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Viroid-like RNA-dependent RNA 
polymerase-encoding ambiviruses 
are abundant in complex fungi
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Ambiviruses are hybrid infectious elements encoding the hallmark gene of RNA 
viruses, the RNA-dependent RNA polymerase, and self-cleaving RNA ribozymes 
found in many viroids. Ambiviruses are thought to be pathogens of fungi, although 
the majority of reported genomes have been identified in metatranscriptomes. 
Here, we present a comprehensive screen for ambiviruses in more than 46,500 
fungal transcriptomes from the Sequence Read Archive (SRA). Our data-driven 
virus discovery approach identified more than 2,500 ambiviral sequences 
across the kingdom Fungi with a striking expansion in members of the phylum 
Basidiomycota representing the most complex fungal organisms. Our study unveils 
a large diversity of unknown ambiviruses with as little as 27% protein sequence 
identity to known members and sheds new light on the evolution of this distinct 
class of infectious agents with RNA genomes. No evidence for the presence of 
ambiviruses in human microbiomes was obtained from a comprehensive screen 
of respective metatranscriptomes available in the SRA.
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Introduction

Infectious genetic elements with RNA genomes (IGERs) encompass viroids and viroid-like 
RNAs as well as certain viruses. These agents have been demonstrated to cause a multitude of 
economically and medically important diseases despite major differences in genome size, genetic 
complexity, and life cycle between the various IGER classes and subclasses. The vast diversity of 
known and potentially unknown IGERs makes them ideal systems to study micro- and macro-
evolutionary processes, the emergence of hybrid elements with features from difference IGER 
classes, and the origin(s) of life.

Viroids are the simplest form among known infectious pathogens, consisting of a single-
stranded, covalently closed circular RNA genome of a few hundred nucleotides in length 
(Diener, 2001; Daròs et al., 2006). Although the known viroids do not encode proteins, they 
interact with the host via RNA structures to hijack the host transcription machinery for 
replication of their small RNA genomes. The members of different viroid families adopt distinct 
RNA structures, including branched as well as rod-shaped conformations (Giguère et al., 2014). 
Additional viroid-like IGERs include retroviroids, which integrate into the host genome with 
the help of a pararetrovirus (Daròs and Flores, 1995), circular satellite RNAs of plants, which 
require a helper virus for their replication and transmission (Bruening et al., 1991; Rao and 
Kalantidis, 2015), and animal-infecting ribozyviruses, including the important human pathogen 
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hepatitis delta virus (HDV). Many viroids and viroid-like IGERs 
utilize IGER-encoded ribozymes, such as hammerhead ribozyme 
(HHR) or hairpin ribozyme (HPR), for cleavage of their multimeric 
replication products (Kos et al., 1986; Branch et al., 1988; Modahl 
et al., 2000; Ferre-D'Amare and Scott, 2010; Sureau and Negro, 2016; 
de la Peña et al., 2020; Wang, 2021). Known members of these classes 
have RNA genomes well below 2,000 nt.

Recently described ambiviruses employ considerably larger 
genomes in the range between 4,000 and 5,000 nt (Sutela et al., 2020; 
Forgia et  al., 2021). Their circular RNA genomes exhibit unique 
features that make them hybrids between RNA viruses and viroids: 
they have two open reading frames (ORFs), one of which encodes an 
RNA-dependent RNA polymerase (RdRp) related to the RdRps of 
RNA viruses, while the function of the product encoded by the second 
ORF remains unknown. In addition, ambiviruses code for two HHR, 
HPR, or other types of ribozymes that are located close to each ORF’s 
C-terminal part in the non-protein-coding region of the genome. The 
two ORF-ribozyme pairs are encoded on opposite genome polarities. 
Ambiviruses are thought to infect fungi, although the large majority 
of ambivirus genomes have been discovered from metatranscriptomes 
(Sutela et  al., 2020; Forgia et  al., 2021, 2022). Due to the latter, a 
comprehensive and detailed ambivirus host distribution within and 
potentially also outside the kingdom Fungi is lacking. This paucity 
includes a description of the presence or absence of ambiviruses in the 
human mycobiome formed by fungal components of the microbiome 
which interact with both the bacterial microbiome and host immunity, 
and can influence pathophysiological processes in humans (Nguyen 
et al., 2015; Soret et al., 2020; Pérez, 2021; Zhang et al., 2022).

Here, we report the results of a screen for ambivirus genomes in 
almost 60,000 transcriptome projects of fungi and human 
microbiomes representing the full diversity available by the time of 
writing in the Sequence Read Archive (SRA). We discovered more 
than 2,500 viral sequences from 345 distinct ambiviruses and 
demonstrate an expansion of ambiviruses in the most complex fungal 
organisms from the phylum Basidiomycota. In general, our study 
offers new insights into the diversity and evolution of this distinct class 
of infectious agents.

Results and discussion

We have applied a data-driven virus discovery (DDVD) approach 
(Lauber and Seitz, 2022) to screen a comprehensive set of 46,519 
transcriptomes from the SRA representing the global diversity of fungi 
(Figure 1A) for the presence of ambivirus sequences. Our screening 
involved a sensitive sequence homology search in raw sequencing read 
data using a profile Hidden Markov Model (pHMM) of the ambivirus 
RdRp, which obtained hits against this ambivirus-specific pHMM in 
853 SRA data sets. The subsequent seed-based genome assembly 
specifically targeted the sequences identified in the first stage and 
produced 2,588 contigs with significant sequence similarity to the 
ambiviral RdRp region including the well-conserved motifs A, B, and 
C (Gorbalenya et  al., 2002; Bruenn, 2003). Removal of sequence 
redundancy by clustering the contigs at 90% nucleotide sequence 
identity and RdRp fragments shorter than 500 nt resulted in 345 
unique ambivirus sequences of which 81 were full-length circular 
RNA genomes while the other assemblies represented incomplete 
genomes (Figure  2A; Supplementary Table S1). They have been 

retrieved from only 181 BioSamples in total (Supplementary Table S2), 
demonstrating the concurrent infection of individual fungi by several 
viruses. Although the viral reads typically constituted a minor fraction 
of the total amount of reads in a sequencing experiment (0.03% on 
average), the read depth per viral genome position was moderate to 
very high (273.7 on average; Figure  2A). The 345 discovered 
ambiviruses showed protein sequence identities to ambiviruses 
described in Forgia et al. (2022) and reference databases of 47.7% on 
average (range of 26.8–100%; Figure 2A), indicating that the majority 
of the ambiviruses discovered in this study are novel and that previous 
searches based on metatranscriptome analyses only revealed a fraction 
of the natural ambivirus diversity.

A strength of the SRA-based virus discovery approach is the 
availability of often detailed metadata, including host taxonomic 
information, for many of the underlying sequencing projects. 
We utilized this information (Supplementary Table S2) and mapped 
the fungal taxonomy of each sequencing project to the ambivirus 
sequences discovered from this project. Strikingly, although more 
than 70% of the analyzed SRA experiments studied fungi were from 
the phylum Ascomycota (Figure 1B), only very few ambiviruses (5.2%) 
were found in these fungi (Figure 1C). In sharp contrast, the large 
majority (94.3%) of the discovered ambiviruses were from the phylum 
Basidiomycota, which constituted only 24.2% of the analyzed SRA data 
sets. The difference between Basidiomycota and Ascomycota (Fisher’s 
exact test, p = 0) as well as Mucoromycota (p = 4.1e–28) and 
Chytridiomycota (p = 3.6e–19) was statistically highly significant, while 
no significant differences were observed between the other pairs of 
phyla (Supplementary Table S3).

Ascomycota species, including the model organism Saccharomyces 
cerevisiae, commonly (but not exclusively) reproduce asexually and are 
characterized by internal spore production in a sac-like structure called 
the ascus. Members from the Basidiomycota form spores externally by 
specialized cells called basidia, and sexual reproduction is considered 
to be more common among Basidiomycota species. It is tempting to 
speculate that the mode of reproduction may play a role in the spread 
of ambiviruses, a hypothesis that warrants further investigation, for 
instance via comparative infection experiments. Another factor of 
susceptibility to ambivirus infection might be  linked to the higher 
complexity, in terms of cell cycle and multicellularity, of Basidiomycota 
species compared to those of other orders (Naranjo-Ortiz and 
Gabaldón, 2019). Ascomycota and Basidiomycota form two sister clades 
in the fungal tree of life (together building the most species-rich fungal 
subkingdom Dikarya) and constitute two relatively young lineages 
compared to the other fungal orders (Naranjo-Ortiz and Gabaldón, 
2019), indicating that the observed expansion of ambiviruses in 
Basidiomycota was established after the split of the two orders.

The novel ambiviruses with full-length or near full-length genome 
sequences showed the expected genomic organization involving two 
open reading frames (ORFs) encoded in opposite reading directions 
(sense and antisense; Figures 2B,C). A self-cleaving hammerhead or 
hairpin ribozyme was found to be encoded near the C-terminus of each 
of the two ORFs (Figures 2B,C). We identified structural RNA motifs in 
178 of the 345 ambivirus genomic sequences. When considering the top 
two hits per contig, the most frequent RNA structural motif was 
Hammerhead_3 ribozyme (n = 81, Rfam accession: RF00008), followed 
by Hairpin ribozyme (n = 77, RF00173) and Hairpin-meta1 ribozyme 
(n = 76, RF04190). Similar to other viroid-like elements, such as HDV, 
many of the ambivirus genomes are predicted to adopt a rod-shaped 
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RNA secondary structure conformation (Figures 2B,C), while others 
show a branched conformation (Figure 2C).

We used RdRp protein sequences of previously described and 
newly discovered ambiviruses to reconstruct an ambivirus phylogeny 
(Figure 3). Viral groups of relatively low diversity were associated with 
specific fungal orders while the viral relationships predicted frequent 
cross-species transmissions at the macroevolutionary scale, as 
indicated by ambiviruses from a certain host order being scattered 
across the viral phylogeny (Figure 3). In addition, and in line with the 
viral sequence identity analysis presented above, the ambivirus 
phylogeny demonstrated that the majority of viruses discovered in this 
study constitute yet undescribed lineages. These undescribed lineages 
are distinct from known ambiviruses that are largely derived from 
metatranscriptomes (gray branches in Figure 3) and for which the 
host, therefore, remains unknown (Forgia et al., 2022; Lee et al., 2023). 
The discovery of 345 viral sequences from publicly available 

unprocessed sequencing archives reinforced the notion that data-
driven virus discovery approaches (Lauber and Seitz, 2022) open new 
opportunities for studying the natural diversity and evolution of 
viruses, viroids, and other infectious agents that exist on our planet at 
unprecedented detail and depth. The DDVD approach is uncoupled 
from the collection, processing, and sequencing of biological samples 
and, thus, allows for projects of a scale that conventional virus 
discovery studies cannot compete with.

To investigate the potential relevance of ambiviruses to human 
health and disease, we performed a second screen of 12,694 human 
metatranscriptome projects from the SRA. This data set included 
samples from various human body sites. Out of the more than 12,000 
experiments screened, there were only three data sets with ambivirus 
sequences fulfilling our hit criteria during the virus identification stage 
of our workflow (at least five read pairs identified with an E-value of 
1e–5 or lower). Two of them were from the same study analyzing lung 

FIGURE 1

Phylogeny of fungi and taxonomic classification of fungal transcriptome experiments from the SRA. (A) The tree shows phylogenetic relationships of 
fungal classes and was obtained from Timetree 5 (http://timetree.org/). Branch lengths are in millions of years ago (MYA). The roots of the clades for 
Ascomycota and Basidiomycota are highlighted in orange and red, respectively. Sankey diagrams are shown for all 46,519 fungal SRA data sets that 
have been analyzed (B) and for those 853 of them in which ambivirus sequences have been discovered (C). Numbers above colored bars show the 
percentage of SRA data sets at each taxonomic rank. Note the difference between relative frequencies of the phyla Ascomycota and Basidiomycota 
between the two diagrams. Taxonomic ranks shown are kingdom (K), phylum (P), class (C), order (O), family (F), and genus (G).
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metatranscriptomes of patients with pneumonia and acute respiratory 
infections (SRA run accessions: SRR13677688 and SRR13677804). The 
third ambivirus-positive experiment (SRR5963935) was from a stool 
sample of a patient with Crohn’s disease. The very low number of 
identified ambivirus makes it very challenging to discriminate between 
origin of the ambiviruses sequences by infection of fungi from the 
human microbiome and origin by any source of contamination 
(Cobbin et al., 2021). In general, the virtual absence of ambiviruses 
from human metatranscriptomes suggests that these viroid-like 
elements do not present a major factor interacting with the fungal part 
of the human microbiome (Pérez, 2021). We note that we cannot fully 
exclude the possibility that the observed lack of ambiviral sequences in 
the data is caused by an absence or strong underrepresentation of 
fungal hosts in the human microbiome samples. Indeed, an inspection 
of a selected set of human metatranscriptomic data sets using the 
Taxonomy Analysis Tool at the NCBI/SRA website showed that no 
reads were classified as fungal for some of them. However, each of the 

SRA data sets inspected had a considerable fraction of “unidentified 
reads”, indicating that the reads cannot be assigned to any origin based 
on current reference sequences of known organisms. The proportion 
of unclassified reads varied greatly across data sets, and exceeded 98% 
in some cases (see for instance SRR935342). This observation reinforces 
the notion that our knowledge about the natural diversity of biological 
entities, both viral and cellular, remains incomplete.

Conclusion

In summary, our study unveiled a large diversity of unknown 
ambivirus-like sequences in a large variety of fungi species. Future 
virus discovery efforts will show whether similar RdRp- and 
ribozyme-encoding hybrid elements exist in other hosts, including 
vertebrates and other animals. Studying the deep evolutionary 
relationships of this (and potentially other) distinct class(es) of 

FIGURE 2

Assembled ambivirus genomes, their organization and RNA secondary structure of novel representatives. (A) Distributions of contig length, protein 
sequence similarity to the closest known ambivirus, percentage of viral reads and average read depth per viral genome position are shown for the 345 
ambiviruses discovered in this study. (B) Left: The organization of a representative newly discovered ambivirus is shown. The accession number of the 
SRA experiment in which it has been identified is indicated. The ORF coding for the RdRp and the second largest ORF are shown as blue and green 
arrows, respectively. Light red rectangles indicate predicted ribozymes while gray rectangles indicate the RdRp region. Gray lines in the inner part of 
the circle connect bases in the genome that are predicted to pair in the RNA secondary structure. Right: RNA secondary structure conformation 
predicted by the RNAfold program from the ViennaRNA package for the ambivirus genome shown on the left. (C) Genomic organizations of 16 
representatives with full-length circular RNA genomes; representation as in B. Genomes for which one half of the circle is fully connected to the other 
half correspond to rod-shaped secondary structure conformations while partially connected genomes indicate branched conformations.

https://doi.org/10.3389/fmicb.2023.1144003
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chong and Lauber 10.3389/fmicb.2023.1144003

Frontiers in Microbiology 05 frontiersin.org

sub-viral elements with ancient and extant RNA viruses may offer 
unprecedented insights into the emergence of RNA viruses and their 
hallmark RdRp protein.

Methods

Sequence Read Archive data and metadata

A list of all 46,519 publicly available transcriptome experiments 
representing the full diversity of the kingdom Fungi (except those of 
the model organisms Saccharomyces cerevisiae and 
Schizosaccharomyces pombe) in the NCBI SRA database was compiled 
as of October 2022. The following search query was performed to 
obtain the SRA run identifiers: ‘txid4751[Organism:exp] NOT 
txid4932[Organism:exp] NOT txid4896[Organism:exp] AND 
(cluster_public[prop] AND “biomol rna”[Properties])’. A list of all 
12,694 human metatranscriptome experiments were compiled from 
the SRA database using the following search query: 
‘txid1131769[Organism:exp] OR txid1504969[Organism:exp] OR 
txid1632839[Organism:exp] OR txid1633571[Organism:exp] OR 
txid1679718[Organism:exp] OR txid1712573[Organism:exp] OR 
txid1837932[Organism:exp] OR txid1842734[Organism:exp] OR 
txid2489051[Organism:exp] OR txid2705415[Organism:exp] OR 
txid408170[Organism:exp] OR txid433733[Organism:exp] OR 
txid447426[Organism:exp] OR txid539655[Organism:exp] OR 
txid646099[Organism:exp] AND (cluster_public[prop] AND “biomol 
rna”[Properties])’. SRA data were downloaded using the SRA Toolkit 
(Leinonen et al., 2011). The taxonomic identifier for each SRA data set 

was retrieved using the pysradb tool (Choudhary, 2019) while the 
taxonomic lineages information was fetched by the environment for 
tree exploration (ETE) toolkit (Huerta-Cepas et al., 2016). The host 
taxonomy information was reformatted into the Metaphlan2 format 
(Truong et al., 2015) using a customized script and the Pavian tool 
(Breitwieser and Salzberg, 2020) was used to produce Sankey diagrams.

Sequence Read Archive-based virus 
discovery

The computational virus discovery workflow and its application to 
raw, unprocessed SRA data are described in previous studies (Lauber 
et al., 2017, 2021). The workflow is highly parallelized and was run on 
the high-performance computing cluster Taurus of the University of 
Technology (TU) Dresden. Here, we  applied the Virushunter and 
Virusgatherer modules which screen a set of sequencing experiments 
from the SRA using one or several query pHMMs and perform a 
targeted, seed-based assembly of the identified sequencing experiments, 
respectively. The Virushunter performs a micro-assembly of sequencing 
read pairs identified in the pHMM search to create microcontigs that 
span the viral genome region covered by the query profile(s) (ambiviral 
RdRp in this study) or a part of that region. The Virusgatherer produces 
full-length or partial genome sequences depending on read coverage. 
Known ambiviruses previously discovered mostly in environmental 
metagenomes (Forgia et al., 2022) were used to construct a pHMM of 
ambivirus RdRp. We only considered hits for which at least five read 
pairs were identified with an E-value of 1e-5 or lower. Selected SRA 
data sets with high ambivirus read abundance were assembled de novo 

FIGURE 3

RdRp phylogeny of ambiviruses. Shown is a maximum likelihood RdRp phylogeny of ambiviruses in circular format. The tree has been mid-point 
pseudo-rooted. Branches are colored according to the fungal order of the SRA sequencing experiment from which the viral sequences were 
discovered; gray branches correspond to ambiviruses from metatranscriptome projects reported by Forgia et al. (2022) and used to create the HMM 
search profile used in this study. Black dots at internal nodes indicate branching events with SH-like support of 0.9 or better. The scale bar is in average 
amino acid substitutions per site.
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using SPAdes in RNA mode (Bankevich et al., 2012) to independently 
validate the results of the seed-based assembly. Full-length circular 
RNAs were identified using vdsearch (Lee et al., 2023).

The Virushunter and Virusgatherer tools as well as other  
code and further information are available on github: https://
github.com/lauberlab/VirusHunterGatherer and https://github.
com/lauberlab/ambivirus_discovery_paper.

Open reading frame and RdRp 
identification

The presence of ORFs within the contig sequences was predicted 
using EMBOSS getorf (Rice et al., 2000). Only ORFs longer than 150 
amino acids and inferred using the standard genetic code were considered 
for each circular RNA. Location of the RdRp was determined by 
comparing the in silico translated protein sequences encoded by the ORFs 
against the ambivirus RdRp profile with HMMER (Eddy, 2011).

Ribozyme identification

The presence and genomic positions of ribozymes in ambivirus 
sequences were predicted using Infernal v1.1.4 (Nawrocki and Eddy, 
2013) with the Rfam database (Kalvari et al., 2021). We considered hits 
with an E-value of 0.01 or lower.

RNA secondary structure prediction

RNA secondary structure conformations of selected circular 
RNAs were predicted using RNAfold from the ViennaRNA package 
(Lorenz et al., 2011).

Phylogenetic analysis

A multiple RdRp protein sequence alignment was computed using 
MAFFT v7.310 (Katoh and Standley, 2013) with options ‘--localpair 
--maxiterate 1000’, followed by manual curation. We only kept well-
conserved RdRp alignment positions with less than 50% of gaps across 
all sequences, allowing the inclusion of RdRp fragments that 
contributed many of the gaps. We used ModelTest-NG v0.1.7 (Darriba 
et  al., 2020) to determine the best-fitting amino acid substitution 
model, which was LG + G4 + I. Phylogenetic reconstruction was 
performed using PhyML v20120412 (Guindon et al., 2010). The tree 
was visualized using the ggtree R package (Yu et al., 2017).

A time-scaled phylogeny of fungal classes was obtained from 
TimeTree 5 (http://timetree.org/; Kumar et al., 2022).

Statistical analysis

Contingency tables of the number of ambivirus-positive and 
-negative SRA experiments for a pair of host taxa to be compared and 
used Fisher’s exact test were compiled to assess the significance of 
differences. We  used statistical functions (scipy.stats) in Python 
(Virtanen et al., 2020).
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