(WlExli ,WlExlj ) (6)

where Wl ∈ Rr×c is a parameter matrix, and a is a projection:

Rc×c → R. Furthermore, we normalized elilj across all choices of lj
as follows:

αlilj = softmaxlj (elilj ) =
exp(elilj )

∑

lk∈Nli
exp(elilk )

(7)

where Nli is the neighbor of node li and αlilj can be fully

expanded as:

αlilj =

exp

(

LeakyReLU

(

EaT[WlExli‖WlExlj ]

))

∑

lk∈Nli
exp

(

LeakyReLU

(

EaT[WlExli‖WlExlk ]

)) (8)
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where Ea ∈ R2c is a weight vector and ‖ is the concatenation

operation. Based on this, we obtained the output feature of li as:

Ex′li = σ

(

∑

lj∈N(li)

αliljWlExlj

)

(9)

where Ex′
li
was further calculated by the multi-head attention

mechanism as:

Ex′li =
K
‖

k=1
σ

(

∑

lj∈N(li)

α
k
lilj
Wk

l Exlj

)

(10)

where K is the number of heads, αk
lilj

is computed by the k-th

head, and Wk
l
is the corresponding weight matrix. Specially, the

multi-head attention mechanism in the last layer is:

Ex′li = σ

(

1

K

K
∑

k=1

∑

lj∈N(li)

α
k
lilj
WkExlj

)

(11)

After the above operation, lncRNA embeddings are expressed

as X′
l
∈ Rm×c = {Ex′

l1
, Ex′

l2
, · · · , Ex′

lm
}.

Similar to the lncRNA embeddings learning process, drug

features were initially extracted by GCN, which layer propagation

formula is:

Xd = softmax

(

ÂdReLU

(

ÂdX
′W

(0)
d

)

W
(1)
d

)

(12)

where Âd = D̃d
− 1

2 ÃdD̃d
− 1

2 , Ãd = Gd + I, D̃d represents

the degree matrix of matrix Ãd, and W
(0)
d

and W
(1)
d

represents

layer-specific weight matrices. Through the above operations, we

obtained drug features Xd ∈ Rn×r . Further, we learned drug

embeddings through graph attention mechanism which input is

Xd = {Exd1 , Exd2 , · · · , Exdm}. Then the attention coefficien between

drug di and drug dj is:

edidj = a(WdExdi ,WdExdj ) (13)

where Wd ∈ Rr×c is a parameter matrix. Furthermore, we

normalized edidj across all choices of dj as follows:

αdidj = softmaxdj (edidj ) =
exp(edidj )

∑

dk∈Ndi
exp(edidk )

(14)

whereNdi is the neighbor of node di. The above formula is fully

expanded as follows:

αdidj =

exp

(

LeakyReLU

(

Ead
T[WdExdi‖WdExdj ]

))

∑

dk∈Ndi
exp

(

LeakyReLU

(

Ead
T[WdExdi‖WdExdk ]

)) (15)

where Ead ∈ R2c is a weight vector. Based on this, we obtained

the output feature of di as follows:

Ex′di = σ

(

∑

dj∈N(di)

αdidjWdExdj

)

(16)

where Ex′
di

was calculated by the multi-head attention

mechanism as follows:

Ex′di =
K
‖

k=1
σ

(

∑

dj∈N(di)

α
k
didj

Wk
dExdj

)

(17)

where α
k
didj

is computed by the k-th head and Wk
d
is the

corresponding weight matrix. Specially, the multi-head attention

mechanism in the last layer is as follows:

Ex′di = σ

(

1

K

K
∑

k=1

∑

dj∈N(di)

α
k
didj

WkExdj

)

(18)

Finally, we obtained lncRNA embeddings as X′
d

∈ Rn×c =

{Ex′
d1
, Ex′

d2
, · · · , Ex′

dn
}.

2.4. Association prediction

After obtaining lncRNA and drug embeddings, we used them

to predict potential lncRNA-drug resistance associations. The

association score is equal to A′ = σ (X′
l
× X′T

d
) and σ is a sigmoid

function. To make the prediction result as close as possible to

the real relationship between lncRNA and drug resistance, the

reconstruction loss is defined as follows:

Loss =

m
∑

i=1

n
∑

j=1

(A′
ij − Aij) (19)

3. Results

3.1. Parameter analysis

We set the parameters learning rate, network layer, head

number, and embedding size in the model as follows. We first

changed the learning rate in {0.1, 0.01, 0.001, 0.0001} to determine

its effect on model performance (Figure 2A). As we can found,

when the learning rate is equal to 0.1, the model is difficult to

converge. When the learning rate is in {0.01, 0.001}, the model

does not achieve optimal performance. Therefore, 0.0001 is used as

the learning rate value. Then, we changed the network layer in {2,

3, 4, 5} to determine its effect on model performanc (Figure 2B).

It can be found that a small number of layers can speed up the

convergence of the model, and a large number of layers will make

the model prone to overfitting. In this experiment, we choose 3 as

the network layer.

After that, we compared the model performance with different

head number in graph attention mechanism module to determine

its impact onmodel performance. Specifically, we changed the head

number in {2, 4, 6, 8} for analysis (Figure 2C). As we can see, there

is not much difference in final performance between models with

different head number. A large number of attention head can speed

up the convergence of the model, and a small number of attention

head will make the model converge slowly. In this experiment, we

make the head number of the attention mechanism equal to 8.

Finally, we set the embedding size in {10, 50, 100, 200} to verify its

impact on model prediction performance (Figure 2D). When the
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FIGURE 2

Parameter analysis. (A) E�ect of learning rate on model performance. (B) E�ect of network layer on model performance. (C) E�ect of head number

on model performance. (D) E�ect of embedding size on model performance.

embedding size is set to 200, the final AUC is slightly larger than

that of the other groups. Thus, we choose 200 as the embedding size.

3.2. Performance evaluation

In order to evaluate model performance, we analyzed changes

in AUC, AUPR, F1-score and MCC on NoncoRNA and ncDR.

As a result, four experimental groups were obtained, including

balanced NoncoRNA, balanced ncDR, unbalanced NoncoRNA,

and unbalanced ncDR (Figure 3). It can be found that the AUC,

AUPR, F1-score andMCC of DeepLDA are stable at 0.96, 0.86, 0.86,

and 0.76, respectively, on balanced NoncoRNA (Figures 3A–D).

On unbalanced NoncoRNA, the AUC, AUPR, F1 score and MCC

of DeepLDA are stable at 0.95, 0.85, 0.86, and 0.76, respectively

(Figures 3E–H). In addition, the AUC, AUPR, F1-score and MCC

of DeepLDA are stable at 0.98, 0.87, 0.92, and 0.79, respectively,

on balanced ncDR (Figures 3I–L). On unbalanced ncDR, the AUC,

AUPR, F1 score andMCC of DeepLDA are stable at 0.97, 0.86, 0.89,

and 0.78, respectively (Figures 3M–P). The results show that the

model performance on the balanced dataset is slightly better than

that on the unbalanced dataset. The phenomenon is caused by the

proportion of samples in the dataset. Since the number of positive

and negative samples in the balanced datasets is the same, the

bias caused by unbalanced samples can be eliminated to a certain

extent in the prediction task. Thus, our method performs better

on balanced datasets than on unbalanced datasets. For unbalanced

datasets, although the prediction performance is slightly inferior

to the balanced datasets, it is still at a high level, which proves the

robustness of our model.

We further calculated average performance metrics, which is

equal to the average value of AUC, AUPR, F1-score and MCC

(Table 2). It can be found that when the epoch is around 300,

the average metrics are close to convergence on the balanced

dataset, and when the epoch is around 400, the average metrics

are close to convergence on the unbalanced dataset. Specifically,

the average metrics on NoncoRNA- and ncDR-related balanced

datasets are stable at 0.86 and 0.89, respectively, and the average

metrics on NoncoRNA- and ncDR-related unbalanced datasets

are stable at 0.85 and 0.87, respectively. The above experimental

results demonstrate that our model has satisfactory performance

in predicting lncRNA-drug resistance associations and converges

faster on balanced datasets than on unbalanced datasets since the

data size of balanced datasets is smaller than that of unbalanced

datasets. Moreover, the results further verify that the model

performance better on the balanced dataset than on the unbalanced

dataset, and that the model can also achieve ideal performance on

unbalanced datasets.

3.3. E�ect of each module

To demonstrate the effectiveness of GCN and GAT on

the lncRNA-drug resistance association prediction task, we

compared the performance of GCN, GAT, and DeepLDA under

the same experimental setting. As a result, we find that

DeepLDA outperforms GAT and GCN on the given datasets

(Figure 4). The AUC, AUPR, F1-score, and MCC of DeepLDA

are 0.9583, 0.8601, 0.8625, and 0.7628, respectively, on balanced

NoncoRNA (Figures 4A–D), are 0.9536, 0.8511, 0.8612, and

0.7562, respectively, on unbalanced NoncoRNA (Figures 4A–D),

are 0.9819, 0.8687, 0.9163, and 0.7885, respectively, on balanced

ncDR (Figures 4E–H), and are 0.9728, 0.8572, 0.8876, and 0.7792,

respectively, on unbalanced ncDR (Figures 4E–H). Through

comparative analysis, it can be found that the AUCs of DeepLDA

on balanced NoncoRNA, unbalanced NoncoRNA, balanced ncDR,

and unbalanced ncDR are 0.0071, 0.0138, 0.0190, and 0.0684

higher than the best AUC in GAT and GCN, respectively. The

AUPRs of DeepLDA are 0.2329, 0.2707, 0.2060, and 0.2017 higher

than the best AUPR in GAT and GCN on balanced NoncoRNA,

unbalanced NoncoRNA, balanced ncDR, and unbalanced ncDR,

respectively. The F1-scores of DeepLDA are 0.0111, 0.1306, 0.1559,

0.1361 higher than the best F1-score in GAT and GCN on

balanced NoncoRNA, unbalanced NoncoRNA, balanced ncDR,

and unbalanced ncDR, respectively. The MCCs of DeepLDA is

0.0004, 0.1216, and 0.1278, higher than the best MCC in GAT and

GCN on unbalanced NoncoRNA, balanced ncDR, and unbalanced

ncDR, respectively. At the same time, the MCC of DeepLDA

is higher than GCN and slightly lower than GAT on balanced

NoncoRNA. As for the average performance, which are 0.8609,

0.8555, 0.8889, and 0.8742 on balanced NoncoRNA, unbalanced

NoncoRNA, balanced ncDR, and unbalanced ncDR, respectively

(Table 3). Compared with the best average performance in GAT
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FIGURE 3

Changes in model performance on balanced and unbalanced datasets. (A) AUC on balanced NoncoRNA. (B) AUPR on balanced NoncoRNA. (C)

F1-score on balanced NoncoRNA. (D) MCC on balanced NoncoRNA. (E) AUC on unbalanced NoncoRNA. (F) AUPR on unbalanced NoncoRNA. (G)

F1-score on unbalanced NoncoRNA. (H) MCC on unbalanced NoncoRNA. (I) AUC on balanced ncDR. (J) AUPR on balanced ncDR. (K) F1-score on

balanced ncDR. (L) MCC on balanced ncDR. (M) AUC on unbalanced ncDR. (N) AUPR on unbalanced ncDR. (O) F1-score on unbalanced ncDR. (P)

MCC on unbalanced ncDR.

TABLE 2 Changes in average model performance on balanced and unbalanced datasets.

Epoch NoncoRNA-balanced NoncoRNA-unbalanced ncDR-balanced ncDR-unbalanced

20 0.6042 0.5660 0.4553 0.3535

50 0.7835 0.7301 0.5897 0.4908

100 0.7696 0.7959 0.6204 0.4872

200 0.7634 0.8099 0.7707 0.6825

300 0.8608 0.8315 0.8889 0.8454

400 0.8617 0.8534 0.8890 0.8736

500 0.8605 0.8538 0.8890 0.8734
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FIGURE 4

Comparison of the e�ects of each module. D1 and D2 represent NoncoRNA and ncDR, respectively. (A) AUC on D1. (B) AUPR on D1. (C) F1-score on

D1. (D) MCC on D1. (E) AUC on D2. (F) AUPR on D2. (G) F1-score on D2. (H) MCC on D2.

TABLE 3 Comparison of average performance metrics of each module.

Method Balanced noncoRNA Unbalanced noncoRNA Balanced ncDR Unbalanced ncDR

Deep-LDA 0.8609 0.8555 0.8889 0.8742

GAT 0.8289 0.7820 0.7949 0.7740

GCN 0.7808 0.7541 0.7769 0.7466

and GCN, the improvements are 0.0387, 0.0940, 0.1182, and

0.1295, respectively.

Overall, DeepLDA has an advantage over GAT and GCN in

predicting lncRNA-drug resistance associations because DeepLDA

combines the feature learning capabilities of GCN and GAT

to capture the local and global features of nodes effectively. In

addition, GAT has a strong learning ability and generalization

ability, and can handle complex and variable lncRNA-drug

resistance association data only by learning association-related

nodes and their neighbor information, which significantly

improves the model prediction performance.

3.4. Comparison with other methods

We compared the performance of DeepLDA with other

association prediction methods, GSLRDA (Zheng J. et al., 2022),

LRGCPND (Li et al., 2021), and GCMDR (Huang et al., 2020),

to verify its effectiveness. Among them, GSLRDA and LRGCPND

were designed to predict ncRNA-drug resistance associations,

and GCMDR was designed to predict miRNA-drug resistance

associations. As a result, thesemethods perform better in predicting

lncRNA-drug resistance associations on balanced datasets than

on unbalanced datasets, as we expected (Figure 5). For dataset

NoncoRNA and ncDR, DeepLDA performs better on ncDR

than NoncoRNA (Figure 6). As we can see in Figures 5, 6,

DeepLDA outperforms other prediction methods in AUC, AUPR,

F1-score, and MCC. The AUC of DeepLDA is 0.0321, 0.0538,

0.0434, and 0.0470, better than the second-best method on

balanced NoncoRNA, balanced ncDR, unbalanced NoncoRNA

and unbalanced ncDR, respectively. The AUPR of DeepLDA is

0.0976, 0.0389, 0.1773, and 0.0388, better than the second-best

method on balanced NoncoRNA, balanced ncDR, unbalanced

NoncoRNA, and unbalanced ncDR, respectively. The F1-score of

DeepLDA is 0.0887, 0.1092, 0.1389, and 0.1036, better than the

second-best method on balanced NoncoRNA, balanced ncDR,

unbalanced NoncoRNA and unbalanced ncDR, respectively. The

MCC of DeepLDA is 0.0.0304 and 0.0648 better than the second-

best method on balanced NoncoRNA and unbalanced NoncoRNA,

respectively. At the same time, the MCC of DeepLDA is slightly

inferior to the second-best method on balanced ncDR and

unbalanced ncDR, respectively.

To further demonstrate the effectiveness of DeepLDA, we

compared the average performance of different prediction methods

(Table 4). As we can see in Table 4, the average performance

of GCMDR on balanced NoncoRNA, unbalanced NoncoRNA,

balanced ncDR, and unbalanced ncDR are 0.8094, 0.7710,

0.8149, and 0.7885 respectively. The average performance of

GSLRDA on balanced NoncoRNA, unbalanced NoncoRNA,

balanced ncDR, and unbalanced ncDR are 0.7800, 0.7591,

0.8468, and 0.8303, respectively. As for LRGCPND, its average
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FIGURE 5

Performance comparison with other methods. D1 and D2 represent NoncoRNA and ncDR, respectively. (A) AUC on D1. (B) AUPR on D1. (C) F1-score

on D1. (D) MCC on D1. (E) AUC on D2. (F) AUPR on D2. (G) F1-score on D2. (H) MCC on D2.

FIGURE 6

Performance comparison with other methods on balanced and unbalanced datasets. D1 and D2 represent NoncoRNA and ncDR, respectively. (A)

AUC on balanced datasets. (B) AUPR on balanced datasets. (C) F1-score on balanced datasets. (D) MCC on balanced datasets. (E) AUC on

unbalanced datasets. (F) AUPR on unbalanced datasets. (G) F1-score on unbalanced datasets. (H) MCC on unbalanced datasets.

TABLE 4 Comparison of average performance metrics of di�erent methods.

Method Balanced noncoRNA Unbalanced noncoRNA Balanced ncDR Unbalanced ncDR

Deep-LDA 0.8609 0.8555 0.8889 0.8742

GCMDR 0.8094 0.7710 0.8149 0.7885

GSLRDA 0.7800 0.7591 0.8468 0.8303

LRGCPND 0.7863 0.7543 0.8126 0.7958

Frontiers inMicrobiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1147778
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Gao and Shang 10.3389/fmicb.2023.1147778

performance on balanced NoncoRNA, unbalanced NoncoRNA,

balanced ncDR, and unbalanced ncDR are 0.7863, 0.7543, 0.8126,

and 0.7958, respectively. Comparative analysis shows that the

average performance of DeepLDA on balanced NoncoRNA,

unbalanced NoncoRNA, balanced ncDR, and unbalanced ncDR

are 0.0637, 0.1097, 0.0497, and 0.0529 better than the suboptimal

method, respectively.

Overall, the performance of DeepLDA is significantly superior

to GSLRDA, LRGCPND, and GCMDR. The performance

advantage of DeepLDA is attributed to the following two points.

First, GCN performs end-to-end learning of feature information

and structural information of lncRNAs and drugs, which can

comprehensively capture global information and represent node

features well. Second, the graph attention mechanism aggregates

the neighbor information of nodes according to the attention

coefficient to obtain its embedding, which can efficiently represent

local neighbor information.

4. Discussion

LncRNA plays an important role in carcinogenesis and can lead

to the resistance of tumor cells to chemotherapeutic drugs (Wang

et al., 2017; Ashrafizaveh et al., 2021), which is an essential factor

leading to high cancer mortality (Vasan et al., 2019). Therefore,

identifying lncRNA-drug resistance associations becomes crucial

for revealing the impact of lncRNAs on the drug resistance of

tumor cells. Recently, machine learning has achieved promising

results in predicting biomolecular association. However, to the

best of our knowledge, little work has been done on machine

learning to predict lncRNA-drug resistance associations. In this

study, we proposed DeepLDA, a powerful deep learning model

based on graph neural network and graph attention mechanism

for revealing the potential relationship between lncRNAs and

drug resistance. DeepLDA first used known association items to

construct similarity networks of lncRNAs and drugs. Subsequently,

deep graph neural networks were used for preliminary learning

of lncRNA and drug features. Finally, these learned features

were input to GAT to learn lncRNA and drug embeddings to

predict potential association pairs. Experimental results show

that DeepLDA outperforms other machine learning methods in

predicting lncRNA-drug resistance pairs on the given datasets.

In summary, our proposed a computational model, DeepLDA,

that can effectively complete the prediction task of the association

between lncRNAs and drug resistance. DeepLDA can provide

valuable insights for drug design and open new avenues for

lncRNA-related research.

On the one hand, the association betweenmiRNA/circRNA and

drug resistance in cancer cells has been confirmed (Leonetti et al.,

2019; Xu et al., 2020; Pan et al., 2021; Wang et al., 2022). DeepLDA

provides a reference for the study of the relationship between

miRNA/circRNA and drug resistance, and the prediction process

is as follows. Firstly, GCN learns the features of miRNAs/circRNAs

and drugs, which can comprehensively capture global information

and represent node features well. Subsequently, the graph attention

mechanism aggregates the neighbor features of nodes according to

the attention coefficient to obtain their embeddings. Finally, the

learned embeddings can be used to effectively predict potential

associations between miRNAs/circRNAs and drug resistance. On

the other hand, DeepLDA can facilitate the development of targeted

therapies. Despite recent discoveries in cancer treatment, the study

of resistance to chemotherapy, radiation therapy, targeted therapy,

and immunotherapy remains a major challenge. LncRNAs are

widely recognized as universal regulators of multiple cancers,

such as proliferation, apoptosis, invasion, metastasis, and genome

instability (He et al., 2021; Nandwani et al., 2021). Based on this,

lncRNAs can be used as therapeutic adjuvants and components

of tumor-agnostic therapeutic strategies to improve anticancer

responses to existing treatment modalities. Therefore, lncRNA-

based targeted therapy can be developed on the basis of DeepLDA

to intervene in lncRNA drug resistance.

Despite DeepLDA has significant advantages in predicting

potential lncRNA-drug resistance associations, its limitations

should be informed. The known association matrix remains sparse.

In future work, we will collect more lncRNA-drug resistance

associations and employ other feature learning methods to better

explore the feature information of nodes to improve the model

performance. In addition, we will combine other biological

characteristics to carry out lncRNA-drug resistance association

prediction analysis to effectively mine the regulatory mechanism

of lncRNA.
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