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Human gut microbiota is associated with human health and disease, and is known

to have the second-largest genome in the human body. The microbiota genome

is important for their functions and metabolites; however, accurate genomic

access to the microbiota of the human gut is hindered due to the di�culty of

cultivating and the shortcomings of sequencing technology. Therefore, we applied

the stLFR library construction method to assemble the microbiota genomes

and demonstrated that assembly property outperformed standard metagenome

sequencing. Using the assembled genomes as references, SNP, INDEL, and HGT

gene analyses were performed. The results demonstrated significant di�erences

in the number of SNPs and INDELs among di�erent individuals. The individual

displayed a unique species variation spectrum, and the similarity of strains within

individuals decreased over time. In addition, the coverage depth analysis of

the stLFR method shows that a sequencing depth of 60X is su�cient for SNP

calling. HGT analysis revealed that the genes involved in replication, recombination

and repair, mobilome prophages, and transposons were the most transferred

genes among di�erent bacterial species in individuals. A preliminary framework

for human gut microbiome studies was established using the stLFR library

construction method.

KEYWORDS

metagenomic, stLFR, single nucleotide polymorphism (SNPs), horizontal gene transfer

(HGT), insertions/deletions (INDELs)

Introduction

The human gut microbiota is the most diverse among all human microbiomes (Yahara

et al., 2021), and it harbors hundreds of coexisting bacteria. This ecosystem plays a

vital role in human health through various physiological processes, such as fermenting

non-digestible dietary fiber, anaerobic metabolism of peptides and proteins, and immune

system modulation (Guarner and Malagelada, 2003; Rooks and Garrett, 2016; Cai et al.,

2022). Therefore, extensive research has been carried out on this subject, and the Human

Microbiome Project (HMP) was proposed to further our understanding of gut microbiota

(The Human Microbiome Project Consortium, 2012). The gut microbiota has been linked
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to several human diseases, such as diabetes, colon cancer, and

inflammatory bowel diseases (Guarner and Malagelada, 2003;

Mokkala et al., 2021; Tierney et al., 2021), and it can also

affect the human brain through the gut–brain axis (Fairbrass

et al., 2022). Despite extensive research, our current understanding

of this complex ecosystem based on existing technologies is

still inadequate.

Recently, the main technical approaches for studying gut

microbiota involve sequencing methods and metabolomics

(Arnold et al., 2016). Based on high-throughput and low-cost

next-generation sequencing (NGS), the 16S rRNA of bacteria

is commonly used for species diversity and abundance studies

(Cho and Blaser, 2012). However, most gut microbes are difficult

to cultivate, and the function and genome of the target strain

cannot be analyzed and understood. To obtain the genome of a

single gut microbe, metagenome sequencing, and corresponding

analytical methods have been applied to recover bacterial

genomes and characterize their functions (Hugenholtz and

Tyson, 2008). To improve the accuracy of the binning step in

the metagenome analysis process for obtaining high-quality

genome assemblies, many bioinformatics software tools have been

developed (Wu and Ye, 2011; Mande et al., 2012; Breitwieser

et al., 2019). Nevertheless, the accuracy of these methods is still

unsatisfactory due to technical problems such as short sequencing

read lengths.

Despite some progress, the assembly of gut microbial

genomes still has limitations. These limitations include the

absence of reference genomes, poor assembly quality in next-

generation sequencing (NGS), and difficulty in determining

the positional relationship between genes. In particular, the

use of metagenomic linkage groups (MLGs) as a replacement

for true linkage relationships further hinders the assembly

process. Additionally, poor genome assembly results in a lack

of strain information, which ignores intraspecific diversity

and makes it challenging to identify differences between

different strains within a species and individual strains (Niccum

et al., 2020). This difficulty in accurately analyzing differences

between strain genomes also makes it challenging to accurately

capture horizontal gene transfer (HGT) information, which

is necessary for understanding the gut microbial community

(Brito, 2021).

To address the aforementioned issues, third-generation

sequencing (TGS) technologies were introduced to generate

complete genomes from microbial communities (Chin et al., 2013;

Bertrand et al., 2019; Kolmogorov et al., 2020). However, the high

sequencing error rates in TGS hinder the distinction between

true variants and sequencing errors. Co-barcoding sequencing

library is an improved short-read sequencing technology with

long-range genomic information (Peters et al., 2012; Adey et al.,

2014; Bishara et al., 2018; Wang et al., 2019; Chen et al., 2020),

which provides an alternative way to accurately and quantitatively

analyze metagenomes. The total barcode number and the short-

read coverage of HMWs have a great impact on the effectiveness

of different co-barcoding libraries, such as BGI’s stLFR library,

10X Genomics’ linked-reads library, and Illumina’s contiguity

preserving transposase sequencing library, in downstream analysis.

The co-barcoding correlation between assembled draft sequences

and barcode distribution on the assembled graph has been

successfully applied to both single genome and metagenome

assembly (Chen et al., 2020; Roodgar et al., 2021; Kong et al., 2022;

Siranosian et al., 2022).

This study aimed to explore the potential of the stLFR

library method for application in metagenomics and compare

it with the standard metagenomic library method to evaluate

whether the stLFR library method can address issues of poor

assembly results in standard second-generation sequencing. To

achieve this, we applied the stLFR method to the metagenomic

assembly of a Chinese population fecal sample containing 21

individuals and constructed a reference microbial genome for

further analysis of the microbiome genome. We performed

SNP, INDEL, and HGT gene analyses to demonstrate the

effectiveness of the reference genome assembled using the

stLFR method.

Method

Sample collection

From November 2020 to August 2021, a total of 21 volunteers

aged 23–42 years were recruited for this study (Table 1). Their

stool samples were collected at intervals of 1–2 months by

BGI, using the fecal sample collection kit (MCK-01 KMHD,

Shenzhen, China), and were frozen at −80◦C. In addition, seven

stool samples collected in May 2018 and one stool sample

collected in August 2019 were also included in this study,

resulting in a total of 96 samples for sequencing analysis.

For library construction, standard library construction was used

for 46 samples, stLFR library construction was used for 37

samples, and the libraries of the other 13 samples were processed

using both methods (Figure 1A). Detailed information on the

dietary habits of all volunteers is collected and presented in

Supplementary Table 1. According to self-reports, two individuals

took antibiotics and 10 individuals took probiotics, while nine

individuals experienced symptoms of diarrhea or constipation

during sampling. All volunteers provided informed consent, and

the study was approved by the Ethics Committee of BGI (BGI-

IRB 20145).

DNA extraction, library construction, and
sequencing

For 59 samples collected at 1- to 2-month intervals of

eight individuals, genomics DNA from 200mg of stool samples

was extracted using a MagPure Stool DNA KF Kit B (Magen,

China), according to the manufacturer’s instructions. The DNA

was quantified with a Qubit Fluorometer using a Qubit dsDNA

BR Assay Kit (Invitrogen, United States), and its quality

was verified by running an aliquot on a 1% agarose gel. A

total of 1 µg of genomic DNA was randomly fragmented

by Covaris E220 (Covaris, Brighton, UK), and the resulting

fragments with an average size of 200–400 bp were selected

using magnetic beads. The selected fragments underwent end-

repaired, 3’ A-tailed, adapter addition, PCR amplification, and

magnetic bead purification. The double-stranded PCR products
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FIGURE 1

The composition and diversity analysis of gut microbiome in seven individuals. (A) Sampling collection of 96 samples from 21 individuals. The red

circles represent samples of the stLFR library construction and the blue triangles for standard library construction. (B) Gut microbial composition.

(Upper panel) the relative abundance of gut microbiome at the genus level of individuals over time; (Lower panel) alpha diversity of individuals over

time. (C, D) The results of alpha diversity and beta diversity, and the Kruskal–Wallis test was used to determine significance. (E) Gut microbial

composition was determined based on the Bray–Curtis distance, and the Wilcoxon rank-sum test was used to determine significance. (F) PCoA

clustering analysis based on the Bray–Curtis distance matrix at the species level.

were denatured by heating and circularized by splint oligo

sequence. The single-stranded circular DNA (ssCir DNA) was

formatted as the final library and sequenced on the MGISEQ-

2000 platform (BGI, Shenzhen, China) with paired-end reads of

150 bp.

We selected 50 samples for stLFR library construction,

which were obtained from 19 individuals. Details of stLFR

library construction can be found in Wang et al. (2019).

The qualified libraries were sequenced on the DNBSEQ-

T1 platform (BGI, Shenzhen, China) using paired-end

reads of either 100 bp (7 samples) or 150 bp (43 samples;

Supplementary Table 2).

Data quality control and microbiota
diversity analysis from standard library
construction

The raw reads from 59 samples were filtered using SOAPnuke

v1.5.6 (Chen et al., 2018) with the following parameters: “-n 0.01 -q

0.4 -l 20 -d -Q 2 -G.” This step removed reads with low quality (Q20

<40%) and PCR duplicates and ambiguous base (N). Subsequently,

the filtered reads were aligned to the human reference genome

(GRCh38) using bowtie2 v2.3.4.3 (Langmead and Salzberg, 2012)

to discard host DNA. As a result, a total of 960.72 Gb of data were

obtained, with a data size per sample of 15.77 ± 3.62 Gb (mean
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± S.D.). The average contamination rate of host DNA was found

to be 0.32% (Supplementary Table 3). The species classification

and relative abundance of each species in each sample were

determined using MetaPhlAn3 v3.0.7 (Truong et al., 2017) based

on quality-controlled reads. The within-sample species richness

was estimated using the alpha diversity (Shannon index), while the

dissimilarity between samples was evaluated using the beta diversity

(Bray–Curtis) at the species level. Additionally, permutational

multivariate analysis of variance (PERMANOVA) was performed

using the Bray–Curtis distance, with 9,999 permutations.

Assembly of sequencing data from the
standard library

To investigate the impact of different library construction

methods on assembly performance, a library comprising 13

samples was constructed using both the stLFR method and the

standard method. For the standard method, high-quality reads

were assembled using the de novo assembler MAGAHIT v1.2.9 (Li

et al., 2015), with the parameters “–k-min 71 –k-max 81 –k-step

10,” and then binned using MetaBat 2 v2.15 (Kang et al., 2019).

To evaluate the quality of the assembled genomes, CheckM v1.1.2

(Parks et al., 2015) software was used to classify them according

to their completeness and contamination. Genomes were classified

as low quality if completeness was ≤50% or contamination was

≥5%, medium quality if completeness was between 50 and 90%

and contamination was <5%, and high quality if completeness was

>90% and contamination was <5%.

Assembly of sequencing data from the
stLFR library and construction of reference
genome catalog

The public script “stLFR_barcode_split” (Wang et al., 2019)

was used to identify and remove barcode sequences in paired-

end reads. To ensure the identification of reads from the same

DNA fragment during assembly, barcode sequences in the read

IDs of FASTQ files were replaced with numerical symbols using

the same script. The raw data without barcode sequences were

filtered using SOAPfilter v2.2 (Kar et al., 1996) with the following

parameters: “-y -p -M 2 -f−1 -Q 10,” to discard low-quality,

adaptor, and duplicated reads. A total of 3,649.41 Gb of high-

quality data were obtained from 50 samples for further analysis,

with an average sample size of 72.99 ± 17.68 Gb (mean ± S.D.).

The high-quality reads were assembled using MetaTrass (Qi et al.,

2022), developed for metagenomic stLFR library sequencing data,

and the assembled genomes were quantified using CheckM v1.1.2

(Parks et al., 2015). To eliminate redundant high-quality genomes,

dRep v3.2.0 (Olm et al., 2017) was employed to construct a catalog

of reference genomes, with parameters set to “-pa 0.9 -sa 0.95 -

nc 0.6 -cm larger.” Ribosomal RNAs (rRNAs) of the reference

genomes were predicted using Barrnap v0.9 (default parameters) to

demonstrate the precision of the assembled genomes. In addition,

GTDB-Tk v2.1.1 (Parks et al., 2018; Chaumeil et al., 2020) was

utilized to perform taxonomic annotation of the reference genomes

based on the released annotation library release207_v2. Given

the missing 16S rRNA in some genomes, a phylogenetic tree of

the reference genomes was constructed using protein sequence

alignments obtained by GTDB-Tk by IQ-TREE v1.6.6 (Nguyen

et al., 2015), with parameters set to “-m LG+F+R10,” and visualized

using Interactive Tree of Life (iTOL) v6 (Letunic and Bork,

2019; https://itol.embl.de/).

Analysis of SNP of gut microbiota in
individuals

The quality control sequencing reads of 96 samples were

aligned to the constructed reference genomes using BWA v0.7.17,

with default parameters. The coverage depth and breadth of each

sample for each reference genome were calculated by an in-house

script. Reference genomes that had at least 40% coverage in at

least one sample and a cumulative depth of coverage of more

than 10X for all samples were selected as references for SNP

calling. A total of 302 species met these criteria. SNPs and INDELs

were called using GATK v4.1.2.0 with the UnifiedGenotyper

model. Only SNPs and INDELs that were present in at least

two samples and were supported by at least four reads were

retained. The obtained VCF file was used to calculate a pairwise

p-distance matrix between samples using VCF2Dis v1.47 (https://

github.com/BGI-shenzhen/VCF2Dis). A neighbor-joining tree was

constructed using fneighbor (http://emboss.toulouse.inra.fr/cgi-

bin/emboss/fneighbor?_pref_hide_optional=0), and the distance

tree of samples was visualized using iTOL (Letunic and Bork,

2019).

The estimation for π and FST values of
nucleotide diversity

The π value of nucleotide diversity is a quantification

indicator of genetic variation and can measure the

degree of polymorphism in a population (Schloissnig

et al., 2013). Equation 1 defines genetic variation as

the average difference between corresponding regions of

genomic DNA sampled randomly from individuals within

a population.

The mean value of the difference between the same

regions of genomic DNA sampled randomly from a sample

(population) is defined by Equation 1 to estimate π in a

metagenomic sample:

π (S,G) =
1

|G|

|G|∑

i=1

∑

B1ǫ{ACTG}

∑

B2ǫ{ACTG}\B1

xi,B1
ci

xi,B2
ci − 1

(1)

where S is the sample, G is the genome of interest, |G| is

the size of the genome, xi,Bj is the number of nucleotides Bj
seen at position i, and ci is the coverage at position i in

the genome.
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From the above definition, π between two samples is naturally

defined by Equation 2:

π (S1, S2,G) =
1

|G|

|G|∑

i=1

∑

B1ǫ{ACTG}

∑

B2ǫ{ACTG}\B1

xi,B1 ,S1
ci,S1

xi,B2 ,S2
ci,S2

(2)

where xi,Bj,Sk is the number of nucleotides Bj seen at position i in

the sample Sk and ci,Sk is the coverage at position i in the sample Sk
in the genome.

The fixation index (FST) is an indicator that measures the

differentiation of the population, and the greater the FST, the

greater the group difference (Schloissnig et al., 2013). FST is

standardly defined by Equation 3:

FST (S1, S2,G) = 1−
πwithin

πbetween
= 1−

(π (S1,G) + π (S2,G))/2

π (S1, S2,G)
(3)

where FST is commonly distributed at the interval [0,1], with

close to zero indicating highly similar samples, and values around

1 indicating strong differentiation. Theoretically, negative values

may occur and are often either interpreted as out-breeding or

rounded to 0.

Detection of horizontal gene transfer (HGT)

In this study, the detection of HGT of genomes from the

stLFR library was performed by comparing the sample genome

to reference genomes. First, quality control reads from the sample

were aligned to reference genomes, and those with more than 40%

coverage were selected for further HGT analysis. Two approaches

were combined for HGT detection as follows: the best-match

approach and phylogenetic incongruency using the metagenome

HGT detection software MetaCHIP v1.10.10 (Song et al., 2019),

with parameters “-r g -al 500 -cov 100.” The genetic distance

between bacterial species whereHGT occurred was calculated using

FastANI v1.32 (Jain et al., 2018). The frequency of HGT in each

individual was assessed by determining the proportion of HGT

occurring per 100 pairs of species (Smillie et al., 2011).

Annotating transferred genes

The transferred genes were initially annotated using eggNOG-

mapperv2.1.2 (Cantalapiedra et al., 2021) and InterProScan v5.39-

77 (Quevillon et al., 2005). To identify antibiotic resistance,

virulence genes, and COG categories, Diamond v0.9.10.111 with

an e-value of 1e-5 threshold and a minimum coverage of 40% was

employed with the Comprehensive Antibiotic Resistance Database

(v4.0; Alcock et al., 2020), virulence factor database (Liu et al.,

2019), and COG database (v2014; Galperin et al., 2015).

The classification of antibiotic resistance genes and mobile

elements was determined based on the resistance mechanism

and relevant keywords. The mobile element classification was

performed using keywords described in a previous study (Smillie

et al., 2011):

Transposons: transpos∗, TN, insertion element, is element,

IS element;

Phage: phage, tail protein, tegument, capsid;

Plasmid: relaxase, conjugal transfer, Trb, relaxosome, type IV

secretion, conjugation, Tra[A-Z], Mob[A-Z], Vir[A-Z][0-9], t4ss,

T4SS, resolvase, antirestriction;

Other MGE: recombinase, integrase.

Results

Di�erent gut microbial compositions in
individuals

We selected 47 samples from seven individuals who underwent

the standard library construction method to analyze the dynamic

diversity of gut microbial composition over time. The results

showed that the microbial composition of an individual remained

similar over time, but there were significant differences across

individuals (Figure 1B). Specifically, Bacteroides was more

abundant in individuals P1, P3, P6, and P7, while Prevotella was

higher in P2 and P4 individuals. In the case of individual P5,

Bacteroides, Faecalibacterium, and Alistipes were the dominant

species (Figure 1B). These differences in microbial composition

between individuals may contribute to the dominance of

Bacteroides and Prevotella as enterotypes. The species richness

at different times within an individual was fluctuating in some

persons (Figure 1B) and was significantly different between

individuals (Kruskal–Wallis test, p = 5.1e-05, Figure 1C). Beta

diversity analysis showed that the microbial composition was more

similar within an individual than between individuals (refer to

Figures 1D–F), consistent with the conclusions reported previously

(Xie et al., 2016).

Comparison of assembly results between
stLFR and standard libraries

To evaluate the impact of two library construction methods on

metagenome assembly, we selected the assembly results of 13 paired

samples that were processed using both the standard method and

stLFR method simultaneously and performed a paired Wilcoxon

rank-sum test analysis on them. A total of 1,217 and 1,620

metagenome-assembled genomes (MAGs; length > 0.2Mb) were

produced by the standard method and stLFR method, respectively.

The vast majority of standard and stLFR MAGs were at least of

low quality (Supplementary Figures 1A, B). By comparing assembly

properties, we found that the median of genome size (p = 2.4e-

04), N50 (p = 2.4e-04), contig maximum length (p = 4.9e-04),

and number of MAGs (p = 3.3e-03) significantly increased with

the stLFR method (Figure 2A and Supplementary Tables 2, 3).

Although the stFLR method results in a high contamination rate

(Supplementary Figure 1B), the proportion of high-quality MAGs

generated with stLFR (19.01 ± 6.48%) was significantly higher

than that with the standard method (6.21 ± 3.99%; p = 4.9e-04).

Additionally, the mapping rate of MAGs increased from 69.91 ±

7.38% using the standard method to 82.89± 8.43% using the stLFR

method (p = 1.2e-03, Figure 2A and Supplementary Tables 2, 3).

These results suggest that the stLFR method is a superior approach

for metagenome assembly compared to the standard method.
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Construction of reference genomes using
assembly genomes generated by the stLFR
library

Previously, the superiority of the stLFR method in the

metagenomic assembly has been demonstrated, which is consistent

with our results. Therefore, we utilized the stLFR method

to process 50 samples and constructed a reference genome

catalog comprising 6,844 MAGs (length ≥ 0.2M), including

1,388 high-quality, 911 medium-quality, and 4,545 low-quality

MAGs (Supplementary Figure 1C). Subsequently, we performed

de-redundancy on the high-quality MAGs, using dRep to obtain

318 non-redundant MAGs ranging from 1,153,651 to 6,730,161

bp in size (Figure 2B and Supplementary Table 4). We analyzed

the read mapping rates to 318 MAGs of 13 samples with both

the standard and stLFR methods. The read mapping rate for

the 13 standard library samples was 82.89 ± 8.43%, while that

for the 50 stLFR library samples was 89.37 ± 4.51%, showing

an improvement in comparison to the read mapping rates

of their respective self-assembled results (Figures 1A, 2C, and

Supplementary Tables 2, 3). The ANI index of 73 high-quality

MAGs obtained by standard methods, as well as the low- and

medium-quality MAGs from the stLFR method, concerning de-

redundant MAGs, suggested that the 318 MAGs represented most

of the MAGs obtained from the standard and stLFR methods

(Figure 2D and Supplementary Figure 1D). The dominant phyla of

the 318MAGswere Firmicutes_A (60.70%), Bacteroidota (13.21%),

Firmicutes (9.75%), Proteobacteria (7.23%), and Actinobacteriota

(4.72%; Figure 2E and Supplementary Table 4). Furthermore, a

phylogenetic tree of 120 proteins from the samples extracted by

GTDB-TK was constructed by iqtree software, and we found 120

types of proteins that covered multiple different phyla at the

phylum level (Figure 2F). In addition, the 5S, 16S, and 23S rRNA

of 235 MAGs (73.90%) were identified successfully. Among 318

MAGs, there are only 12 MAGs, each of which was only detected

in one sample and the rest were present in at least two samples,

and more than half were identified in samples above 10 (Figure 2F).

These results indicate that the 318 MAGs generated from stLFR

libraries were relatively complete genomes, covering a large portion

of the gut microbiome in the samples. Overall, the reference

genomes were successfully constructed based on the stLFR method

and were proposed for use as a reference for intestinal flora analysis.

Nucleotide diversity quantification analysis
of the gut microbiome

To illustrate the ability of assembled reference genomes

by the stLFR method for intestinal flora analysis and know

about nucleotide diversity of the gut microbiome, SNP and

INDEL analyses were performed for investigating the nucleotide

diversity of strain from gut microbiome within and between

individuals based on 318 MAGs. According to the filter criteria,

302 species were selected as reference, and 11,066,694 SNPs

and 473,831 INDELs were detected in 290 species and 282

species, respectively, from 96 samples (Supplementary Figure 2

and Supplementary Table 4). The distribution of SNPs per species

ranged from 1 to 180,429, while INDELs ranged from 1

to 8,623 (Supplementary Figure 2 and Supplementary Table 4).

Further analysis revealed that some species within Firmicutes_A

and Bacteroidota had a particularly high frequency of SNPs,

while other phyla had fewer SNPs (Supplementary Figure 2).

Most species exhibited more than one SNP per 1,000 bases,

with an increase in SNP number as coverage depth increased

(Supplementary Figure 2). Then, the index π was used for the

qualitative analysis of the polymorphism of the gut microbiota, and

the distribution trend of nucleotide diversity of different species (π)

demonstrated that the higher the nucleotide diversity of a species,

the greater the diversity of the species population (Figure 3). As

the coverage depth of samples increases, the number of SNPs

also increased, with stability observed at a coverage depth of 60X

(Figure 3). This finding suggests that a coverage depth of 60X is

sufficient for the stLFR method.

Comparison of polymorphisms across
di�erent individuals

After comparing the SNP difference at the species level, we

analyzed the variation in SNPs and INDELs within different

individuals. The number of SNPs and INDELs among different

individuals was significantly different, and the P5 individual has

the highest diversity with the largest number of SNPs and INDELs

(Supplementary Figure 3). The SNP distance tree showed that

bacterial strains from the same individual were more similar

(Figure 4A). The population diversity index Fst also showed that

the diversity of strains within individuals was lower (Figure 4B),

consistent with the results of individual community structure

(Figure 1E).

To investigate the mutation patterns that contribute to causing

species variation and similarity, we selected three different species

for further analysis. We found that there were distinct mutation

patterns in different individuals of each species (Figure 4C). We

also examined the influence of time on species diversity within

individuals. As depicted in Figure 4D, the range of changes in

species diversity was not substantial within a 10-month period.

However, after more than 24 months, there was a significant

change in species diversity within individuals (p < 0.001). The

similarity of strains within individuals decreased over time, and

after accumulating to a certain extent, it led to significant changes

in species diversity.

The analysis of HGTs

Horizontal gene transfer (HGT) plays an important role in

the human gut microbial ecosystem and is an important way of

resistance gene transfer. The stLFR method has an advantage for

metagenomic assembly and also facilitates the identification of

HGT. Based on the reference assembled genome, we conducted

an HGT analysis of 50 samples precessed by the stLFR method,

resulting in a total of 7,338 HGTs involving 3,842 unique genes

(335 species; see Supplementary Table 5). According to the ANI
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FIGURE 2

Comparison of assembly results of the stLFR and standard methods and construction of reference genomes catalog. (A) Assembly assessment

metrics for samples from 13 individuals were processed using both the stLFR and the standard methods, respectively. Wilcoxon rank-sum test was

used to determine significance. (B) Completeness and contamination scores for each of the 318 MAGs with high quality. (C) The mapping rate to 318

MAGs for samples from 13 individuals was processed using both the stLFR and standard methods, respectively. Wilcoxon rank-sum test was used to

determine significance. (D) ANI between 318 MAGs and high-quality MAGs obtained from the standard method. (E) Taxonomy composition of the

318 MAGs at phylum, class, order, family, and genus levels. (F) Phylogenetic tree of the 318 reference genomes. The yellow bars in the innermost

layer represent the prevalence of the genome among the samples (coverage breadth >40%). The green, dark green, and blue bars represent the

number of 5S, 16S, and 23S rRNAs predicted in the reference genomes, respectively.

index, it appeared that horizontal gene transfer (HGT) did

not occur within species (ANI > 97%). Instead, HGTs mainly

occurred at levels above the genus (ANI < 80%) and were

concentrated between 75 and 76% (Figure 5A). Furthermore,

we found that 6,308 out of the 7,338 HGTs detected had a

similarity identity of over 99% (Figure 5B), indicating that the

majority of the HGT events in gut microbiota were recent transfer

events. The families with the most frequent occurrence of HGT

were Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, and

Oscillospiraceae (Figure 5C). We found that the three functions

that contain the most HGTs are replication, recombination,

and repair; mobilome prophages; transposons and transcription,
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FIGURE 3

Genome variation of 290 MAGs in 96 samples from 21 individuals. In total, 290 MAGs with coverage breadth of ≥ 40% and cumulative coverage

depth of ≥ 10X were shown in the figure. (Upper panel) the gray point indicated the coverage depth of the sample, the blue points indicated the

cumulative coverage depth, and the red points represented the prevalence of species; (Middle panel) a box plot of strains diversity of samples;

(Lower panel) SNPs frequency of strains. The light background represents 10–30X, 30–60X, 60–100X, and >100X coverage depth from left to right.
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FIGURE 4

Analysis of genome variation intra- and inter-individuals. (A) Construction of distance tree based on SNPs p-distance between samples. The same

color indicated samples from the same individual. (B) The variability of strains in intra-individuals was less than that in inter-individuals. (C)

Polymorphism patterns of three species in individuals. (Upper panel) genome-wide patterns of SNPs of three species in individuals; (Lower panel)

SNPs frequency (box plot) and coverage depth (black point) of three species in individuals. (D) Diversity dynamic trace within strain in individual. A

total of seven individuals (P1–P7) and eight individuals (P1, P2, and P8–P13) were selected for Fst calculation within (1–10 months) and more than a

year (26 and 33 months), respectively. Wilcoxon rank-sum test and Kruskal–Wallis test were used to determine significance for two and more than

two groups, respectively.
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FIGURE 5

Detection and function of horizontal transferred genes. (A) Phylogenetic distance between two species occurred horizontal transferred gene. (B)

Gene identity between horizontal transferred genes. (C) Predicted gene flow of horizontal transferred gene from donor species to recipient species.

(D) COG category classification of horizontal transferred genes. (E) Main function classification of transcription and signal transduction mechanisms,

mobile elements, and resistance genes.

respectively (Figure 5D). For transcription and signal transduction

mechanism genes, OmpR family and transcriptional regulator

account for more than 50% (Figure 5E). For mobile elements genes,

there are mainly three types of plasmid (46.17%), phage (36.79%),

and transposons (16.50%), and we also found some antibiotic

resistance genes relating to antibiotic efflux (58.40%), antibiotic

target protection (17.65%), and antibiotic target alteration (18.07%;

Figure 5E).

From the perspective of the ANI index, it appears that

horizontal gene transfer (HGT) does not occur within species

(ANI > 97%). Instead, HGT mainly occurs at levels above

the genus (ANI < 80%) and is concentrated between 75 and

76% (Figure 5A). Despite this, the similarity of genes remains

very high (identity > 99%; Figure 5B), suggesting that most

HGTs are recent transfer events in the gut microbiota. Overall,

these findings suggest that HGT plays an important role in
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FIGURE 6

The distribution of HGTs in individuals. The rows of the heat map represented di�erent samples, while the columns represented the 1,496 HGTs

events that were detected in at least two samples. Red in the heat map indicated that HGTs were detected in the samples, while gray indicated their

absence. Bar plots on the right side of the heat map showed the number of HGTs detected in each sample. Bar plots on the top showed the number

of samples where each HGT was detected.

shaping the genetic diversity of the gut microbiota across

different taxa.

We observed the incidence of HGT across samples, and

the number of HGTs in individuals ranged from 26 to 315

(Supplementary Table 5). Of the 3,842 distinct HGTs, only 1,497

were found in more than two samples at the same time.

Furthermore, only 96 HGTs were detected in at least one individual

across all time points (Figure 6 and Supplementary Table 5). There

was no obvious variation in the number of HGT samples at different

time points in the same individual. These results indicate that most

HGT events are specific to the sample.

Discussion

In this study, we aimed to explore the potential of the stLFR

method for application in metagenomics by comparing assembly

results with those of the standard method. The comparison results

showed that the stLFR method achieved better assembly indicators,

including genome length, contig maximum length, NG50 length,

and high-quality MAGs, which is consistent with the results of

TABLE 1 Demographic characteristics of the study.

Characteristics n = 21

Male, n (%) 14 (66.7%)

Age (mean± S.D.) 29.65± 4.58

BMI (mean± S.D.) 23.32± 3.78

stLFR library sequencing (individual/sample) 21/50

Standard library sequencing (individual/sample) 7/47

Antibiotic (individual/sample) 2/2

Probiotics (individual/sample) 10/21

Constipation/diarrhea (individual/sample) 9/24

the 10x linked-read-based study (Siranosian et al., 2022). Using

the stLFR method, we constructed a reference genome catalog

containing 318 MAGs from 50 samples. Due to the number of

samples, we obtained fewer non-redundant MAGs than UHGG

(4,644 MAGs) and 10x linked-reads (1,615 MAGs). However,

in terms of MAG completeness, 73.90% of the MAGs in our
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genome catalog contain 5S, 16S, and 23S rRNA, while in UHGG

and 10X linked-reads, the percentages are 12.30 and 27.00%,

respectively. These results illustrated that our genome set is

more complete (Almeida et al., 2021; Siranosian et al., 2022).

In addition, the mapping rate of reads to this reference genome

catalog was higher for both the standard and stLFR sequencing

data, indicating that this genome catalog contains most of the

species detected by both the standard and stLFR methods. The

above results indicate that the stLFR method can be applied to

the metagenomics study and can obtain a high-quality reference

genome catalog.

TGS has been widely applied, not only in animals and plants

but also in the field of metagenomics. It has achieved great success

in improving genome assembly and detecting structural variations

(Chen et al., 2022; Kim et al., 2022; Zhao et al., 2022). Although we

did not compare the assembly results between the stLFR method

and TGS method in this study, previous reports have shown the

advantages of the stLFR method over TGS in the application of

metagenomics. Compared with ONT, the stLFR method generated

more species with an NG50 of around 2M and fewer mismatches

and INDELs (Qi et al., 2022). Zhang demonstrated that the

assembly results based on stLFR data generated more near-

complete metagenome-assembled genomes than PacBio long-reads

in real fecal samples (Zhang et al., 2022). These results show the

potential of the stLFR method for metagenomics. However, this

technique has some limitations. First, metagenomic studies involve

multiple species in a community with varying abundance and DNA

content in the sample, which may result in lower capture efficiency

for low-abundance species. Despite increasing sequencing depth,

we cannot guarantee that all species in the community will be

included. Second, this method introduces barcodes to identify

fragment origins, which requires systematic evaluation of its impact

on species composition.

In a previous report, 10.3 million SNPs and 107,991 INDELs

were identified in 101 genomes across 252 samples from 207

subjects (Schloissnig et al., 2013). In this study, using 96 samples

from 21 individuals, we confirmed ∼11.1 million SNPs and

473,831 INDELs, indicating that our method is capable of

detecting more SNPs and INDELs due to the use of more

complete genome assemblies. However, for SNP and INDEL

analysis, the same conclusions were obtained, including there are

significant differences in the number of SNPs and INDELs among

different individuals, the individual has its unique species variation

spectrum, and the similarity of strains within individuals decreased

over time.

It is well-known that SNPs identification of the standard

library construction method is severely affected by coverage depth

(Schloissnig et al., 2013). Hence, we found that the coverage

depth also has an effect on the SNPs identification of the stLFR

method after analysis, but the 60X coverage depth is sufficient for

this method. Therefore, the construction of the stLFR library is

beneficial to the analysis of intestinal flora.

Furthermore, HGT analysis demonstrated that the HGT occurs

mainly above the genus level, rarely within species due to poor

assembly, and these HGT genes were similar (identity > 99%).

Some of the identified HGT genes were related to antibiotic

resistance genes, and these genes contributed to the development

of antibiotic resistance of strains. In addition, it has been reported

in the literature that in samples of the same individual at different

time points, HGT may be retained over time, or new HGT may be

added or lost (Groussin et al., 2021), which is consistent with our

results. We also found that gender was revealed to not affect the

incidence of HGT, and this may be because the living environment

has not changed during this time.

Conclusion

In conclusion, the stLFR library construction method was

used to investigate the gut flora of humans and proved to be

more advantageous for assembly metagenome and gut microbiota

analysis. The reference genome constructed by stLFR can identify

the SNPs, INDELs, and HGT genes efficiently.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found at: CNGB Sequence Archive

(CNSA) of China National GeneBank DataBase (CNGBdb) with

accession number CNP0003344.

Ethics statement

The studies involving human participants were reviewed and

approved by the Medical Ethics Committee of BGI (BGI-IRB

20145). The patients/participants provided their written informed

consent to participate in this study.

Author contributions

XF, CG, ZY, and XX designed the study. YH, PJ, and ZL

analyzed the results. CG, YH, and PJ wrote the manuscript. XF, RC,

and ZY revised the study and supported the project. All authors

reviewed the manuscript. All authors contributed to the article and

approved the submitted version.

Funding

This study was funded by the Science Technology

and Innovation Committee of Shenzhen Municipality,

China (SGDX20190919142801722).

Conflict of interest

YH and XF were employed by BGI Genomics, BGI-Shenzhen.

PJ, ZL, RC, ZY, XX, and CG were employed by BGI Sanya, BGI-

Shenzhen.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

Frontiers inMicrobiology 12 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1145315
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fmicb.2023.1145315

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmicb.2023.

1145315/full#supplementary-material

References

Adey, A., Kitzman, J. O., Burton, J. N., Daza, R., Kumar, A., Christiansen, L., et al.
(2014). In vitro, long-range sequence information for de novo genome assembly via
transposase contiguity. Genome Res. 24, 2041–2049. doi: 10.1101/gr.178319.114

Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M.,
Edalatmand, A., et al. (2020). CARD 2020: Antibiotic resistome surveillance with
the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525.
doi: 10.1093/nar/gkz935

Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z. J.,
et al. (2021). A unified catalog of 204,938 reference genomes from the human gut
microbiome. Nat. Biotechnol. 39, 105–114. doi: 10.1038/s41587-020-0603-3

Arnold, J. W., Roach, J., and Azcarate-Peril, M. A. (2016). Emerging
technologies for gut microbiome research. Trends Microbiol. 24, 887–901.
doi: 10.1016/j.tim.2016.06.008

Bertrand, D., Shaw, J., Kalathiyappan, M., Ng, A. H. Q., Kumar, M. S., Li, C., et al.
(2019). Hybrid metagenomic assembly enables high-resolution analysis of resistance
determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37,
937–944. doi: 10.1038/s41587-019-0191-2

Bishara, A., Moss, E. L., Kolmogorov, M., Parada, A. E., Weng, Z., Sidow, A., et al.
(2018). High-quality genome sequences of uncultured microbes by assembly of read
clouds. Nat. Biotechnol. 36, 1067–1075. doi: 10.1038/nbt.4266

Breitwieser, F. P., Lu, J., and Salzberg, S. L. (2019). A review of methods
and databases for metagenomic classification and assembly. Brief. Bioinform. 20,
1125–1136. doi: 10.1093/bib/bbx120

Brito, I. L. (2021). Examining horizontal gene transfer in microbial communities.
Nat. Rev. Microbiol. 19, 442–453. doi: 10.1038/s41579-021-00534-7

Cai, J., Sun, L., and Gonzalez, F. J. (2022). Gut microbiota-derived bile acids in
intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 30, 289–300.
doi: 10.1016/j.chom.2022.02.004

Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., and Huerta-
Cepas, J. (2021). eggNOG-mapper v2: Functional annotation, orthology assignments,
and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829.
doi: 10.1093/molbev/msab293

Chaumeil, P. -A., Mussig, A. J., Hugenholtz, P., and Parks, D. H. (2020). GTDB-Tk:
A toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36,
1925–1927. doi: 10.1093/bioinformatics/btz848

Chen, L., Zhao, N., Cao, J., Liu, X., Xu, J., Ma, Y., et al. (2022). Short-and long-read
metagenomics expand individualized structural variations in gut microbiomes. Nat.
Commun. 13, 3175. doi: 10.1038/s41467-022-30857-9

Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., et al. (2018).
SOAPnuke: A MapReduce acceleration-supported software for integrated quality
control and preprocessing of high-throughput sequencing data. Gigascience. 7, gix120.
doi: 10.1093/gigascience/gix120

Chen, Z., Pham, L., Wu, T. C., Mo, G., Xia, Y., Chang, P. L., et al. (2020). Ultralow-
input single-tube linked-read library method enables short-read second-generation
sequencing systems to routinely generate highly accurate and economical long-range
sequencing information. Genome Res. 30, 898–909. doi: 10.1101/gr.260380.119

Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C.,
et al. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT
sequencing data. Nat. Methods 10, 563–569. doi: 10.1038/nmeth.2474

Cho, I., and Blaser, M. J. (2012). The human microbiome: at the interface of health
and disease. Nat. Rev. Genet. 13, 260–270. doi: 10.1038/nrg3182

Fairbrass, K. M., Lovatt, J., Barberio, B., Yuan, Y., Gracie, D. J., and
Ford, A. C. (2022). Bidirectional brain–gut axis effects influence mood and
prognosis in IBD: A systematic review and meta-analysis. Gut 71, 1773–1780.
doi: 10.1136/gutjnl-2021-325985

Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2015). Expanded
microbial genome coverage and improved protein family annotation in the COG
database. Nucleic Acids Res. 43, D261–D269. doi: 10.1093/nar/gku1223

Groussin, M., Poyet, M., Sistiaga, A., Kearney, S. M., Moniz, K., Noel, M.,
et al. (2021). Elevated rates of horizontal gene transfer in the industrialized human
microbiome. Cell 184, 2053–2067. doi: 10.1016/j.cell.2021.02.052

Guarner, F., and Malagelada, J.-R. (2003). Gut flora in health and disease. Lancet
361, 512–519. doi: 10.1016/S0140-6736(03)12489-0

Hugenholtz, P., and Tyson, G. W. (2008). Metagenomics. Nature 455, 481–483.
doi: 10.1038/455481a

Jain, C., Rodriguez,-R., L. M., Phillippy, A. M., Konstantinidis, K. T., and Aluru, S.
(2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species
boundaries. Nat. Commun. 9, 1–8. doi: 10.1038/s41467-018-07641-9

Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., et al. (2019). MetaBAT
2: An adaptive binning algorithm for robust and efficient genome reconstruction from
metagenome assemblies. PeerJ 7, e7359. doi: 10.7717/peerj.7359

Kar, H. K., Narayan, R., Gautam, R. K., Jain, R. K., Doda, V., Sengupta, D., et al.
(1996). Mucocutaneous disorders in Hiv positive patients. Blood Transfus. 9, 1.

Kim, C. Y., Ma, J., and Lee, I. (2022). HiFi metagenomic sequencing enables
assembly of accurate and complete genomes from human gut microbiota. Nat.
Commun. 13, 6367. doi: 10.1038/s41467-022-34149-0

Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M.,
Shin, S. B., et al. (2020). metaFlye: Scalable long-read metagenome assembly
using repeat graphs. Nat. Methods 17, 1103–1110. doi: 10.1038/s41592-020-
00971-x

Kong, B. L.-H., Nong, W., Wong, K.-H., Law, S. T.-S., So, W.-L., Chan, J. J.-S.,
et al. (2022). Chromosomal level genome of Ilex asprella and insight into antiviral
triterpenoid pathway. Genomics 114, 110366. doi: 10.1016/j.ygeno.2022.110366

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie
2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Letunic, I., and Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: Recent updates
and new developments. Nucleic Acids Res. 47, W256–W259. doi: 10.1093/nar/gkz239

Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT:
An ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.
doi: 10.1093/bioinformatics/btv033

Liu, B., Zheng, D., Jin, Q., Chen, L., and Yang, J. (2019). VFDB 2019: A comparative
pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47,
D687–D692. doi: 10.1093/nar/gky1080

Mande, S. S., Mohammed, M. H., and Ghosh, T. S. (2012). Classification of
metagenomic sequences: Methods and challenges. Brief. Bioinform. 13, 669–681.
doi: 10.1093/bib/bbs054

Mokkala, K., Paulin, N., Houttu, N., Koivuniemi, E., Pellonperä, O., Khan, S., et al.
(2021). Metagenomics analysis of gut microbiota in response to diet intervention and
gestational diabetes in overweight and obese women: A randomised, double-blind,
placebo-controlled clinical trial. Gut 70, 309–318. doi: 10.1136/gutjnl-2020-321643

Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A., and Minh, B. Q. (2015). IQ-
TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood
phylogenies.Mol. Biol. Evol. 32, 268–274. doi: 10.1093/molbev/msu300

Niccum, B. A., Kastman, E. K., Kfoury, N., Robbat Jr, A., and Wolfe, B. E.
(2020). Strain-level diversity impacts cheese rind microbiome assembly and function.
Msystems 5, e00149–e00120. doi: 10.1128/mSystems.00149-20

Olm, M. R., Brown, C. T., Brooks, B., and Banfield, J. F. (2017). dRep: A
tool for fast and accurate genomic comparisons that enables improved genome
recovery from metagenomes through de-replication. ISME J. 11, 2864–2868.
doi: 10.1038/ismej.2017.126

Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A.,
Chaumeil, P.-A., et al. (2018). A standardized bacterial taxonomy based on genome
phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004.
doi: 10.1038/nbt.4229

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W.
(2015). CheckM: Assessing the quality of microbial genomes recovered from isolates,
single cells, and metagenomes.Genome Res. 25, 1043–1055. doi: 10.1101/gr.186072.114

Peters, B. A., Kermani, B. G., Sparks, A. B., Alferov, O., Hong, P., Alexeev, A., et al.
(2012). Accurate whole-genome sequencing and haplotyping from 10 to 20 human
cells. Nature 487, 190–195. doi: 10.1038/nature11236

Frontiers inMicrobiology 13 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1145315
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1145315/full#supplementary-material
https://doi.org/10.1101/gr.178319.114
https://doi.org/10.1093/nar/gkz935
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1016/j.tim.2016.06.008
https://doi.org/10.1038/s41587-019-0191-2
https://doi.org/10.1038/nbt.4266
https://doi.org/10.1093/bib/bbx120
https://doi.org/10.1038/s41579-021-00534-7
https://doi.org/10.1016/j.chom.2022.02.004
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1038/s41467-022-30857-9
https://doi.org/10.1093/gigascience/gix120
https://doi.org/10.1101/gr.260380.119
https://doi.org/10.1038/nmeth.2474
https://doi.org/10.1038/nrg3182
https://doi.org/10.1136/gutjnl-2021-325985
https://doi.org/10.1093/nar/gku1223
https://doi.org/10.1016/j.cell.2021.02.052
https://doi.org/10.1016/S0140-6736(03)12489-0
https://doi.org/10.1038/455481a
https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.7717/peerj.7359
https://doi.org/10.1038/s41467-022-34149-0
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1016/j.ygeno.2022.110366
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/nar/gkz239
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/nar/gky1080
https://doi.org/10.1093/bib/bbs054
https://doi.org/10.1136/gutjnl-2020-321643
https://doi.org/10.1093/molbev/msu300
https://doi.org/10.1128/mSystems.00149-20
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1038/nature11236
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fmicb.2023.1145315

Qi, Y., Gu, S., Zhang, Y., Guo, Y., Xu, M., Cheng, X., et al. (2022). MetaTrass: A
high-quality metagenome assembler of the human gut microbiome by cobarcoding
sequencing reads. iMeta 13, e46. doi: 10.1101/2021.09.13.459686

Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., et al.
(2005). InterProScan: Protein domains identifier. Nucleic Acids Res. 33, W116–W120.
doi: 10.1093/nar/gki442

Roodgar, M., Good, B. H., Garud, N. R., Martis, S., Avula, M., Zhou,W., et al. (2021).
Longitudinal linked-read sequencing reveals ecological and evolutionary responses of
a human gut microbiome during antibiotic treatment. Genome Res. 31, 1433–1446.
doi: 10.1101/gr.265058.120

Rooks, M. G., and Garrett, W. S. (2016). Gut microbiota, metabolites and host
immunity. Nat. Rev. Immunol. 16, 341–352. doi: 10.1038/nri.2016.42

Schloissnig, S., Arumugam, M., Sunagawa, S., Mitreva, M., Tap, J., Zhu, A., et al.,
(2013). Genomic variation landscape of the human gutmicrobiome.Nature 493, 45–50.
doi: 10.1038/nature11711

Siranosian, B. A., Brooks, E. F., Andermann, T., Rezvani, A. R., Banaei,
N., Tang, H., et al. (2022). Rare transmission of commensal and pathogenic
bacteria in the gut microbiome of hospitalized adults. Nat. Commun. 13, 586.
doi: 10.1038/s41467-022-28048-7

Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., and Alm,
E. J. (2011). Ecology drives a global network of gene exchange connecting the human
microbiome. Nature 480, 241–244. doi: 10.1038/nature10571

Song, W., Wemheuer, B., Zhang, S., Steensen, K., and Thomas, T. (2019).
MetaCHIP: Community-level horizontal gene transfer identification through the
combination of best-match and phylogenetic approaches. Microbiome 7, 1–14.
doi: 10.1186/s40168-019-0649-y

The Human Microbiome Project Consortium (2012). A framework for human
microbiome research. Nature 486, 215–221. doi: 10.1038/nature11209

Tierney, B. T., Tan, Y., Kostic, A. D., and Patel, C. J. (2021). Gene-level metagenomic
architectures across diseases yield high-resolution microbiome diagnostic indicators.
Nat. Commun. 12, 1–12. doi: 10.1038/s41467-021-23029-8

Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C., and Segata, N. (2017).Microbial
strain-level population structure and genetic diversity frommetagenomes.Genome Res.
27, 626–638. doi: 10.1101/gr.216242.116

Wang, O., Chin, R., Cheng, X., Wu, M. K. Y., Mao, Q., Tang, J., et al. (2019).
Efficient and unique cobarcoding of second-generation sequencing reads from long
DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de
novo assembly. Genome Res. 29, 798–808. doi: 10.1101/gr.245126.118

Wu, Y.-W., and Ye, Y. (2011). A novel abundance-based algorithm for
binning metagenomic sequences using l-tuples. J. Comput. Biol. 18, 523–534.
doi: 10.1089/cmb.2010.0245

Xie, H., Guo, R., Zhong, H., Feng, Q., Lan, Z., Qin, B., et al. (2016). Shotgun
metagenomics of 250 adult twins reveals genetic and environmental impacts on the
gut microbiome. Cell Syst. 3, 572–584. doi: 10.1016/j.cels.2016.10.004

Yahara, K., Suzuki, M., Hirabayashi, A., Suda, W., Hattori, M., Suzuki,
Y., et al. (2021). Long-read metagenomics using PromethION uncovers oral
bacteriophages and their interaction with host bacteria. Nat. Commun. 12, 1–12.
doi: 10.1038/s41467-020-20199-9

Zhang, Z., Wang, H., Yang, C., Huang, Y, Yue, Z., Chen, Y., et al. (2022).
Exploring high-quality microbial genomes by assembly of linked-reads with
high barcode specificity using deep learning. bioRxiv. doi: 10.1101/2022.09.07.
506963

Zhao, L., Shi, Y., Lau, H. C.-H., Liu, W., Luo, G., Wang, G., et al. (2022).
Uncovering 1058 novel human enteric DNA viruses through deep long-read third-
generation sequencing and their clinical impact. Gastroenterology 163, 699–711.
doi: 10.1053/j.gastro.2022.05.048

Frontiers inMicrobiology 14 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1145315
https://doi.org/10.1101/2021.09.13.459686
https://doi.org/10.1093/nar/gki442
https://doi.org/10.1101/gr.265058.120
https://doi.org/10.1038/nri.2016.42
https://doi.org/10.1038/nature11711
https://doi.org/10.1038/s41467-022-28048-7
https://doi.org/10.1038/nature10571
https://doi.org/10.1186/s40168-019-0649-y
https://doi.org/10.1038/nature11209
https://doi.org/10.1038/s41467-021-23029-8
https://doi.org/10.1101/gr.216242.116
https://doi.org/10.1101/gr.245126.118
https://doi.org/10.1089/cmb.2010.0245
https://doi.org/10.1016/j.cels.2016.10.004
https://doi.org/10.1038/s41467-020-20199-9
https://doi.org/10.1101/2022.09.07.506963
https://doi.org/10.1053/j.gastro.2022.05.048
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

	Assembly and analytical validation of a metagenomic reference catalog of human gut microbiota based on co-barcoding sequencing
	Introduction
	Method
	Sample collection
	DNA extraction, library construction, and sequencing
	Data quality control and microbiota diversity analysis from standard library construction
	Assembly of sequencing data from the standard library
	Assembly of sequencing data from the stLFR library and construction of reference genome catalog
	Analysis of SNP of gut microbiota in individuals
	The estimation for π and FST values of nucleotide diversity
	Detection of horizontal gene transfer (HGT)
	Annotating transferred genes

	Results
	Different gut microbial compositions in individuals
	Comparison of assembly results between stLFR and standard libraries
	Construction of reference genomes using assembly genomes generated by the stLFR library
	Nucleotide diversity quantification analysis of the gut microbiome
	Comparison of polymorphisms across different individuals
	The analysis of HGTs

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


