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Plant-associatedmicroorganisms are believed to be part of the so-called extended

plant phenotypes, a�ecting plant growth and health. Understanding how plant-

associated microorganisms respond to pathogen invasion is crucial to controlling

plant diseases through microbiome manipulation. In this study, healthy and

diseased (bacterial wilt disease, BWD) tomato (Solanum lycopersicum L.) plants

were harvested, and variations in the rhizosphere and root endosphere microbial

communities were subsequently investigated using amplicon and shotgun

metagenome sequencing. BWD led to a significant increase in rhizosphere

bacterial diversity in the rhizosphere but reduced bacterial diversity in the root

endosphere. The ecological null model indicated that BWDenhanced the bacterial

deterministic processes in both the rhizosphere and root endosphere. Network

analysis showed that microbial co-occurrence complexity was increased in BWD-

infected plants. Moreover, higher universal ecological dynamics of microbial

communities were observed in the diseased rhizosphere. Metagenomic analysis

revealed the enrichment of more functional gene pathways in the infected

rhizosphere.More importantly, when tomato plantswere infectedwith BWD, some

plant-harmful pathways such as quorum sensingwere significantly enriched, while

some plant-beneficial pathways such as streptomycin biosynthesis were depleted.

These findings broaden the understanding of plant–microbiome interactions and

provide new clues to the underlying mechanism behind the interaction between

the plant microbiome and BWD.

KEYWORDS

plant microbiome, bacterial wilt disease, assembly mechanism, microbial interactions,

microbiome function

Introduction

Plant-associated microorganisms play a major role in affecting plant growth and health

(Muller et al., 2016; Theis et al., 2016; Singh et al., 2020; Woodhams et al., 2020). The

rhizosphere, a hot spot for plants to exchange substances and energy with the surrounding

environment, has drawn the most attention (Li et al., 2020; Li P. et al., 2022). There is an

emerging consensus about the dominant role of the rhizosphere microbiome in influencing

host performance, especially regarding resistance to disease (Berendsen et al., 2012; Li X.

et al., 2019); for example, disrupting the balance between the abundances of Firmicutes and

Actinobacteria in the tomato rhizosphere causes increased incidence of bacterial wilt disease

(BWD; Lee et al., 2021). Understanding how the rhizospheremicrobiome responds to disease
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incidence is fundamental to understanding the microbiome

pathways that improve plant health, potentially allowing the

favorable manipulation of the microbiome.

Multiple biotic and abiotic factors contribute to plant

microbiome assemblies, such as host genotype, plant growth stage,

local climates, regional microbial species pool, soil type, and field

management strategies (Berendsen et al., 2012; Gao et al., 2020).

Apart from these factors, changes in plant performance caused

by a pathogen invasion are considered to be some of the most

important forces driving microbiome assembly (Carrion et al.,

2019). Species composition and community diversity can be greatly

influenced by pathogen invasion (Gao et al., 2021); more plant-

beneficial microorganisms, especially those that can antagonize

phytopathogens, are enriched in diseased plant organs (Gao et al.,

2021), and the alpha diversity of the rhizosphere microbiome

significantly declined after pathogen invasion (Li et al., 2021).

Our knowledge of whether pathogen invasion also affects other

aspects of the plant microbiome, such as microbial interactions,

community assembly, and metabolic functions, is limited.

In metacommunity ecology, niche and neutral mechanisms

are two divergent, but complementary, paradigms that describe

the assemblages of the metacommunity (Zhou and Ning, 2017).

The niche theory posits that deterministic processes such as

competition, facilitation, predation, resource differentiation, and

other environmental filters determine community assembly by

causing niche differentiation (Dini-Andreote et al., 2015). The

neutral theory hypothesizes that stochastic processes such as

colonization, dispersal, priority effects, and ecological drift

regulate the assembly and functioning of ecological communities

(Dini-Andreote et al., 2015). Disease-induced changes in plant

performance lead to cascading variations in the rhizosphere

environment that greatly influence the deterministic-stochastic

balance of the rhizosphere microbiome (Wen et al., 2022; Zhang

et al., 2022). Although this is obviously known, it has been

rarely tested and examined in detail. It can be hypothesized

that pathogen invasion, as a selection pressure acting upon

the rhizosphere microbiome by changing plant performance,

would deterministically drive the compositional variation of the

rhizosphere microbiome. Pathogen invasion is commonly seen

alongside changes in rhizosphere microbial diversity (Wei et al.,

2018; Yuan et al., 2018; Shi et al., 2019). It can therefore

be concluded that pathogen invasion would affect microbial

interactions that depend on the types and abundances of

microorganisms present (Weiland-Brauer, 2021). In addition, the

dynamic universality (whether interactions among microbes and

with their environment are consistent across hosts or whether each

individual’s microbiota follows its own rules) of the plant root’s

bacterial microbiome is also yet to be assessed (Bashan et al., 2016).

These knowledge gaps limited the effective management of soil

and plant health through strategies exploiting the plant-associated

microbiome. Furthermore, while the community functions of

natural microbial communities are always redundant (Louca et al.,

2018; Li P. et al., 2019), pathogen invasion would change the

functions in rhizosphere microbes, as community function and

assembly are tightly coupled (Xun et al., 2019; Luan et al., 2020).

Ralstonia solanacearum is one of the most economically

important phytopathogens since the lethal BWD it causes can

lead to devastating impacts on many plant species. Tomato

(Solanum lycopersicum L.) is one of the most widely grown

vegetable crops (Fibiani et al., 2022). BWD in tomatoes caused

by R. solanacearum leads to high annual production losses.

A deep understanding of how the plant-associated microbiome

responds to BWD may help in the development of environmental-

friendly BWD control strategies. In this study, the plant-associated

microbiome was investigated using sequencing to determine the

differences in the communities of healthy and diseased tomato

plants. Plants were harvested and their rhizosphere and root

endosphere microbial communities were investigated, examining

how plant-associated microbiome assembly, interactions in the

plant-associated microbiome, and the functional potentials of

plant-associated microbes are affected by pathogen invasion

(Figure 1).

Materials and methods

Collection of soil and plant samples

Sampling was performed on 15 September 2021 at plastic

greenhouses with tomatoes growing for six contiguous seasons,

located in Hengxi Town, Nanjing city, Jiangsu province, China

(118◦46’E, 31◦43’N). The sample site has a typical subtropical

monsoon climate with a mean annual precipitation of 1,106mm

and a mean annual temperature of 15.5◦C. The typical soil is udic

argosol. The cultivars (“Hezuo 908”) were infected by the pathogen

R. solanacearum naturally and randomly. Twelve tomato plants

that showed bacterial wilt symptoms (75–100% of leaves wilted

or dead) were collected from four plastic greenhouses, and 12

non-infected plants were harvested as controls (Figure 1). Three

healthy and three diseased plants were taken from each greenhouse

at the setting stage, ensuring the chosen healthy plants were not

spatially close to the diseased ones. Rhizosphere soil samples from

healthy (RH) and diseased plants (RD) were gently collected; after

uprooting the plants, excess soil was first gently shaken from

the roots, and then the remaining soil attached to the roots was

considered rhizosphere soil (Kibbey and Strevett, 2019). Root

tissues of healthy (EH) and diseased plants (ED) were collected

to investigate the microbial communities in the root endosphere

(Figure 1).

DNA extraction

Total genomic DNA was extracted from both the rhizosphere

soil (0.5 g fresh soil from each sample) and the root tissue

(1 g fresh plant tissue from each sample) samples using the

FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, OH, USA)

following the manufacturer’s instructions, except for modifications

to homogenization when extracting DNA from the endosphere.

Before extracting, the surface of the root tissues was sterilized. First,

soil on the root surface was removed by rinsing it with water. After

this, the tissues were cut into 0.5 cm sections and submerged in 70%

ethanol for 5min, 6% sodium hypochlorite for 3min, 70% ethanol

for 30 s and then washed with sterile H2O five times (Ruiz-Perez

et al., 2016). Liquid nitrogen grinding was done in a sterile mortar

and pestle for root tissue homogenization.
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FIGURE 1

A flow diagram of the key experimental settings in the current study. Healthy and diseased (bacterial wilt disease, BWD) tomato (Solanum

Lycopersicum L.) plants were harvested, and the variations in the rhizosphere and root endosphere microbial communities were subsequently

investigated using amplicon sequencing and shotgun metagenome sequencing. RH, rhizosphere of healthy plants; RD, rhizosphere of diseased

plants; EH, endosphere of healthy plants; ED, endosphere of diseased plants.

DNA quality and concentration were measured using gel

electrophoresis (0.8% agarose gel) and the Qubit dsDNA HS Assay

Kit (Thermo Scientific, Rockford, IL, USA), respectively, on a Qubit

3.0 fluorometer.

Amplicon sequencing and data processing

The primers 515F (5
′
-GTGCCAGCMGCCGCGG-3

′
)

and 907R (5
′
- CCGTCAATTCMTTTRAGTTT-3

′
) targeting

the V4–V5 region of the 16S rRNA gene were used to

analyze the rhizosphere bacterial community. The primers

799F (5
′
-AACMGGATTAGATACCCKG-3

′
) and 1193R (5

′
-

ACGTCATCCCCACCTTCC-3
′
) targeting the bacterial V5–V7

regions of the 16S rRNA gene were used for endosphere bacterial

community analysis. For the polymerase chain reaction (PCR), a

20-µL reaction mixture containing 10 µL of 2 × SYBR Premix Ex

TaqTM (Takara, Dalian, China), 0.5 µL of each primer (10µM),

and 10 ng of template DNA was cycled as follows: 3min at 95◦C;

27 cycles of 30 s at 95◦C, 30 s at 55◦C, and 45 s at 72◦C; a final

extension of 10min at 72◦C. PCR reactions were performed in

triplicate. The PCR product was extracted from 2% agarose gel,

purified using the AxyPrep DNA Gel Extraction Kit (Axygen

Biosciences, Union City, CA, USA) according to manufacturer’s

instructions, and quantified using a QuantusTM Fluorometer

(Promega, USA). The purified amplicons were then sequenced by

Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) on

Illumina MiSeq PE300.

After sequencing, the raw 16S rRNA gene sequencing reads

were demultiplexed, quality-filtered by fastp version 0.20.0 (Chen

et al., 2018), and merged using FLASH version 1.2.7 (Magoc

and Salzberg, 2011) as described in a previous study (Chu et al.,

2020). The resulting data were then processed in the QIIME2

(Quantitative Insight into Microbial Ecology toolkit, version

2021.8) pipeline (Bolyen et al., 2019). DADA2 (Callahan et al.,

2016) was deployed to remove noise and obtain absolute sequence

variants (ASVs) with denoise-single plugin. Considering that the

amplicons were obtained from the rhizosphere and endosphere

with different primers, operational taxonomic units (OTUs) were

chosen from ASVs at 97% sequence identity against the SILVA 138
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FIGURE 2

Microbiome assembly in plant rhizosphere and endosphere. (A) Alpha diversity of microbial communities in rhizosphere and endosphere. Significant

di�erences between di�erent groups were obtained using pairwise Wilcoxon tests with P-values. *P < 0.05, ***P < 0.001. (B) Non-metric

multidimensional scaling (NMDS) ordinations of Bray–Curtis dissimilarity matrices with permutational analysis of variance (PERMANOVA, R2= 0.372,

P < 0.001). The potential biomarkers were defined by LEfSe. Cladogram for taxonomic representation of significant di�erences between (C) RH and

RD, and (D) EH and ED. The colored nodes from the inner to the outer circles represent taxa from the phylum to the genus level. The significantly

di�erent taxa are signified by di�erent colors representing the four groups. Histogram of the LDA scores for di�erentially abundant features between

(E) RH and RD, and (F) EH and ED. The threshold on the logarithmic LDA score for discriminative features was set to 4.0. RH, rhizosphere of healthy

plants; RD, rhizosphere of diseased plants; EH, endosphere of healthy plants; ED, endosphere of diseased plants.

SSURef NR 99 full-length sequences database (Quast et al., 2013)

using the vsearch cluster-features-closed-reference plugin. OTUs

assigned to chloroplasts, mitochondria, or archaea were removed,

and the corresponding representative sequences were also filtered.

After quality filtering, a total of 1,688,642 high-quality 16S rRNA

reads were generated, which were finally clustered into 3,331 OTUs.
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FIGURE 3

Modified normalized stochasticity (MST) ratios estimated for

bacterial community assembly mechanism. The four groups are

represented by di�erent colors. The vertical dashed lines represent

the mean MST values of di�erent groups. RH, rhizosphere of healthy

plants; RD, rhizosphere of diseased plants; EH, endosphere of

healthy plants; ED, endosphere of diseased plants.

Shotgun metagenome sequencing and
data processing

To evaluate the impact of BWD on the community function

of tomato bacterial microbiomes, rhizosphere DNA samples were

mixed for shotgun metagenome sequencing. The construction

of metagenome libraries was performed using the NEB Next
R©

UltraTM DNA Library Prep Kit for Illumina
R©

(New England

Biolabs, MA, USA). Eight DNA samples were sequenced as 150 bp

paired-end reads on the Illumina NovaSeq 6000 platform at Houze

Biological Technology Co. (Hangzhou, China) with an average

of 20 Gb raw data per sample. Trimming and quality filtering

were performed using Trimmomatic 0.39 (Bolger et al., 2014).

To avoid any disturbance, reads mapped to the host reference

genome (Solanum lycopersicum, RefSeq ID GCF_000188115.5)

were removed by Bowtie 2 (version 2.4.1; Langmead and Salzberg,

2012). The remaining reads were de novo assembled into contigs

using metaSPAdes v.3.13.0 (parameters: K-mer Sizes = 21, 33, 55;

Nurk et al., 2017). Generated contigs longer than 800 bp were

selected to obtain the coding sequences (CDSs) and corresponding

amino acid (AA) sequences using the predicting function of

Prodigal (version 2.6.1, Hyatt et al., 2010). All predicted genes

were then clustered to a non-redundant gene catalog by using

CD-HIT version 4.8.1 (Li and Godzik, 2006) with the identity

cutoff at 0.95. The quantification of 12,594,607 non-redundant

genes in each sample was performed using Salmon (Patro et al.,

2017). Functional annotation was carried out with DIAMOND

(Buchfink et al., 2015) against the Kyoto Encyclopedia of Genes and

Genomes (KEGG, version 94.2) database (Kanehisa et al., 2012),

resulting in 8,040 KEGG orthology (KO) functional categories and

501 KEGG pathways.

Statistical analysis

To determine the diversity in the four groups of samples (RH,

RD, EH, and ED), the alpha (Shannon and Chao1 index) and

beta (Bray–Curtis dissimilarities) diversity indices were calculated

with the “vegan” package in R (Dixon, 2003) using the rarefied

microbial abundance table. The differences in alpha diversity

were tested using the Wilcoxon rank-sum tests using the base

R package “stats” (version 4.1.1) wilcox.test function. Non-

metric multidimensional scaling (NMDS) and non-parametric

multivariate analysis of variance (ADONIS; Anderson, 2001) were

used to examine the microbial community dissimilarity between

the four groups. To analyze taxonomic differences in rhizosphere

and endosphere bacterial abundance, a linear discriminant

analysis (LDA) effect size (LEfSe) analysis was performed on

the amplicon dataset at the genus level (Galaxy web application,

http://huttenhower.sph.harvard.edu/galaxy/; Segata et al., 2011).

NMDS was also applied to determine whether the microbiomes

were functionally distinct between different groups.

The modified normalized stochasticity ratio (MST) based

on Bray–Curtis dissimilarity was used to identify the bacterial

community assembly processes, with 50% as the threshold for

determining the dominance of deterministic (MST < 50%) or

stochastic processes (MST > 50%; Ning et al., 2019). A neutral

community model (NCM, Sloan et al., 2006) was also used to cross-

check the results of the MST analysis. To assess the universality of

microbial dynamics, a dissimilarity–overlap curve (DOC) analysis

was conducted using the R package “DOC” with a bootstrap

value of 200 (Bashan et al., 2016). The overlap was defined as

the fraction of shared taxa between two communities in the same

group. Dissimilarity refers to differences in shared taxa relative

abundance. The dissimilarity and overlap of all sample pairs were

plotted to generate a dissimilarity–overlap curve (DOC) with

a non-parametric regression and bootstrap sampling procedure.

Universal dynamics exist only when a negative correlation is

detected between dissimilarity and overlap and the DOC inflection

point occurs where the slope is negative. The fraction of points after

the inflection point is termed Fns.

To infer the co-occurrence and mutual exclusion patterns, the

CoNet plugin in Cytoscape version 3.7.1 (Shannon et al., 2003)

was used to calculate multiple correlations and similarities between

the microbial OTUs. To decrease the number of false positives, all

taxa below a minimum occurrence of six were combined across

the samples into a garbage taxon, and the Benjamini–Hochberg

procedure was adopted to adjust the P-values. The co-occurrence

between taxa was considered valid when the P-value (adjusted) was

below 0.05 (Benjamini and Hochberg, 1995) and the correlation

threshold was above 0.7. Network images were generated with

Gephi (version 0.9.2; Heymann, 2009) with the Fruchterman-

Reingold layout. Topological parameters of networks were also

calculated with Gephi.

Functional diversity, including alpha and beta diversity,

was also calculated using the “vegan” package in R. Principal

coordinate analysis (PCoA) combined with ADONIS was applied

to examine functional gene dissimilarity between RH and RD using

“vegan” with the Bray–Curtis dissimilarity metric. Differential

analysis of functional genes and KEGG pathways was carried out

using a generalized linear model (GLM) in R package “edgeR”
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FIGURE 4

Co-occurrence network for bacterial communities. Each node represents an OTU, and the relationship between two OTUs in the network was

shown by an edge (Coe�cient R ≥ 0.7, significant P ≤ 0.01). The nodes are colored according to module classes. Node size reflects the relative

abundance of an OTU. The edge color represents positive (green) or negative (red) correlation. RH, rhizosphere of healthy plants; RD, rhizosphere of

diseased plants; EH, endosphere of healthy plants; ED, endosphere of diseased plants.

(Robinson et al., 2010) and STAMP (Parks et al., 2014) withWelch’s

t-test, and all P-values were corrected for a false discovery rate

(FDR) of 0.01 using the Benjamini–Hochberg algorithm.

Results

Diversity and community composition

At the phylum level, Proteobacteria, Bacteroidota, and

Actinobacteriota were dominant across all rhizosphere and

endosphere samples (Supplementary Figure 1). Bacterial alpha

diversity in RH (Shannon index/Chao1 index: 6.70/183.0) was

significantly lower than that in RD (Shannon index/ Chao1 index:

7.08/237.5, P < 0.001), while bacterial diversity in EH (Shannon

index/Chao1 index: 5.52/184.5) was significantly higher than

that in ED (Shannon index/Chao1 index: 0.71/52.0, P < 0.01,

Figure 2A). Non-metric NMDS analysis based on Bray–Curtis

dissimilarity showed that the samples clustered well and separated

according to the different sample groups (Figure 2B). The

ordination plot indicated that microbial community composition

was distributed according to the groups (Figure 2B). ADONIS

further demonstrated that there was a significant difference in

community composition between different groups (R2 = 0.372,

P < 0.001). ANOSIM analysis indicated that the compositional

variation (indicated by Bray–Curtis dissimilarity) was lower in

both RH and EH compared to RD (R = 0.469, P = 0.001) and

RH (R= 0.424, P = 0.002; Supplementary Figure 2).

LEfSe analysis was conducted to explore the indicator taxa

in the four groups. In the rhizosphere, the phyla Actinobacteriota

and Firmicutes, orders Xanthomonadales and Chitinophagales, and

genera Chujaibacter, Burkholderia, Caballeronia, Paraburkholderia,

Mizugakiibacter, and uncultured Chitinophagaceae were enriched

in RH. Orders Burkholderiales and Flavobacteriales, family

Xanthomonadaceae, and genus Ralstonia were greatly enriched

in RD compared to RH (Figures 2C, E). In EH, the most

significantly different taxa were phylum Firmicutes, classes

Alphaproteobacteria and Bacilli, orders Rhizobiales, Bacillales,

Pseudomonadales, Corynebacteriales, and Enterobacterales, families

Rhizobiaceae, Bacillaceae, Pseudomonadaceae, Mycobacteriaceae,

and Comamonadaceae, and genera unclassified Burkholderiaceae,
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TABLE 1 Topology properties of the RH, RD, EH, and ED networks.

Parameter RH RD EH ED

No. of nodes 381 621 322 49

No. of edges 3,654 11,958 5,478 260

Linkage density 4.8 9.63 8.51 2.65

No. of positive

edges/proportion

(%)

3,458 (86%) 10,678 (89%) 5,126 (94%) 246 (95%)

No. of negative

edges/proportion

(%)

496 (14%) 1,280 (11%) 352 (6%) 14 (5%)

Clustering

coefficient

0.466 0.567 0.63 0.8

Avg. degree 9.591 19.256 17.012 5.306

Betweeness

centrality

0.0017 0.0012 0.0026 0.0525

Closeness

centrality

0.2587 0.2829 0.3001 0.5765

Modularity 0.673 0.65 0.67 0.624

Network density 0.025 0.031 0.053 0.111

Average path

length

4.11 3.68 3.38 2.61

RH, rhizosphere of healthy plants; RD, rhizosphere of diseased plants; EH, endosphere of

healthy plants; ED, endosphere of diseased plants.

Pseudomonas, Mycobacterium, Burkholderia Caballeronia

Paraburkholderia, Allorhizobium, Neorhizobium, Pararhizobium,

Rhizobium, Bacillus, Cupriavidus, and Shinella. Compared to EH,

genera Ralstonia and Cutibacterium were significantly enriched in

ED (Figures 2D, F).

Community assembly mechanisms

The modified normalized stochasticity ratio (MST) index

was calculated to evaluate the importance of stochasticity and

determinism for bacterial community assembly. The average MST

values in RH, RD, EH, and ED were 0.690, 0.462, 0.278, and

0.238, respectively (Figure 3). In addition, we further assessed the

contribution of the stochastic process to community assembly

by the neutral community model (NCM). The NCM model

performance was indicated by R2, where a higher R2 (close to 1)

indicates a better neutral fitting (more stochastically assembled).

RH had a higher NCM model R2 in comparison with RD

(R2 = 0.607 vs. R2 = 0.475, Supplementary Figure 3).

Microbial co-occurrence patterns

To determine the effect of BWD on microbial co-occurrence

patterns, networks based on correlation relationships were

constructed (Figure 4). Based on complexity-denoting network

topological parameters, higher node (RH/RD: 381/621) and

edge (RH/RD: 3654/11958) numbers and smaller betweenness

centrality (RH/RD: 0.0017/0.0012) were identified in the RD

network compared to the RH network (Table 1). In contrast, higher

node (EH/ED: 322/49) and edge (EH/ED: 5478/260) numbers

and smaller betweenness centrality (EH/ED: 0.0026/0.0525) were

recorded in the EH network compared to that recorded in the

ED network (Table 1). The topological parameters, clustering

coefficient (RH/RD: 0.466/0.567), average degree (RH/RD:

9.591/19.256), and average path length (RH/RD: 4.11/2.68), were

also assessed, and a higher clustering coefficient and average degree

but lower average path length were observed in the RD network

compared to that in the RH network (Table 1).

E�ects of BWD on community universality

Universal dynamics denotes when communities in the same

group share the same interaction rules. The rules are supported

only if the shared taxa have the same relative abundances (Bashan

et al., 2016). To assess whether there are universal dynamics

in samples that belonged to the same group, we performed a

dissimilarity–overlap curve (DOC) analysis. Here, the overlap

indicates the fraction of the shared taxa between two communities

in the same group. Dissimilarity refers to differences in the

composition of the shared taxa based on relative abundance. The

dissimilarity and overlap of all sample pairs are then plotted to

generate a DOC with a non-parametric regression and a bootstrap

sampling procedure. Universal dynamics were determined only

when a negative correlation was detected between dissimilarity and

overlap, and the inflection point occurred in DOC where the slope

was negative. The fraction of points after the inflection point is

termed as Fns.

The DOCs had significant negative slopes, with an Fns of 6.1%

for RH community comparisons (Figures 5A, B); this was lower

than that of the RD community comparisons (9.1%). Similarly, the

DOCs for EH comparisons had significant negative slopes with

an Fns of 5.6%, which was also lower than those observed for the

diseased ED community comparisons (8.3%; Figures 5C, D).

Determining the functional profile of the
rhizosphere microbiome

The metagenomic functional profiling yielded a total of 8,040

KO functional categories. PCoA and Adonis reflected significant

differences in microbiome functional profiles between RH and RD

(R2 = 0.71, P < 0.05, Supplementary Figure 4D). A total of 1,015

significantly different KOs were detected, of which 391 were found

to be significantly enriched in RH and 624 were enriched in RD

(Figure 6A).

To clarify which significant KOs were predominant, KOs with

relative abundance >0.08% were used for statistical analysis. This

resulted in 48 KOs, four of which were significantly enriched

in RH; the remaining 44 were significantly enriched in RD.

K01156 (res, type III restriction enzyme [EC:3.1.21.5], prokaryotic

defense system, mean 0.055%) was most abundant in RH,

followed by K12526 (lysAC, bifunctional diaminopimelate

decarboxylase/aspartate kinase, mean 0.026%), K05998
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FIGURE 5

Universal ecological dynamics of RH (A), RD (B), EH (C), and ED (D) microbiome. The ecological universality of microbiome was assessed using

dissimilarity-overlap curves (DOC). DOCs are in red, the distribution density of sample pair overlap is in light green, and the point at which the DOC

first becomes negative is marked by a vertical dashed line (chosen by median of 200 bootstraps). A higher Fns value indicates higher ecological

universality (host-independent) of the metacommunity. RH, Rhizosphere of healthy plants; RD, Rhizosphere of diseased plants; EH, Endosphere of

healthy plants; ED, Endosphere of diseased plants.

(pseudomonalisin [EC:3.4.21.100], peptidases, and inhibitors,

mean 0.022%), and K09704 (mean 0.018%; Figure 6B). In

RD, the top three KOs were K07481 (transposase, IS5 family,

mean 0.287%), K15125 (fhaB, filamentous hemagglutinin,

glycosaminoglycan binding proteins, mean 0.235%), and K11904

(vgrG, type VI secretion system secreted protein VgrG, mean

0.166%). When the pathways involved with these significantly

differential KOs were mapped, KOs enriched in RH were mainly

assigned to KEGG pathways “Prokaryotic defense system,”

“Peptidases and inhibitors,” “Monobactam biosynthesis,” “Glycine,

serine, and threonine metabolism,” and “cysteine and methionine

metabolism.” Except for pathway “Metabolic pathways,” which

was shared with RH, KOs enriched in RD mainly mapped into

pathways “Transporters,” “ABC transporters,” “Enzymes with

EC numbers,” “Two-component system,” “Secretion system,”

“Replication and repair,” and “biosynthesis of siderophore group

non-ribosomal peptide” (Figure 6B).

A total of 19 enriched KEGG pathways were detected in

RH and seven were enriched in RD. Despite the pathways

enriched in RH exhibiting a diversified pattern, pathways with

high relative abundance were principally those involved in

metabolism and human diseases (vancomycin resistance). In RD,

the pathway “Two-component system” involved in environmental

information processing was most abundant, followed by “Quorum
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FIGURE 6

Functional profile of rhizosphere microbiome. Significantly (P < 0.01) di�erent A, B KO functional categories and C pathways between RH and RD. All

KO functional categories are depicted in (A), and the di�erential KO functional categories were evaluated using the generalized linear model (GLM)

edgeR approach. The abundant di�erential KO functional categories (relative abundance > 0.08%) are described in the heatmap (B), and the involved

pathways are counted in the histogram and are linked by lines. KO functional categories that were significantly enriched in RH or RD were separately

analyzed for KEGG pathway enrichment; those pathways that did not belong to microorganisms were removed; all significantly enriched pathways

are described in (C). The pathway di�erence between RH and RD was quantified using a two-tailed Wilcoxon test, and the corrected P-values were

shown. RH, rhizosphere of healthy plants; RD, rhizosphere of diseased plants.

sensing” involved in cellular processes. Pathways “Nitrogen

metabolism” and “Butanoate metabolism” were more abundant in

RD than in RH. Furthermore, pathways “Cationic antimicrobial

peptide (CAMP) resistance”/“beta-Lactam resistance” involved

in human diseases and “Butanoate metabolism” and “Plant–

pathogen interaction” involved in organismal systems also showed

significantly higher relative abundance in the RD samples

(Figure 6C).

Discussion

Using a field sampling approach, the present study revealed

multifaceted disease-induced variations in the community

assembly and functions of plant-associated microbiomes, which

may provide new insights into the role of pathogen invasion

in altering the functioning of plant-associated microbiomes in

soil ecosystems.

BWD increased diversity of the rhizosphere
microbiome

The disease occurs commonly alongside changes in microbial

diversity in the rhizosphere (Wei et al., 2018; Yuan et al., 2018;

Shi et al., 2019). Contrasting previous reports showing pathogen

invasion led to a decline in microbial diversity, the results of this

study showed that the alpha diversity of diseased plants (RD) was

significantly higher than that of healthy ones (RH; Figure 2A). This

demonstrated that pathogen invasion may not necessarily suppress

microbial diversity in the rhizosphere (Gibbons et al., 2016); on the

contrary, the diverse nutrients released by the damaged roots may

have the potential to feedmoremicrobial species in the rhizosphere,

leading to a diversity increase after pathogen invasion. Similarly,

beta diversity also increased with pathogen infection (Figure 2B),

indicating that pathogen invasion disrupted host control of the

rhizosphere microbiome (Wei et al., 2018; Wen et al., 2020). This

is inconsistent with the prediction of the Anna Karenina principle,

which suggested that the microbiome of diseased hosts may

display greater compositional or functional variation compared to

healthy ones (Arnault et al., 2023). Environmental perturbations

such as pathogen invasion could lead to the development of new

niches, and microbes nearby could then colonize the rhizosphere

opportunistically, resulting in higher beta diversity (Macke et al.,

2017; Yu et al., 2020; Lin et al., 2022).

BWD promoted microbial co-occurrence
complexity and altered the relative
contribution of deterministic processes

Using the ecological null model, the relative contribution

of deterministic processes in influencing bacterial community

assembly increased under diseased conditions (Figure 3 and
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Supplementary Figure 3B). The deterministic process is mainly

derived from environmental filtering and species competition

that influence the occurrence and abundance of species (Zhou

and Ning, 2017). The enhanced deterministic processes observed

after pathogen invasion may be jointly attributed to the

drastic environmental changes as well as to different biological

interactions that then occurred (Zhang et al., 2022). Roots

damaged by pathogen invasion can release rich nutrients into

the rhizosphere; consequently, many microbial species that favor

copiotrophic conditions would be subsequently enriched, while

some oligotrophic species would be selectively excluded. For

example, the genus Ralstonia is mainly composited of copiotrophic

species that prefer nutrient-rich conditions and was found to be

significantly enriched in diseased plants (Li et al., 2021). The “cry

for help” hypothesis suggests that many plant-beneficial microbial

species, especially those with the ability to antagonize pathogens,

would be selectively recruited by plants after pathogen invasion,

contributing to the deterministic processes in the diseased plant

rhizosphere (Gao et al., 2021; Arnault et al., 2023).

While co-occurrence does not directly reflect interaction, it

allows the construction of a linkage between community assembly

processes and co-occurrence patterns. Using the co-occurrence

network analysis, pathogen invasion was found to increase the

network complexity of the plant-associated microbiome (Table 1),

implying that pathogen invasion potentially promoted microbial

interactions. In addition to network analysis, the universal

dynamics of the plant-associated microbiome were analyzed using

DOCs, which can also reflect microbial interactions (Bashan

et al., 2016). A higher Fns value was found for diseased plants

than for healthy plant-associated microbiomes, suggesting that

microbes in diseased plants interacted more closely. These results

consistently indicated that pathogen invasion promoted microbial

interactions in the rhizosphere and endosphere (Figure 5), which

may contribute to the deterministic assembly. It should be noted

that the tightenedmicrobial interactionsmay also be linked to plant

disease. A community with tight and complex interactions always

has lower community stability, since resonance is more likely to

occur (Coyte et al., 2015; de Vries et al., 2018). As a consequence, it

can be inferred that pathogens may have better chances to colonize

and proliferate in these less stable environments. Therefore,

future experiments testing plant disease incidence and community

stability in complex microbial communities will be necessary to

discern their relative importance in soil and plant health.

BWD induced changes in microbiome
functions

Using shotgun metagenome sequencing, we investigated how

pathogen invasion affects the functioning profile of the rhizosphere

microbiome. Metagenomic analysis indicated that several genes

essential for the pathogenicity of R. solanacearum involved in

pathways “Two-component system” and “Secretion system” (Genin

and Denny, 2012), such as fhaB and vgrG, were enriched

in RD (Figure 6B). A higher relative abundance of K05998

(pseudomonalisin [EC:3.4.21.100], peptidases, and inhibitors) was

found in RH. Peptidases have been reported to be potential

biocontrol factors participating in the predation of Myxococcus

xanthus on R. solanacearum (Dong et al., 2022; Figure 6B). An

important differential pathway worth noting is “Quorum sensing,”

which was found to be significantly enriched in the diseased

rhizosphere (Figure 6C). Quorum sensing can coordinate the

expression of specific genes in multiple pathogens and regulate

pathogenic performance (Bassler, 1999). It can therefore be

speculated that other microorganisms may induce pathogenic

Ralstonia to cause plant disease, although this needs to be

demonstrated by further experimentation (Shi et al., 2019; Li M.

et al., 2022). In contrast, some plant-beneficial pathways such as

“streptomycin biosynthesis” were found to be significantly enriched

in the healthy plant rhizosphere (Figure 6C). Streptomycin is an

aminoglycoside antibiotic that inhibits protein synthesis and targets

the 30S ribosomal protein RpsL. Streptomycin has been used

to control multiple plant bacterial diseases and can antagonize

multiple phytopathogens such as Pseudomonas aeruginosa and R.

solanacearum (Lee et al., 2018; Attia et al., 2022).

Conclusion

This study aimed to reveal how plant-associated microbiomes

respond to plant disease. The results demonstrated that pathogen

invasion enhanced the bacterial deterministic processes, promoted

microbial co-occurrence complexity and ecological universality,

and modified the functional profile of the plant-associated

microbiome. This study broadens the understanding of the

relationships between plant disease and the plant microbiome and

provides novel insights into BWD occurrence.
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