AUTHOR=Salinas Jesús , Carpena Víctor , Martínez-Gallardo María R. , Segado Martín , Estrella-González María J. , Toribio Ana J. , Jurado Macarena M. , López-González Juan A. , Suárez-Estrella Francisca , López María J. TITLE=Development of plastic-degrading microbial consortia by induced selection in microcosms JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1143769 DOI=10.3389/fmicb.2023.1143769 ISSN=1664-302X ABSTRACT=
The increase in the production of highly recalcitrant plastic materials, and their accumulation in ecosystems, generates the need to investigate new sustainable strategies to reduce this type of pollution. Based on recent works, the use of microbial consortia could contribute to improving plastic biodegradation performance. This work deals with the selection and characterization of plastic-degrading microbial consortia using a sequential and induced enrichment technique from artificially contaminated microcosms. The microcosm consisted of a soil sample in which LLDPE (linear low-density polyethylene) was buried. Consortia were obtained from the initial sample by sequential enrichment in a culture medium with LLDPE-type plastic material (in film or powder format) as the sole carbon source. Enrichment cultures were incubated for 105 days with monthly transfer to fresh medium. The abundance and diversity of total bacteria and fungi were monitored. Like LLDPE, lignin is a very complex polymer, so its biodegradation is closely linked to that of some recalcitrant plastics. For this reason, counting of ligninolytic microorganisms from the different enrichments was also performed. Additionally, the consortium members were isolated, molecularly identified and enzymatically characterized. The results revealed a loss of microbial diversity at each culture transfer at the end of the induced selection process. The consortium selected from selective enrichment in cultures with LLDPE in powder form was more effective compared to the consortium selected in cultures with LLDPE in film form, resulting in a reduction of microplastic weight between 2.5 and 5.5%. Some members of the consortia showed a wide range of enzymatic activities related to the degradation of recalcitrant plastic polymers, with