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In agricultural practice, reductive soil disinfestation (RSD) is an effective method 
for eliminating soil-borne pathogens that depends heavily on carbon source. 
However, knowledge regarding the assembly of soil microbial communities 
in RDS-treated soils amended with different carbon sources after continuous 
crop cultivation is still not well-characterized. RSD treatments were performed 
on greenhouse soil with six different carbon sources (ethanol, glucose, alfalfa, 
wheat bran, rice bran, and sugarcane residue), which have different C:N ratios 
(Org C/N) and easily oxidized carbon contents (Org EOC). After RSD, two 
consecutive seasons of pepper pot experiments were conducted. Then, the 
effects of carbon source property, crop cultivation, and soil chemical property 
on soil microbial community reestablishment, pathogen reproduction, and crop 
performance were investigated in the RSD-cropping system. Variation partition 
analysis indicated that carbon source property, crop cultivation, and soil chemical 
property explained 66.2 and 39.0% of bacterial and fungal community variation, 
respectively. Specifically, Mantel tests showed that Org C/N, crop cultivation, soil 
available phosphorus and potassium were the most important factors shaping 
bacterial community composition, while Org C/N, Org EOC, and crop cultivation 
were the most important factors shaping fungal community composition. After 
two planting seasons, the number of cultivable Fusarium was positively correlated 
with Org EOC, and negatively correlated with soil total organic carbon, Fungal 
Chao1, and Fungal PC1. Crop yield of complex-carbon soils (Al, Wh, Ri and Su) 
was negatively affected by Org C/N after the first season, and it was highest in Al, 
and lower in Et and Su after the second season. Overall, Org EOC and Org C/N of 
carbon source were vitally important for soil microbe reestablishment, Fusarium 
reproduction and crop performance. Our findings further broaden the important 
role of carbon source in the RSD-cropping system, and provide a theoretical basis 
for organic carbon selection in RSD practice.
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1. Introduction

Reductive soil disinfestation (RSD), also called anaerobic soil 
disinfestation (Shinmura, 2000) or biological soil disinfestation (Blok 
et al., 2000), involves adding easily degradable organics to the soil, 
saturation with water, and sealing with a plastic film to create a 
strongly reducing and anaerobic environment (Momma et al., 2013). 
An extensive range of pathogens can be controlled with RSD, such as 
Verticillium dahlia, Fusarium oxysporum f. sp. Fragariae, Fusarium 
oxysporum f. sp. Lycopersici, Phytophthora nicotianae, Rhizoctonia 
solani, as well as plant-parasitic nematodes (Korthals et  al., 2014; 
Huang et al., 2016; Serrano-Perez et al., 2017; Henry et al., 2020; Lee 
et  al., 2020; Zavatta et  al., 2021). As an alternative to chemical 
fumigation for soil-borne pathogen control, RSD has been widely 
applied in solving continuous cropping problems of various cash 
crops, such as watermelon, strawberry, tomato, and spinach (Mowlick 
et al., 2014; Liu et al., 2018; Lee et al., 2020; Zavatta et al., 2021). The 
benefits of RSD in suppressing soil-borne pathogens and safety have 
led to its widespread use in organic agricultural systems (Priyashantha 
and Attanayake, 2021).

The main RSD phytopathogen inhibition mechanism is the release 
of toxic gasses and the accumulation of organic acid during labile 
carbon microbial degradation under flooded conditions (Rosskopf 
et al., 2015). In RSD, the potential to control phytopathogens with 
volatile compounds is greatly influenced by the carbon source used 
(Shennan et al., 2017; Mahalingam et al., 2020). There is considerable 
evidence that organic matter is important for disease control in 
anaerobic environments (Liu et al., 2016; Shrestha et al., 2018; Gilardi 
et al., 2020; Vecchia et al., 2020). Wheat bran-based amendment to 
RSD at low C:N ratio (C/N) reduced Cyperus esculentus reproduction 
compared with non-amended control (Shrestha et al., 2018). Liu et al. 
(2016) reported that carbon source incorporated in RSD with lower 
C/N and higher easily oxidized carbon (EOC) may lead to greater 
disease control efficacy. Generally, RSD uses two kinds of carbon 
sources, firstly, liquid and easily degradable compounds, such as 
diluted ethanol (Fujita et al., 2020) and molasses (Butler et al., 2012) 
and secondly, solid agricultural wastes, such as livestock excrement 
(Zhao et al., 2021) and plant residues (Testen et al., 2021).

As a soil ecosystem disturbance, RSD offers opportunities to study 
how soil microbes respond to organic carbon input under anaerobic 
conditions (Poret-Peterson et al., 2020). In RSD-treated soils, bacterial 
taxa associated with Acidobacteria, Firmicutes, and Bacteroidetes 
become predominant and contribute greatly to suppressing pathogens 
through their physiological activities (e.g., fermentation) 
(Hewavitharana and Mazzola, 2016; Hewavitharana et  al., 2019). 
Previous studies show that carbon sources with dissimilar 
decomposition characteristics, such as EOC content and C/N, affected 
soil microbial communities differently after RSD treatment (Zhao 
et al., 2018, 2020; Huang et al., 2019a). For example, Huang et al. 
(2019a) and Zhao et al. (2018) reported that plant residue-added RSD 
soils showed similar bacterial and fungal community structures, but 
differed from ethanol-added soils. Zhao et al. (2020) revealed that 
diversity and decomposability of organic materials added in RSD may 
determine the extent of microbial activity improvement. Meanwhile, 
soil abiotic factors, such as pH and carbon content, can also highly 
influence the dissimilarity and assembly of soil microbial communities 
in RSD-treated soil (Liu et al., 2019, 2022; Ali et al., 2022). Besides, a 
growing number of studies suggest that RSD-regulated soil microbial 

communities may deteriorate to a state similar to those of diseased 
soils after crop cultivation, which might be affected by root exudates 
(Mowlick et al., 2013; Liu et al., 2018; Huang et al., 2019a). Huang et al. 
(2019a) reported that bacterial and fungal diversity and community 
structure tended to be  similar during 11 months of Lisianthus 
cultivation. Liu et  al. (2018) reported that a 90-day watermelon 
cultivation homogenized microbial communities between 
RSD-treated and untreated soil, possibly because root exudates were 
released. Therefore, existing studies indicate that carbon source 
property, crop cultivation, and soil chemical property can significantly 
influence soil microbial communities, however their contribution 
rates remain unclear.

In this study, two simple-and four complex-carbon organics were 
chosen as the carbon source amended in RSD treatment, then two 
consecutive seasons of pepper pot experiments were conducted to 
build a RSD-cropping system. The aims were to: (i) investigate the 
impact of carbon source on the assembly of microbial communities in 
the RSD-cropping system; (ii) clarify the main contributors to the 
dissimilarity of soil microbial communities; and (iii) assess the key 
impact factor that may regulate pathogen reproduction and crop 
performance. We  hypothesized that microbial community 
re-structuring in RSD-treated soil after continuous cropping maybe 
influenced by the comprehensive effects of carbon source property, 
crop cultivation, and soil chemical property.

2. Materials and methods

2.1. Soil sampling

Soil samples were collected in Lanxi County, Zhejiang Province, 
China (29°10′45″N, 119°16′42″E), where pepper (‘Hangjiao No.2’) 
has been continuously planted for many years and where some crops 
showed obvious Fusarium wilt symptoms. There was a highly 
abundant population of Fusarium in the soil (1.28 × 104 colony 
forming units [CFU] g−1 dry soil). Soil chemical properties were as 
follows: pH 5.90, electrical conductivity (EC) 0.35 mS cm−1, and total 
organic carbon (TOC) and total nitrogen (TN) of 15.45 and 1.43 g kg−1, 
respectively.

2.2. Experimental design

Two simple-carbon (ethanol, glucose) and four complex-carbon 
(alfalfa, wheat bran, rice bran, and sugarcane residue) organics were 
chosen, which were widely used in RSD practice. Seven treatments 
were established: (1) Ck, soil was saturated with water and mulched 
with polyethylene (0.08 mm thickness); (2) Et, soil was saturated with 
1% ethanol and mulched with polyethylene; (3–7) Gl, Al, Wh, Ri, and 
Su, soils were mixed with glucose, alfalfa, wheat bran, rice bran, and 
sugarcane residue, respectively, saturated with water, and mulched 
with polyethylene. The properties of the six carbon sources are 
described in Table 1, and the carbon amendment rate was 4 mg C g−1 
soil for each RSD treatment. There were three replicates of each 
treatment, with four pots (13 × 21 cm, diameter × height) in each 
replicate. During the 15-day incubation period, each pot was 
maintained at an air temperature of 30°C to 35°C in a greenhouse. 
Polyethylene mulches were removed after treatment and soils were 
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naturally drained. After RSD treatment, each pot of soil samples was 
collected, and the four pots of each replicate were mixed together to 
form one composite soil sample. The soil samples were then stored at 
4°C and − 20°C for further analysis.

A pepper seedling (‘Hangjiao No.2’) was planted in each pot and 
cultivated for 3 months from August 2020 to November 2020. The 
experiment was entirely randomized, and all pots were grown in a 
greenhouse at 28°C during the day and 20°C at night. During the 
cultivation period, the soils were regularly watered to maintain a 
suitable moisture level. At the time of flowering, each pot was fertilized 
with an inorganic compound fertilizer (3 mg, N: P: K = 16:16:16) every 
7 days. Crop performance indices (stem diameter, plant height, 
aboveground biomass, and crop yield) were measured after planting. 
Later, the soil in each pot was thoroughly mixed and pepper seedlings 
were planted again in the same soil from April 2021 to July 2021. 
We collected and stored rhizosphere soil samples as described above.

2.3. Soil chemical property detection

Measurements were taken at a ratio of 1:2.5 (m/v) of soil to water 
to determine pH and EC using a PB-10 pH meter (Sartorius AG, 
Goettingen, Germany) and DDSJ-308F conductivity meter 
(Measuretech, Shanghai, China), respectively. Soil TOC was measured 
using the potassium dichromate volumetric method (Kolthoff and 
Lingane, 1933). EOC of carbon sorce (Org EOC) was determined with 
333 mmol L−1 of KMnO4 using a spectrophotometer according to Liu 
et  al. (2016). Soil TN and TN of carbon sorce (Org TN) were 
determined using Kjeldahl-N method (Sader et al., 2004). Utilizing 
the Kjeldahl-N method, molybdenum-antimony anti-colorimetry, 
and flame photometry, soil available nitrogen (AN), available 
phosphorus (AP), and available potassium (AK), respectively, were 
determined (Bao, 2008).

2.4. Number of cultivable Fusarium

The number of cultivable Fusarium was determined using a 
Fusarium-selective medium described in our previous research (Zhu 
et  al., 2022). Five grams of soil collected at the end of anaerobic 
treatment and crop cultivation stages was re-suspended in 45 ml 
0.85% NaCl and shaken continuously for 30 min in a sterile 

Erlenmeyer flask. Three duplicates of each sample were plated onto 
Fusarium-selective media after serial dilution with sterile saline. 
Streptomycin sulfate (0.75 μg ml−1) was added to each medium to 
inhibit bacterial growth. Plates were incubated for 4 days at 30°C, and 
colony forming units (CFU) per gram of dry soil were then counted.

2.5. DNA extraction and PCR amplification

Genomic DNA was isolated from 0.5 g soil taken after anaerobic 
treatment and after two planting seasons using a Power Soil™ DNA 
Isolation Kit (MO BIO Laboratories, Carlsbad, CA, United States). 
Isolated DNA was determined using a UV–Vis spectrophotometer 
from NanoDrop Technologies (Wilmington, DE, United States), and 
then used as a template for further sequencing. For bacteria, primer 
sets 338F (5’-ACTCCTACGGGAGGCAGCA-3′) and 806R 
(5’-GGACTACHVGGGTWTCTAAT-3′) were used to amplify the 
V3–V4 hypervariable regions (Zhang et al., 2017). For fungi, the ITS1 
region was amplified using primers ITS5F (5’-GGAAGTAAAAGTCG 
TAACAAGG-3′) and ITS1R (5’-GCTGCGTTCTTCATCGATGC-3′) 
(Hou et al., 2021). PCR reaction mixture and thermal profiles were 
performed according to Zhu et al. (2022). PCR product amplifications 
were followed by purification, quantification, and mixing to achieve 
equal concentrations.

2.6. Sequencing and data processing

The mixtures were sequenced in a paired end format using the 
Illumina MiSeq platform by Personalbio Technology Co. Ltd. 
(Shanghai, China). Sequencing data analyzes were performed using 
the Quantitative Insights into Microbial Ecology 2 (QIIME2, version 
2019.4) platform (Bolyen et al., 2019). Firstly, fastq sequence files with 
paired-end primers were trimmed using the “qiime cutadapt trim-
paired” command. After that, reads were de-noised in DADA2 
(Callahan et al., 2016) pipeline using the “qiime dada2 denoise-paired” 
command, then each amplicon sequence variant (ASV) was 
represented by a sequence and a feature table was created. Using the 
“qiime feature-table summarize” command, a summary report listing 
the sequences associated with each sample was generated following 
the DADA2 denoising step. To generate a rarefied feature table, all 
samples were rarefied into the same depth using the “qiime 

TABLE 1 Carbon source properties and treatment abbreviations.

Sample 
ID

Description

Carbon source propertya

Org TOC 
(g kg−1)

Org TN 
(g kg−1)

Org C/N
Org EOC 
(g kg−1)

Diameter 
(cm)

Ck No amended carbon source, flooded, and covered / / / / /

Et Soil flooded with 1% ethanol, and covered 406.00 0.00 / 303.30 /

Gl Soil amended with glucose, flooded, and covered 392.35 0.00 / 243.87 /

Al Soil amended with alfalfa, flooded, and covered 368.57 22.74 16.21 89.70 <0.2

Wh Soil amended with wheat bran, flooded, and covered 363.93 11.05 32.93 99.23 <0.2

Ri Soil amended with rice bran, flooded, and covered 351.02 4.15 84.66 43.17 <0.2

Su Soil amended with sugarcane residue, flooded, and covered 389.85 3.28 118.85 74.56 <0.2

aOrg TOC, Org TN, Org C/N, and Org EOC represent total organic carbon, total nitrogen, C/N, and easily oxidized carbon of carbon source, respectively.
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FIGURE 1

Chemical properties in different soils after RSD treatment and two planting seasons. EC: electric conductivity, TOC: exchangeable calcium, TN: total 
nitrogen, C/N: carbon to nitrogen ratio, AK: available nitrogen, AP: available phosphate, AK: available potassium. The significance of different groups 
was determined by the p values (ANOVA, Tukey’s HSD). *p < 0.05; **p < 0.01; ***p < 0.001.

feature-table rarefy” command. Alpha and beta diversity were 
calculated from the rarefied feature table using the “qiime diversity 
alpha” and “qiime diversity beta” commands. Taxonomy was assigned 
to ASVs using the “qiime feature-classifier classify-sklearn” command 
against the SILVA release 132 (Quast et al., 2012) and UNITE release 
8.0 (Kõljalg et al., 2013) databases. The sequencing data of 16 s rRNA 
and ITS rRNA genes are available at the NCBI Sequence Read Archive 
(SRA) database under accession number PRJNA882600 and 
PRJNA882628, respectively.

2.7. Data analysis

Significant differences in soil chemical properties, microbial 
characteristics and crop performance indices among treatments were 
analyzed with one-way ANOVA using Turkey’s HSD in SPSS 20.0 (SPSS 
Inc., Chicago, IL, United States). Analysis of similarities (ANOSIM) 
among treatments and non-parametric multivariate analysis of variance 
(PERMANOVA) were performed to assess statistical significance using 
the vegan package in R (Oksanen et  al., 2016). Variation partition 
analysis (VPA) was performed with the vegan package in R using the 
varpart function to determine how carbon source, crop cultivation, and 
soil chemical property affected bacterial and fungal community 
structures. Also, Mantel tests were conducted using the mantel function 
in R to assess Pearson’s rank correlations between bacterial and fungal 
communities and environmental dissimilarity matrices. Moreover, 
we explored the relationships between bacterial and fungal community 
compositions and impact factors through redundancy analysis (RDA) 
using the vegan package in R. Pearson correlation coefficients among 
carbon source property, soil chemical property, microbe and crop yield 
were conducted in R.

3. Results

3.1. Soil chemical properties

Chemical properties in different soils after RSD treatment and two 
planting seasons are shown in Supplementary Table S1. Soil chemical 
properties varied significantly in RSD-treated soils amended with 
different carbon sources. After RSD treatment, soil TOC, TN, AN, and 
AK were significantly (p < 0.05) higher in Al than in the other soils. In 
addition, pH in complex-carbon soils (Al, Wh, Ri and Su) was 
significantly (p < 0.05) higher than in simple-carbon soils (Et and Gl), 
while EC showed the opposite trend. After crop cultivation, most of 
the chemical indices in different treatments also varied significantly 
(p < 0.05), except soil C/N and AP in the first season and soil AN and 
AP in the second season. Noticeably, TOC in the complex-carbon soils 
was significantly (p < 0.05) higher than in the simple-carbon soils after 
two planting seasons. Overall, soil pH significantly (p < 0.001) 
increased, and soil TN, AP, and AK significantly (p < 0.05 or p < 0.01) 
decreased at the end of the first season compared with those at the end 
of RSD treatment (Figure 1). After two seasons, soil TOC, AN, AP, and 
AK significantly (p < 0.05) decreased, while soil pH, TN, and C/N 
returned to initial levels, compared with those detected at the end of 
RSD treatment.

3.2. Soil microbial community 
characteristics

3.2.1. MiSeq sequencing data
Totally, 5,322,386 and 3,560,817 high-quality sequences of the 16S 

and ITS genes, respectively, were obtained from the 63 soils (7 
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treatments × 3 biological replicates × 3 sampling time). After rarefying, 
323,817 bacterial and 6,804 fungal ASVs were obtained 
(Supplementary Table S2). All samples had coverage levels above 
95.0%, indicating sufficient sequencing depth. After the first season, 
Shannon and Chao1 indices of both bacteria and fungi significantly 
(p < 0.05) decreased compared with those at the end of RSD treatment 
(Figures 2A,B). After the second season, the bacterial Chao1 index 
continued to decrease markedly (p  < 0.001), while Shannon and 
Chao1 indices of fungi recovered somewhat, although still significantly 
(p  < 0.05) lower than at the end of RSD treatment. Noticeably, 
Shannon and Chao1 indices of both bacteria and fungi in Et were 
lowest after the first and second seasons (Supplementary Table S3).

Principal coordinate analysis (PCoA) showed that bacterial and 
fungal communities were significantly different among soils collected 
after RSD treatment and two planting seasons, which was confirmed 
by two complementary nonparametric multivariate statistical tests 
(p  < 0.01 by Adonis and ANOSIM; Figures  2C,D; 
Supplementary Table S4). Simultaneously, the impact of different 
carbon sources on soil microbial community dissimilarity after RSD 
treatment and the subsequent cultivation process were also analyzed. 
After RSD treatment, soil bacterial and fungal communities in simple-
carbon soils were significantly different (p < 0.01) to those in complex-
carbon soils. After crop cultivation, soil bacterial and fungal 
communities between simple-and complex-carbon soils differed 
significantly along PC axes as confirmed by Adonis and ANOSIM 
results (p < 0.01 for bacteria and fungi in both first and second season).

3.2.2. Soil microbial community compositions
For the bacterial ASVs, Proteobacteria, Acidobacteria, Chloroflexi, 

Firmicutes, and Bacteroidetes were the five most abundant bacteria 
phyla, accounting for 76.19% ~ 85.67% of the total sequences 
(Figure  2E). Specifically, Proteobacteria and Firmicutes were two 
dominant bacterial phyla in soils after RSD treatment, while 
Acidobacteria replaced Firmicutes as the dominant bacterial community 
after crop cultivation. For fungi, 95.19% ~ 99.94% of the total sequences 
were classified as members of the Ascomycota, Rozellomycota, 
Basidiomycota, Mortierellomycota, and Glomeromycota (Figure  2F). 
Ascomycota was the dominant fungal phylum across all samples, and 
accounted for 56.74 to 98.55% of all fungal sequences. Remarkably, 
Rozellomycota and Basidiomycota dominated in Et and Su at the first 
season, respectively. Dominant relative abundance (RA) of both 
bacterial and fungal genera in the different soils also varied remarkably 
after RSD treatment and crop cultivation (Supplementary Figure S1). 
For example, RA of bacterial genus Azotobacter and fungal genus 
UC_Sordariaceae dominated in Et at the first and second seasons, while 
RA of fungal genus Zopfiella dominated in Ri and Su.

3.3. Factors influencing soil bacterial and 
fungal communities

Variation partitioning analysis (VPA) revealed that carbon source 
property, crop cultivation, and soil chemical property explained 66.2 

A B

C

D

E

F

FIGURE 2

(A,B) Alpha diversity indices of bacterial and fungal communities in different soils collected after RSD treatment and two planting seasons. The 
significance of different groups was determined by the p values (ANOVA, Tukey’s HSD). *p < 0.05; **p < 0.01; ***p < 0.001. (C,D) Principal coordinates 
analyzes (PCoA) were conducted based on soil bacterial and fungal ASVs using Bray-Curtis distance. (E,F) Soil bacterial and fungal community 
compositions at phylum level in different soils collected after RSD treatment and two planting seasons. Treatment abbreviations are defined in Table 1.
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C
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FIGURE 3

(A,B) Variance partitioning analysis (VPA) of the effects of carbon source property, crop cultivation, soil chemical property, and their interactions on soil 
bacterial and fungal communities, (C) Pearson’s correlation coefficients of bacterial and fungal ASVs and impact factors based on Mantel tests, and 
(D,E) Redundancy analysis (RDA) of bacterial and fungal ASVs and impact factors. Impact factor abbreviations are defined in Table 1 and Figure 1.

and 39.0% of the observed variation in the bacterial and fungal 
communities, respectively (Figures 3A,B). Soil chemical property was 
the primary dominant influence on bacterial community (28.8% of 
the variation, p = 0.001 based on the Mantel test, 
Supplementary Table S5), while carbon source property and crop 
cultivation also significantly influenced it (24.9 and 20.9% of the 
variation, p = 0.045 and p = 0.001, respectively). However, fungal 
community was greatly influenced by carbon source property and 
crop cultivation (21.0 and 11.0% of the variation, p = 0.001 and 
p = 0.001, respectively), while soil chemical property exhibited no 
significant impacts on it (10.0% of the variation, p = 0.097).

To explore the major impacts on bacterial and fungal community 
assemblages, we also conducted Mantel tests comparing the bacterial 
and fungal community compositions (based on Bray-Curtis distance 
matrices) with 13 variables (based on Euclidean distance matrices). As 
shown in Figure 3C and Supplementary Table S6, Org C/N (r = 0.250, 
p = 0.006), crop cultivation (r = 0.721, p = 0.001), soil AP (r = 0.555, 
p = 0.001), and soil AK (r = 0.497, p = 0.001) were the most important 
factors shaping bacterial community composition, while Org C/N 
(r = 0.401, p = 0.002), Org EOC (r = 0.424, p = 0.001), and crop 
cultivation (r = 0.405, p = 0.001) were the most important factors 
shaping fungal community composition. When subject to RDA 
models, the 13 detected factors explained ~65% of bacterial 

community variation and ~ 52% of fungal community variation 
(Figures 3D,E). Specifically, soil bacterial community variation was 
mainly driven by Org C/N, Org EOC, crop cultivation, soil AP, and 
soil AK, while Org TOC, Org C/N, Org EOC, crop cultivation, and 
soil pH were significant drivers of fungal community changes (p < 0.05; 
Supplementary Table S7).

3.4. Fusarium reproduction and crop 
performance

The changes of Fusarium abundance and crop yield in different 
treatments during RSD treatment and two planting seasons were also 
investigated. During the 15-day RSD treatment period, the number of 
cultivable Fusarium in most soils (except for Ck) decreased to 0 at the 
5th day (Supplementary Figure S2). After RSD treatment, no cultivable 
Fusarium was detected in any of the soils, while RA of Fusarium was 
highest in Ri and negatively correlated with Org EOC (Figure 4A; 
Supplementary Table S8). In addition, the number of cultivable 
Fusarium after the first season was highest in Al and after the second 
season, highest in Et, while RA of Fusarium showed the same trend 
(Figures 4B,C). As for crop yield, it was higher in the Et, Gl, and Al 
after the first season, and it was highest in Al and lower in Et and Su 
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after the second season (Figures 4D,E). The crop yield of complex-
carbon soils after the first season was positively affected by Org TN 
and negatively affected by Org C/N (Supplementary Table S9).

After two consecutive seasons of planting, relationships among 
microbe, crop yield, carbon source property, and soil chemical 
property were further explored (Figure 5). The results showed that the 
number of cultivable Fusarium was positively and significantly 
correlated with RA of Fusarium. Moreover, the number of cultivable 
Fusarium was positively correlated with Org EOC, and negatively 
correlated with soil TOC, Fungal Chao1, Fungal PC1, the bacterial 
genera UC_Burkholderiaceae and UC_Xanthobacteraceae, and the 
fungal genus Zopfiella. Overall, crop yield was negatively affected by 
soil TN and positively affected by soil C/N, while no significant 
relationship was found between crop yield and carbon source property.

4. Discussion

4.1. The effects of carbon source property, 
crop cultivation, and chemical property on 
soil bacterial and fungal communities

Numerous studies have reported that soil microbiomes are 
remarkably altered by RSD (Zhou et al., 2019; Lee et al., 2020; Poret-
Peterson et  al., 2020). However, knowledge of soil microbial 
community assemblages in RSD-treated soils amended with different 
carbon sources after continuous crop cultivation is still limited. In this 
study, VPA showed that bacterial community was significantly affected 
by carbon source, crop cultivation, and soil chemical property. 
Nevertheless, fungal community structure was only significantly 
related to carbon source and crop cultivation. Soil chemical property, 

explaining 28.8% of bacterial community variation, played a very 
important role on bacterial community, while no significant influence 
was found on the fungal community. This is consistent with previous 
studies revealing that bacterial community assembly is more 
dependent on soil abiotic characteristics than fungal community 
assembly (Liu et al., 2019, 2022). In addition, we found soil nutrient 
indices, such as AP and AK, were the most important factors in 
describing soil bacterial community patterns. Besides, crop cultivation 
could also significantly affect bacterial and fungal community 
structures in the RSD-cropping system. This might be attributed to the 
crucial role of root exudates in regulating microbe colonization of the 
rhizosphere as well as activating native microbes (Wang et al., 2021).

More importantly, the reestablishment of bacterial and fungal 
communities, were significantly affected by carbon source property in 
the RSD-cropping system. The influence of carbon source property on 
soil microorganism assemblages may be attributed to two aspects: 
Firstly, carbon source has direct effects on soil microbial community 
structures. PCoA revealed that soil microbial communities between 
the complex-carbon and simple-carbon samples were significantly 
different after RSD treatment and crop cultivation, and the results of 
Mantel tests confirmed that Org C/N and Org EOC were significant 
factors affecting soil bacterial and fungal communities. It seems that 
microbial decomposition of different carbon sources produces 
different intermediate metabolites, thus shaping dissimilar microbial 
communities (Liu et  al., 2016). Secondly, different carbon source 
properties can significantly influence soil chemical properties, then 
indirectly affect soil microorganism assemblages (Li et  al., 2018; 
Schlatter et al., 2022). As demonstrated in Supplementary Figure S3, 
bacterial or fungal community structure in soil collected after RSD 
treatment, first season, and second season, respectively, was 
significantly correlated with soil EC, AK, and TOC, and these 

A B

E

C

D

FIGURE 4

(A–C) The number of cultivable Fusarium and relative abundance of Fusarium in soils collected after RSD treatment and two planting seasons. (D,E) 
Crop yield after the first and second seasons. Different letters indicate significant differences among the soils based on Tukey’s HSD (p < 0.05). Error bars 
indicate SDs. Treatment abbreviations are defined in Table 1.
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FIGURE 5

Relationships among microbe, crop yield, carbon source property, and soil chemical property after two planting seasons. Circle color and size 
represents Pearson correlation coefficients (r). *p < 0.05; **p < 0.01; ***p < 0.001. Only the top 10 bacterial and fungal genera are shown. Impact factor 
abbreviations are defined in Table 1 and Figure 1.

chemical indices were significantly affected by carbon source Org 
EOC and Org C/N. Overall, this study highlights the important roles 
of carbon source property, crop cultivation, and soil chemical property 
on soil microbial community re-structuring in the 
RSD-cropping system.

4.2. Fusarium changes in different soils 
after RSD treatment and crop cultivation

There is increasing evidence that RSD practice incorporated with 
organic substances often effectively reduces the pathogen population 
(Momma et al., 2013; Huang et al., 2015, 2016). In this study, RSD 
effectively killed cultivable Fusarium in all soils amended with 
different carbon sources. Nevertheless, RA of Fusarium was quite 
different, and it was negatively correlated with Org EOC. For instance, 
RA of Fusarium was lower in complex-carbon soils (Et and Gl), and 
higher in complex-carbon soils (Ri and Su). According to the findings 
of Liu et al. (2016) and Huang et al. (2016), carbon source with higher 

Org EOC could lead to more toxic organic acid production and, 
therefore, result in higher sterilization efficiency during the RSD 
process. In the present study, pH values in simple-carbon soils (Et and 
Gl) were lower than in complex-carbon soils (Al, Wh, Ri, and Su) 
during the 15-day RSD treatment (Supplementary Figure S4), possibly 
because the former produced more organic acids (Huang et al., 2016; 
Liu et al., 2016). Correspondingly, highly recalcitrant substrates do not 
yield a significant amount of anaerobic decomposition metabolites 
due to their slow decomposition rates (Shrestha et al., 2021).

In addition, previous studies have reported that soil-borne 
pathogens can be restored with plant cultivation (Zhao et al., 2017; 
Liu et  al., 2018). After two planting seasons, the number of 
cultivable Fusarium in most of the soils (Gl, Al, Ri, and Su) was still 
maintained at a lower level, while that in Et was the highest. 
Correlation analysis showed that the number of cultivable Fusarium 
was positively correlated with Org EOC, and negatively correlated 
with soil TOC (Dignam et al., 2018; Cao et al., 2022). This finding 
suggests that heuristically, the higher Org EOC of carbon source 
involved in RSD treatment, the more likely pathogen reproduction 
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occurs during the subsequent crop cultivation. According to 
previous research, complex-carbon is comprised of lignin, cellulose, 
and hemicellulose, and therefore much more difficult to decompose 
and utilize than simple-carbon, thereby exhibiting persistent 
inhibition of pathogen reproduction (Huang et  al., 2019b). 
Meanwhile, the number of cultivable Fusarium was also negatively 
correlated with Fungal Chao1 and Fungal PC1. As commonly 
accepted, species richness may promote antibiotic production as 
well as community-wide antagonistic interactions, which can help 
suppress pathogens (Saleem et al., 2019). Thus, the lowest level of 
fungal diversity and richness in Et after two consecutive seasons of 
planting, suggests possible mechanisms by which microbial 
diversity loss may directly affect pathogen selection and persistence 
(Flanagan et al., 2007). Although earlier studies confirmed the role 
of Org EOC in antifungal efficiency at the RSD treatment stage, our 
study found that carbon source with relatively lower Org EOC is 
more conducive to pathogen reproduction inhibition during the 
subsequent crop cultivation process. Furthermore, we demonstrated 
for the first time, the links between fungal community richness and 
pathogen reproduction, which further highlights the vital role of 
fungi in the RSD-cropping system amended with different 
carbon sources.

4.3. The impact of carbon source property 
on crop performance

It is well known that RSD can ameliorate barrier soil 
physiochemical properties (Di Gioia et al., 2017; Meng et al., 2022), 
however, crop performance after consecutive crop cultivation in 
RSD-treated soils incorporated with different carbon sources remains 
poorly understood. In this study, we found that crop yield of pepper 
plants was positively affected by Org TN and negatively affected by 
Org C/N among the complex-carbon soils (Al, Wh, Ri, and Su) after 
the first season. Similarly, Shrestha et al. (2021) also revealed that 
C/N of carbon source (Org C/N) amended in RSD exerts a strong 
influence on soil inorganic N and crop performance. After the first 
season, crop yield was highest in Al, and lower in Ri and Su. 
According to Spohn (2015) and Sinsabaugh et al. (2013), C/N of 
organic substrate above 20 results in microbial N limitations on 
decomposition and reduces soil inorganic N availability. Alfalfa, with 
the lowest Org C/N (16.21), could favor biological decomposition 
and improve microbial activity when amended in soil for RSD, then 
mineralize sufficient N to satisfy plant growth demands (Luo et al., 
2018; Mao et al., 2022). Correspondingly, the highest TN and AN 
content were found in Al after RSD treatment, with the highest crop 
yield after cultivation. On the contrary, soil TN and AN content were 
lower in Ri (Org C/N = 84.66) and Su (Org C/N = 118.85) after RSD 
treatment, and the crop yield of the first season in Ri and Su also 
showed lower amount than in other soils. However, no significant 
correlation was found between crop yield and carbon source property 
in the second season, indicating that the direct effect of carbon source 
property on crop yield only lasted for one season. The results of 
correlation analysis revealed that the crop yield at the second season 
was significant affected by soil TN and C/N, and it was highest in Al, 
and lower in Su. Moreover, lower crop yield was also found in Et after 
two consecutive seasons of planting. On one hand, soil TOC was 

lowest in Et with the highest Org EOC (303.30). As soil TOC is a key 
factor in nutrient storage and cycling, plenty of research have 
demonstrated the important role of organic C in maintaining crop 
yeild (Pan et al., 2009; Oldfield et al., 2019; Kopittke et al., 2022). 
Compared to the simple-carbon, complex-carbon with lower 
decomposition efficiency usually has a retention effect in soil (Liu 
et al., 2016), and the result in Figure 5 provides direct evidence that 
soil TOC was negatively correlated with Org C/N and Org EOC. On 
the other hand, soil TOC decrease adversely affected fungal 
community assemblages, such as the sharp decrease of Fungal 
Shannon and Chao1 indices, which further aggravated Fusarium 
reproduction (Saleem et al., 2019). Finally, the combination of these 
factors may lead to the lower crop yield in Et. Although no direct 
correlation was detected between carbon source property and crop 
yield after consecutive cropping, Org C/N and Org EOC of carbon 
source could regulate soil chemical and biological properties, then 
play important roles in crop performance.

5. Conclusion

A conceptual diagram (Figure 6) was constructed to show the 
influence of carbon source on soil microbial community 
reestablishment, soil chemical properties, pathogen reproduction, and 
crop performance in a RSD-cropping system. Bacterial community 
structure was significantly affected by soil chemical property, carbon 
source property, and crop cultivation, while fungal community 
structure was only influenced by carbon source property and crop 
cultivation. Carbon source properties, such as Org C/N and Org EOC, 
were the most import factors affecting the distribution of bacterial and 
fungal communities. After two planting seasons, Fusarium 
reproduction was positively correlated with Org EOC, and negatively 
correlated with soil TOC, fungal Chao1 and fungal PC1. Crop yield 
was highest in Al, and lower in Et and Su after consecutive cropping, 
and it was significantly correlated with soil TN and 
C/N. Comprehensively, Org C/N and Org EOC of carbon source 
incorporated in RSD, are very important for soil microbe 
reestablishment, pathogen reproduction, and crop performance. 
Future studies should focus on the effects of carbon source properties 
on soil functional core microbiome during RSD process, and link 
them to soil disease resistance and growth promotion.
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