
Frontiers in Microbiology 01 frontiersin.org

The transcription factor Ste12-like 
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Introduction: Flammulina filiformis is one of the most commercially important edible 
fungi worldwide, with its nutritional value and medicinal properties. It becomes a 
good model species to study the tolerance of abiotic stress during mycelia growth 
in edible mushroom cultivation. Transcription factor Ste12 has been reported to be 
involved in the regulation of stress tolerance and sexual reproduction in fungi.

Methods: In this study, identification and phylogenetic analysis of ste12-like 
was performed by bioinformatics methods. Four ste12-like overexpression 
transformants of F. filiformis were constructed by Agrobacterium tumefaciens-
mediated transformation.

Results and Discussion: Phylogenetic analysis showed that Ste12-like contained 
conserved amino acid sequences. All the overexpression transformants were 
more tolerant to salt stress, cold stress and oxidative stress than wild-type strains. 
In the fruiting experiment, the number of fruiting bodies of overexpression 
transformants increased compared with wild-type strains, but the growth rate 
of stipes slowed down. It suggested that gene ste12-like was involved in the 
regulation of abiotic stress tolerance and fruiting body development in F. filiformis.
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1. Introduction

Flammulina filiformis (previously named Flammulina velutipes), also known as the Winter 
Mushroom or Enokitake, is an important edible and medicinal mushroom that is cultivated on a 
large scale (Wang et al., 2012; Zhang et al., 2012; Tao Q. et al., 2016; Dai and Yang, 2018; Wang 
P. M. et al., 2018). It is also one of the mushrooms with industrial cultivation at present (Wang 
Q. Y. et al., 2018). In the process of industrial cultivation of mushrooms, strict clean environment 
control greatly reduces the occurrence of pests and diseases. Understanding the response mechanism 
of abiotic stress will help us to obtain better-cultivated varieties to cope with the adverse environment 
and achieve efficient production of edible fungi. Thereby, the effect of abiotic stress during the 
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mycelial culture process and the fruiting body development become 
major scientific issues. F. filiformis has stable cultivation characteristics 
and mature genetic operation technology, which can be  used as a 
potential model material for studying the growth and development 
regulation mechanism of mushrooms (Park et al., 2014).

The frequently conducted studies concerning abiotic stress tolerance 
are necessary and generally interesting topics in fungi biology. Melatonin 
existed extensively in mushrooms and enhanced cadmium tolerance 
through antioxidant-related metabolites and enzymes. It relieved 
Cd-induced damage in the Volvariella volvacea (Gao et al., 2020). The 
expression levels of genes related to carotene production under oxidative 
and osmotic stress were studied by quantitative real-time PCR (qRT-
PCR) in Cordyceps militaris. It was reported that C. militaris could 
produce a large amount of glycerol and carotenoids to resist high 
oxidative stress when cultured in a saline–alkali environment for a long 
time (Zhao et al., 2021). In the edible mushroom, members of the C2H2-
type zinc finger (C2H2 Znf) transcription factor expression levels are 
changed suddenly under heat and cold stress, suggesting that these genes 
may participate in abiotic stress responses (Ding et al., 2022).

The MAPK signaling pathway widely exists in various eukaryotes 
and is involved in cell division, differentiation, apoptosis, and other life 
processes (Mu and Chen, 2002; Hagiwara et al., 2016). The pheromone 
signaling pathway is one of the MAPK signaling pathways (Tatjer et al., 
2016; Li et al., 2017; Deng and Lin, 2018). It was reported that the 
pathway participated in the mating, growth and development, and 
morphogenesis of yeast and filamentous fungi (mostly pathogenic 
fungi) (Cervantes-Chávez and Ruiz-Herrera, 2006; Hoi and Dumas, 
2010; Palacios et al., 2011; Takemoto et al., 2011; Kitade et al., 2015; 
Leng and Song, 2016; Chen et al., 2019). After mating, the pheromone 
signaling pathway is “turned on” by mating type B genes in the 
dikaryotic mycelia, and transcription factor Ste12 is activated (Brown 
and Casselton, 2001). The Saccharomyces cerevisiae Ste12 protein 
regulates the traits of mating and invasion by interacting with other 
transcription factors, to bind and activate distinct sets of genes in 
response to mating pheromones or nutrients, respectively (Zhou et al., 
2020). The first Ste12 gene was isolated from the yeast S. cerevisiae 
(Errede and Ammerer, 1989). After this, other homologous 
transcription factors that contain two C-terminally located tightly 
linked C2H2 Znf were named Ste12-like factors (Hoi and Dumas, 
2010; Wei et al., 2017). The Ste12-like transcription factor MaSte12 is 
involved in the pathogenicity by regulating the appressorium formation 
in Metarhizium acridum (Wei et  al., 2017). Homeodomain 
transcription factor Ste12 is involved in the virulence and pathogenicity 
of filamentous fungi (Schamber et al., 2010; Wei et al., 2017; Xu et al., 
2018; Zhu et  al., 2018; Liu et  al., 2020; Lin et  al., 2021). Yeast 
transcription factor Ste12 plays a role in response to osmotic, high 
temperature, low pH, starvation, and other stress (Morillon et al., 2000; 
Gancedo, 2001; Morishita et al., 2002; Heise et al., 2010; Schamber 
et al., 2010; Vidal et al., 2013; Zhou et al., 2020; Purohit and Gajjar, 
2022). The transcription factors in shared orthogroups included the 
light-sensing white collar complex member WC-1, orthologs of 
S. cerevisiae sexual reproduction-related Ste12, and are important for 
sexual morphogenesis (Merényi et  al., 2022). In addition, the 
metabolites related to adaptation to environmental changes and stress 
resistance, such as arginine and proline, are accumulated, so that the 
dikaryotic mycelium obtained better adaptability to environmental 
stress (Yang and Gao, 2007; Wang et al., 2015).

The gene ste12-like encoding a dual C2H2 Znf transcription factor 
domain is located downstream of the pheromone signaling pathway 
and is a key factor in fungal growth and development (Hoi and 
Dumas, 2010; Steindorff et al., 2022). It is involved in the regulation 
of sexual reproduction, the pathogenicity of most pathogenic fungi, 
and osmotic stress (Bardwell et al., 1998; Vallim et al., 2000; Kim et al., 
2009; Wilson et al., 2022). Three downstream MAPK pathway TFs 
(Rlm1, Swi6, and Ste12) of MAPK pathways have been demonstrated 
to contribute to the stress response and found to be involved in the 
pathogenesis of Fusarium oxysporum (Zuriegat et al., 2021). In our 
previous study, pheromone signaling pathway elements were 
annotated, and the ste12-like was a differentially expressed gene in the 
fruiting body development of F. filiformis. The expression of gene 
ste12-like was down-regulated in elongation stipe. It suggested that the 
overexpression of ste12-like might inhibit the elongation of the stipe 
(Liu et al., 2022). In this study, the function of transcription factor 
encoding gene ste12-like in the mycelial abiotic stress and fruiting 
body development in F. filiformis was studied. The results could help 
to further analyze fungal abiotic stress tolerance and fruiting body 
development regulation.

2. Materials and methods

2.1. Strains and media

The F. filiformis dikaryotic strain FL19 was the receptor strain 
of overexpression. The F. filiformis monokaryotic strain L11 
(Protoplast mononuclear strain from FL19) was used for cloning 
gene ste12-like. The strain was maintained on potato dextrose agar 
medium (PDA; 200 g/L of potato; 20 g/L of glucose; 20 g/L of agar; 
Solarbio, China) at 25°C and provided by the Fujian Edible Fungi 
Germplasm Resource Collection Center of China. Escherichia coli 
strain DH5α (Vazyme, China) was used for cloning and plasmids 
propagation, while Agrobacterium tumefaciens strain GV3101 
(TransGen Biotech, China) was used for transferring the plasmids 
into F. filiformis.

Induction medium (IM) included 10 mM glucose, 10 mM 
K2HPO4, 10 mM KH2PO4, 0.7 mM CaCl2, 2 mM MgSO4·7H2O, 9 μM 
FeSO4·7H2O, 2.5 mM NaCl, 4 mM (NH4)2SO4, 0.5%(w/v) glycerol, 
200 μM acetosyringone (AS), and 40 mM 2-(N-Morpholino)
ethanesulfonic acid (MES) (pH5.3) (Nielsen and Sørensen, 1997; Shi 
et al., 2012; Du et al., 2022).

To produce fruiting bodies, strains were cultivated in tissue 
culture bottles containing growth substrate (cottonseed hulls of 53.5%, 
wheat bran of 25%, sawdust of 20%, gypsum of 1%, and ground 
limestone of 0.5%, with a water content of 60%).

2.2. Identification and phylogenetic 
analysis of gene ste12-like

The sequence of ste12-like (ID: gene186) was obtained from the 
genome of F. filiformis monokaryotic strain L11 (BioProject: 
PRJNA191865). The sequences of nucleotide and protein of ste12-like 
can be found in the GenBank with accession Nos. OM816714 and 
UPT49966.1. Nuclear localization signals (NLSs) and protein domains 
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were predicted by online software PSORT II Prediction (1Horton et al., 
2007) and InterPro 91.0 (2Blum et  al., 2020). Multiple sequence 
alignment of the F. filiformis Ste12-like and homologous proteins 
downloading from GenBank were performed with Clustal Omega 
(3Sievers and Higgins, 2014).

DNA sequences were edited and aligned with BioEdit v 7.0.9 
(Halling, 1999). In the phylogenetic analyses, the STE-like 
transcription factor domain-containing protein of Elsinoe fawcettii 
(GenBank accession number: ACT65872.1) was chosen as the 
outgroup. Sequences of other species were downloaded from NCBI 
with GenBank numbers. Neighbor-Joining (NJ) analysis was 
conducted using MEGA 7.0 (Kumar et al., 2016). For NJ analysis, all 
parameters were kept default (Kumar et al., 2012). Motif prediction of 
all sequences was performed using the MEME-suite website4 and 
default parameters (Bailey et al., 2015).

2.3. DNA extraction, plasmid construction, 
and fungal transformation

Total genomic DNA was extracted from the mycelia of F. filiformis 
strains, grown on cellophane-covered PDA plates at 25°C for 7 days, 
using EasyPure Plant Genomic DNA Kit (TransGen Biotech, China) 
according to the manufacturer’s protocol. Isolated DNA was used as a 
template for PCR amplification. PCR conditions were as follows: 5 min 
at 94°C, followed by 35 cycles of 45 s at 94°C, 45 s at annealing 
temperature, 1 min at 72°C, then 10 min at 72°C.

The binary vector pBHg-BCA1 was provided by the Fujian Edible 
Fungi Germplasm Resource Collection Center of China. It was used to 
construct the overexpression plasmid of gene ste12-like (Lyu et al., 2021). 
A schematic representation of ste12-like overexpression plasmid 

1 http://psort.hgc.jp/form2.html

2 http://www.ebi.ac.uk/interpro/

3 http://www.ebi.ac.uk/Tools/msa/clustalo/

4 https://meme-suite.org/meme/tools/meme

constructs is shown in Supplementary Figure 1. In the plasmid, the 
promoter of glyceraldehyde-3-phosphate dehydrogenase (Pgpd) and 
terminator of T35S were used to control the expression of gene ste12-like.

For the construction of overexpression vector ste12-like, the full-
length fragment of the gene ste12-like was amplified from strain L11 
DNA using primer pairs (ste12-like F/R) with added Spe I (TaKaRa, 
Japan) and Apa I (TaKaRa, Japan) sites (Table 1). The PCR product 
was digested with Spe I and Apa I for 60 min at 37°C and then ligated 
into the pBHg-BCA1 plasmid using T4 ligase for 12 h at 16°C 
(Vazyme, China). Then the ste12-like overexpression plasmid 
constructs were transformed into E. coli DH5α for cloning 
(Kanamycin, 50 μg/mL), sequencing, and plasmids propagation and 
then transformed into A. tumefaciens GV3101 for fungal 
transformation (Lyu et al., 2021; Meng et al., 2021).

Hygromycin sensitivity of F. filiformis strain FL19 was tested first. 
The F. filiformis strain FL19 was inoculated on PDA (Solarbio, China) 
with different concentrations (0 μg/mL, 2.5 μg/mL, 5 μg/mL, 7.5 μg/mL, 
10 μg/mL, 12.5 μg/mL, and 15 μg/mL) of hygromycin B (Solarbio, China) 
and incubated at 25°C for 10 days. Overexpression plasmid Ste12-likeOE 
was transformed into F. filiformis receptor strain FL19 using the 
Agrobacterium tumefaciens-mediated transformation (ATMT) approach 
(Lyu et al., 2021; Meng et al., 2021). Mycelia plugs (diameter 6 mm) from 
the edge of the FL19 colony were transferred into 50 mL centrifuge tubes 
together with A. tumefaciens in liquid IM for 6 h. After inoculation, 
co-cultures were maintained on the solid IM medium covered with 
sterile cellophane at 25°C for 3 days. In order to remove the A. tumefaciens 
as cleanly as possible, co-cultures were rinsed in a 50 mL sterile centrifuge 
tube, which contained 40 mL of sterile water added to 200 μg/mL of 
cefotaxime. Finally, mycelia plugs were dried with sterile filter paper and 
then cultured on the PDA medium supplemented with 12.5 μg/ml of 
hygromycin B and 100 μg/ml of cefotaxime at 25°C.

All putative transformants were first selected on PDA plates 
containing hygromycin B (12.5 μg/mL) five times to stabilize the 
genotype for further use. For integration confirmation, the 
fragment of gene hygromycin B phosphotransferase (Hpt) was 
amplified using primers Hpt (Table 1) to confirm the transformant 
of F. filiformis.

TABLE 1 List of primers in this study.

Primer Sequence 5′-3′ Melting temperature (°C)

ste12-like-F GGACTAGTATGCACCGCGAGGGCTTC
56

ste12-like-R AGGGCCCTTAAATAAATAATAAGTCGTGTTGG

GBT-F CCCAGGCTTTACACTTTAT
50

GBT-R AGCATTCGCCATTCAG

Hpt-F CTATTCCTTTGCCCTCGG
54

Hpt-R ATGAAAAAGCCTGAACTCACC

ACTB-F GATCGTATGCAGAAGGAGTTGACAC
58

ACTB-R CCACTCTCGTCGTACTCTTGCTTG

GAPDH-F CCTCTGCTCACTTGAAGGGT
58

GAPDH-R GCGTTGGAGATGACTTTGAA

ste12-like(qRT-PCR)-F GTGGGTGGACCTGGGATGAC
58

ste12-like(qRT-PCR)-R ATGCTGCTGGTGGTGCTGAT

“ACTAGT” underlined was Spe I site; “GGGCCC” underlined was Apa I site.
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2.4. RNA extraction and quantitative 
real-time PCR

RNA was extracted using OMEGA E.Z.N.A.Plant RNA Kit 
(Omega Bio-tek, United States). Samples were treated with the RNase-
free DNase I for 2 min at 42°C to remove potential genomic DNA 
contamination in the RNA extraction process. The quality and 
concentration of the RNA were evaluated by agarose gel 
electrophoresis and NanoDrop ND-1000 Spectrophotometer 
(NanoDrop Technologies, USA). RNA samples with A260/A280 ratios 
of 1.9 ~ 2.0 and concentrations that were higher than 500 ng/μL were 
used for further analysis. cDNA was synthesized using the same 
concentration (1 μg/μL) of total RNA by TransScript All-in-One First-
Strand cDNA Synthesis SuperMix for qPCR Kit (Transgen, Beijing, 
China) according to the manufacturer’s protocol. The resultant cDNA 
samples were stored at −80°C.

Reaction mixtures (25 μL volume) for qRT-PCR contained 0.5 μL 
of 10 μM of each primer, 12.5 μL of 2 × TransStartTM Top Green 
qPCR SuperMix, 0.5 μL of Passive Reference Dye/PCR Enhancer 
(50×), 1 μL of cDNA template, and 10 μL of ddH2O. Thermal cycling 
conditions were as follows: 30 s at 94°C, followed by 40 cycles of 5 s at 
94°C and 30 s at 60°C. The fragment size of gene ste12-like for 
qRT-PCR was 84 bp. The range of the dissociation ramp from 60°C 
to 95°C for 6 s that the fluorescence was acquired after the PCR 
program. The expression level of gene ste12-like was analyzed by 
qRT-PCR using 2-△△C

T method (Livak and Schmittgen, 2001). The 
qRT-PCR primers of ste12-like and reference genes glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and β-actin (ACTB) (Tao Y. et al., 
2016, 2019; Wu et al., 2019) are listed in Table 1. All the qRT-PCR 
primers were designed with flanking introns to prevent the 
amplification of residual genomic DNA. Three technical replicates 
and three biological replicates were set for each sample.

2.5. Resistance tests of transformants to 
abiotic stress

To investigate the abiotic stress tolerance, the transformants 
Ste12-likeOE8, Ste12-likeOE10, Ste12-likeOE14, Ste12-likeOE15, and wild-
type strain FL19 of F. filiformis were inoculated on the PDA medium 
and cultured at 25°C for 7 days. Then, the outer part of the colonies 
was picked as mycelial plugs (diameter 6 mm) for the abiotic stress 
test. First, the salt stress test was carried out. The mycelial plugs were 
inoculated on the center of the PDA medium containing different 
concentrations (0 g/L, 5 g/L, 10 g/L, 15 g/L, 20 g/L, and 25 g/L) of NaCl 
and KCl, respectively, at 25°C. Second, the temperature stress test was 
carried out. The mycelial plugs were inoculated on the center of the 
PDA medium and incubated at 15°C, 20°C, 25°C, and 30°C, 
respectively. Third, the oxidative stress test was carried out. The 
mycelial plugs were inoculated on the center of the PDA medium 
containing different concentrations (0 mmol/L, 5 mmol/L, 10 mmol/L, 
and 15 mmol/L) of H2O2 and incubated at 25°C, respectively. From the 
third day after inoculation, the diameter of the colony was measured 
by the cross-over method at regular intervals every day. The colony 
edge was then marked every 24 h in the following 7 days, and the 
mycelia growth rate was calculated as the average colony extension per 
day (Wu et  al., 2019). This experiment was repeated three 
times independently.

2.6. Fruiting body cultivation and 
phenotypic analysis of transformants

Strains were grown at 25°C for 30 days. After the mycelium was 
full for 3 days, the aged mycelium was scraped with a sterilized 
inoculation shovel and placed in the same incubator. Cold stimulation 
was performed at 15°C and 90% humidity until the primordia 
emerged (1 week). Cultures were maintained at a low temperature 
(15°C and 75% humidity) to allow the full fruiting body development. 
The primordia appeared on the 36th day. After 1 week, the stipes grew 
to the bottle mouth, and then the stipe length was measured every 
2 days until maturity on the 51st day. Then the number of fruiting 
bodies was counted according to the number of pilei. The fruiting 
bodies were dried at 60°C until constant weight, and the dry weight 
of each bottle was measured.

2.7. Statistical analysis

All experiments described in this study were carried out with 
three independent replicates to ensure that the trends and relationships 
observed were reproducible. The error bars indicate the standard 
deviation (SD) from the mean of triplicate samples. Statistical analyses 
were conducted using SPSS, version 22.0. One-way ANOVA was used 
to determine statistically significant differences between samples with 
IBM SPSS Statistics 22.0. Differences between samples were 
considered statistically significant at p < 0.05. Tukey’s post hoc test is 
further used to test the significant difference between any 
two-treatment means.

3. Results

3.1. Bioinformatics analysis of gene 
ste12-like

The coding sequence of gene ste12-like was 2,957 bp, with five 
exons and four introns, and encodes a protein with 908 amino acid 
residues. The localization of F. filiformis Ste12-like protein was 
nuclear (Reliability: 89; Reinhardt and Hubbard, 1998) with  
two NLSs (298–306: PTYKQRRKK; 714–720: PVRRHRS) 
(Supplementary Table  1) and two DNA-binding motifs 
(CPLLSCNRMFKRMEHLKRHLRTH; CDKCGKKFSRSDNLGQ 
HMRIH) of Zinc finger, C2H2 type, domain. After protein family 
prediction, Ste12-like (IPR003120) and C2H2 Znf (IPR036236) 
families were identified in F. filiformis Ste12-like and homologous 
proteins (Figure 1). Based on bioinformatic analyses, the two NLSs, 
Ste12-like (IPR003120) and C2H2 Znf (IPR036236) families, with 
two DNA-binding motifs predicted in Ste12-like revealed that it was 
a fungal transcription factor.

The phylogenetic tree of Ste12-like amino acid sequences of 
F. filiformis and other fungi was constructed by the NJ method 
(Figure 2). Phylogenetic analysis showed that Ste12-like contained 
conserved amino acid sequences, with three typical conserved 
motifs, namely motif 1, motif 2, and motif 3 (Figure  2). The 
distribution of conserved domains in the sequence was basically 
the same.
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3.2. Generation of overexpression 
transformants

The WT strains FL19 were cultured on the PDA medium 
containing different concentrations of hygromycin B. The mycelia 
could not grow on PDA containing 12.5 μg/mL of hygromycin B 
(Figure  3). Therefore, the optimal screening concentration was 
determined to be 12.5 μg/mL.

Putative Ste12-likeOE transformants were screened by PCR 
with Hpt-F/R primer pairs (Table  1). The results from PCR 
assays showed that the gene Hpt fragments were inserted in the 
WT strain (Figure  4A). Transformants were confirmed by 
qRT-PCR analysis to check the expression of gene ste12-like 
(Figure  4B). The transcript levels of ste12-like in the Ste12-
likeOE8, Ste12-likeOE10, Ste12-likeOE14, and Ste12-likeOE15 
transformants were up-regulated with an approximate fold 

FIGURE 1

Alignment of F. filiformis Ste12-like (GenBank accession No. UPT49966.1 marked in red triangle) and homologous proteins.
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increase of 195-, 25-, 60-, and 120-fold higher than the wild-type 
strain FL19, respectively (Figure 4B).

3.3. Overexpression of gene ste12-like 
abiotic stress tolerance in Flammulina 
filiformis

The colony edges of Ste12-likeOE transformants were smoother 
than the WT strains while culturing on the NaCl plates (Figure 5A). 
When the transformants were cultured on the NaCl plates, the lack of 
aerial mycelia led to the formation of transparent circles in the 
colonies (Figure  5A). The mycelia of transformants were more 
resistant to stress than the WT strains on the KCl plates (Figure 5C). 
With increasing salt concentration, there were more aerial mycelia of 
transformants, while the growth rate of WT mycelia was significantly 
inhibited (Figures 5B,D).

There was no significant difference in mycelial morphology and 
growth rate between Ste12-likeOE transformants and wild-type strains 
at the optimal temperature of 25°C. However, with a decrease in 
temperature, the growth rate of Ste12-likeOE transformants was higher 

than wild-type strain FL19 (Figure 6). The results suggested that the 
Ste12-likeOE transformants improved the ability to resist cold stress.

With increasing H2O2 concentration, the mycelium growth rate of 
wild-type FL19 was significantly inhibited (Figure 7). The mycelium 
growth rate of transformants was significantly higher than the wild-
type when treated with the same H2O2 concentration. The results 
showed that the Ste12-likeOE transformants enhance oxidative 
stress tolerance.

3.4. Gene ste12-like regulates the fruiting 
body development

Cultivation of the fruiting body was performed on overexpression 
transformants and wild-type strains separately. On the seventh day 
with the reference to primordium formation, normal fruiting bodies 
were developed in wild-type and Ste12-likeOE transformants 
(Figure 8). Although the weight of fruiting bodies was not significantly 
different, the overexpression mutants grew slower and had shorter 
stipes than the wild-type strain (Figure 9). In addition, more fruiting 
bodies were generated in transformants than in wild-type strains. The 

FIGURE 2

Phylogenetic tree analysis of Ste12-like from different fungi and protein structure alignment. GenBank accession numbers were indicated in front of 
species names. F. filiformis Ste12-like (GenBank accession No. UPT49966.1) was marked in red triangle. The p-value is defined as the probability that a 
random sequence (with the same length and conforming to the background) would have position p-value’s such that the product is smaller or equal 
to the value calculated for the sequence under test. Each block in the motif sites shows the position and strength of a motif site (blue and red block: 
Ste12-like; green block: zinc finger C2H2-type).

FIGURE 3

Hygromycin B sensitivity of F. filiformis strain FL19.
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A B

FIGURE 4

Identification of Ste12-likeOE transformants. (A) Amplified of the fragment from gene Hpt by PCR in putative transformants. M: Maker DL5000; 1–15: 
Putative Ste12-likeOE transformants; CK+: Positive control (ste12-like overexpression plasmid); CK-: negative control (wild-type: FL19). (B) The relative 
expression level of gene ste12-like in F. filiformis transformants. WT: Wild-type: FL19. Different letters indicate significant differences among strains at a 
p-value of  < 0.05 level.

A B

C D

FIGURE 5

Comparison of wild-type and Ste12-likeOE transformants in salt stress. (A) Colony morphology of wild-type and Ste12-likeOE transformants in NaCl 
stress on the eighth day. (B) The growth rate of wild-type and Ste12-likeOE transformants in NaCl stress. (C) Colony morphology of wild-type and 
Ste12-likeOE transformants in KCl stress on the eighth day. (D) The growth rate of wild-type and Ste12-likeOE transformants in KCl stress. WT: wild-type 
FL19. Different letters indicate significant differences among strains at a p-value of  < 0.05 level.
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results presented here suggested that ste12-like is a regulator for the 
fruiting body development of F. filiformis.

4. Discussion

Sensing and responding to stress are required for fungal survival. 
Mammals have two MAPK pathways—p38 and Jun N-terminal kinase 
(JNK)—to relay stress-related signals that control cellular survival, 
differentiation, and apoptosis. Similarly, fungi have sophisticated 
signaling cascades to sense and respond to different types of stress 
including osmotic shock, temperature, high salt, UV irradiation, 
oxidative or nitrosative damage, and exposure to antifungal drugs. In 

fungi, Hog1 is the most extensively studied stress-activated MAPK, 
homologous to mammalian p38 MAPK (Bahn et al., 2007). Hog1 is 
also the calcineurin signaling cascade (Feng et  al., 2021). The 
pheromone signaling pathway is a part of the MAPK signaling 
pathway (Tatjer et al., 2016; Li et al., 2017; Deng and Lin, 2018). Ste12 
is located downstream of the pheromone signaling pathway which can 
be activated by mating type B genes (Brown and Casselton, 2001).

In S. cerevisiae, Ste12 mediates the transcriptional induction of 
cell type-specific genes in response to pheromones (Errede and 
Ammerer, 1989). A. nidulans steA (sterile12-like) is required for 
sexual reproduction (Vallim et al., 2000). STE12 homolog (MST12) in 
M. oryzae (rice blast fungus) may regulate genes involved in infectious 
mycelium growth and in the expression of the cell surface sensor 

A B

FIGURE 6

Comparison of wild-type and Ste12-likeOE transformants in different temperatures. (A) Colony morphology of wild-type and Ste12-likeOE transformants 
in different temperatures on the eighth day. (B) The growth rate of wild-type and Ste12-likeOE transformants in different temperatures. WT: wild-type 
FL19. Different letters indicate significant differences among strains at a p-value of  < 0.05 level.

A B

FIGURE 7

Comparison of wild-type and Ste12-likeOE transformants in oxidative stress. (A) Colony morphology of wild-type and Ste12-likeOE transformants in 
oxidative stress on the eighth day. (B) The growth rate of wild-type and Ste12-likeOE transformants in oxidative stress. WT: wild-type FL19. Different 
letters indicate significant differences among strains at a p-value of  < 0.05 level.
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MSB2 (Park et al., 2002; Liu et al., 2011). Ste12 and Ste12-like proteins 
are significant fungal transcription factors in regulating development 
and pathogenicity (Hoi and Dumas, 2010). Znf domains are relatively 
small protein motifs that contain multiple finger-like protrusions that 
make tandem contacts with their target molecule (Klug, 1999). C2H2-
type (classical) Znfs are the first class to be characterized. C2H2 Znfs 
can be divided into three groups based on the number and pattern of 
fingers: triple-C2H2 (binds single ligand), multiple-adjacent-C2H2 
(binds multiple ligands), and separated paired-C2H2 (Iuchi, 2001). 
C2H2 Znfs are the most common DNA-binding motifs found in 
eukaryotic transcription factors and have also been identified in 
prokaryotes (Bouhouche et al., 2000). C2H2 Znf proteins are one of 
the largest and most conserved transcription factor families in the 
eukaryotic kingdom. It has been demonstrated that C2H2-ZFs 
participate in the fruiting body formation in A. nidulans (Kim et al., 
2009), the production of oospores and swimming zoospores in 
Phytophthora sojae (Wang et al., 2009), the primordia formation in 
S. commune (Ohm et  al., 2011), the yield of Agaricus bisporus 
(Pelkmans et al., 2016), hyphal growth and microsclerotia formation 

in Verticillium dahlia (Tian et  al., 2017), and so on in fungi. 
Phylogenetic trees were constructed by screening the homologous 
protein of Ste12-like in GenBank using NJ analyses (Figure 2). The 
Ste12-like of F. filiformis was highly similar to species belonging 
to Agaricales.

Agrobacterium-mediated transformation was successfully 
used to obtain F. filiformis transformants with T-DNA (T-strands), 
which were integrated into the host genome randomly. In other 
studies, transformants always showed expression level variability 
of the target gene (Tao et al., 2019; Wu et al., 2019; Lyu et al., 2021; 
Meng et al., 2021). The reason for this difference may be different 
insertion copy numbers and the following reasons. However, 
certain T-DNA integration characteristics often relate to the 
extent of transgene expression. Multiple T-DNA copies may link 
at each locus. RB-to-LB linkages (head-to-tail) indicate tandem 
integrated T-DNAs in a direct repeat orientation, but inverted 
repeat LB-to-LB (tail-to-tail) or RB-to-RB (head-to-head) 
integration events may also occur. Head-to-head inverted repeats 
are common and are often associated with transgene silencing 
(Gelvin, 2017). In our study, four Ste12-likeOE transformants were 
obtained by Agrobacterium-mediated transformation. The 
transcript levels of ste12-like in the Ste12-likeOE8, Ste12-likeOE10, 
Ste12-likeOE14, and Ste12-likeOE15 transformants were increased 
195-, 25-, 60-, and 120-fold, respectively, compared to the  
wild-type. Because the T-DNA was randomly integrated into the 
host genome, we conjecture that the expression levels might be 
dependent of the site (active region or inactive region) of 
the genome.

Transcription factor Ste12-like was a C2H2 Znf domain-
containing protein. In edible mushroom P. ostreatus, the 
expression levels of the members of C2H2 Znf transcription 
factors are changed suddenly under heat and cold stress, 
suggesting that these genes may participate in abiotic stress 
responses (Ding et al., 2022). The STE12α gene of Cryptococcus 
neoformans encodes a protein containing both homeodomain and 
zinc finger regions; mutations in the Znfs region resulted in 
decreased virulence (Chang et  al., 2004). In this study, the 
overexpression of ste12-like also enhanced the tolerance of salt 
stress, cold stress, and oxidative stress in edible mushroom 
F. filiformis. This suggested that gene ste12-like could play a 
variety of roles in response to various stresses.

The fruiting body formation in Agaricomycetes represents the 
most complex and unclear process in fungi. Several transcription 
factors (TFs) play a critical role in regulating the developmental 
processes of fungi (Ohm et  al., 2011). The Pcc1 protein is a key 
element in a pathway(s) leading to pseudoclamp development and 
fruiting (Murata and Kamada, 2009). TFs, Bri1 and Hom1, of the 
model fungus S. commune are involved in the late stages of mushroom 
development, while Wc-2, Hom2, and Fst4 function early in 
development (Pelkmans et al., 2017). However, studies on TFs in the 
fruiting body development of mushroom-forming species are still at 
the initial stage.

We have measured the expression of gene ste12-like in different 
tissues at different development stages of the fruiting body by both 
RNA-seq and quantitative real-time PCR in the previous study (Liu 
et al., 2022). The expression of gene ste12-like was down-regulated in 
elongating stipe. It suggested that the overexpression of ste12-like 
might inhibit the elongation of the stipe. The fruiting experiment of 

FIGURE 8

Fruiting bodies in the wild-type strain and Ste12-likeOE transformants.
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four transformants, which were obtained in this study, also confirmed 
this conclusion. The growth rate and length of a stipe in 
overexpression transformants were obviously lower than those of 
wild-type strains (Figures 8,9). It is reported that the pheromone 
signaling pathway downstream transcription factor Ste12 might play 
important roles in fruiting body formation and development (Hoi 
and Dumas, 2010; Chen et  al., 2020). However, the regulatory 
mechanism of Ste12-like involved in these processes is still unclear. 
Therefore, the downstream target genes of transcription factor Ste12-
like should be studied further in order to illustrate the regulation 
molecular mechanism in abiotic stress tolerance and fruiting 
body development.
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