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To date, COVID-19 remains a serious global public health problem. Vaccination 
against SARS-CoV-2 has been adopted by many countries as an effective coping 
strategy. The strength of the body’s immune response in the face of viral infection 
correlates with the number of vaccinations and the duration of vaccination. In 
this study, we aimed to identify specific genes that may trigger and control the 
immune response to COVID-19 under different vaccination scenarios. A machine 
learning-based approach was designed to analyze the blood transcriptomes of 
161 individuals who were classified into six groups according to the dose and 
timing of inoculations, including I-D0, I-D2-4, I-D7 (day 0, days 2–4, and day 7 
after the first dose of ChAdOx1, respectively) and II-D0, II-D1-4, II-D7-10 (day 
0, days 1–4, and days 7–10 after the second dose of BNT162b2, respectively). 
Each sample was represented by the expression levels of 26,364 genes. The 
first dose was ChAdOx1, whereas the second dose was mainly BNT162b2 (Only 
four individuals received a second dose of ChAdOx1). The groups were deemed 
as labels and genes were considered as features. Several machine learning 
algorithms were employed to analyze such classification problem. In detail, five 
feature ranking algorithms (Lasso, LightGBM, MCFS, mRMR, and PFI) were first 
applied to evaluate the importance of each gene feature, resulting in five feature 
lists. Then, the lists were put into incremental feature selection method with four 
classification algorithms to extract essential genes, classification rules and build 
optimal classifiers. The essential genes, namely, NRF2, RPRD1B, NEU3, SMC5, and 
TPX2, have been previously associated with immune response. This study also 
summarized expression rules that describe different vaccination scenarios to help 
determine the molecular mechanism of vaccine-induced antiviral immunity.
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1. Introduction

Coronavirus disease-19 (COVID-19) is a pandemic infectious 
disease that is currently affecting many people in approximately 200 
countries around the world. It is caused by acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2), a highly pathogenic coronavirus that 
belongs to the subfamily Coronaviridae. The SARS-CoV-2 genome 
contains a variety of structural and nonstructural proteins. The rapid 
rate at which the virus mutates and spreads has created enormous 
challenges for prevention and control efforts. Currently, vaccination 
against SARS-CoV-2 is accepted as an effective strategy against 
COVID-19 (Folegatti et al., 2020; Amano et al., 2022), with two or 
more doses giving better protection than one dose alone. The risk of 
death from COVID-19 varies widely in different countries and may 
be  related to factors such as vaccination rate and number of 
vaccinations (Masic et al., 2020).

When the body receives the first dose of the COVID-19 vaccine 
(basic immunization injection), it recognizes viral-specific antigens 
and produces antibodies and memory cells against SARS-CoV-2. 
However, the amount of antibodies produced by the primary immune 
response is much lower than the level required to resist viral invasion. 
Early clinical trials showed that with just one dose (initial exposure), 
the body’s resistance to SARS-CoV-2 is very low at about 50%. 
Therefore, a second vaccine dose and a booster shot have been 
recommended after a period of time (3–4 weeks). When exposed to 
the same antigen twice, the memory cells that have been generated in 
the human body respond rapidly, producing sufficient antibodies and 
a strong secondary immune response. Therefore, two doses of 
vaccination are more effective for protection. The ChAdOx1 nCoV-19 
(AZD1222) vaccine is constructed from a replication-defective simian 
adenovirus vector encoding the spike (S) protein of SARS-CoV-2. 
Clinical trials have shown that the ChAdOx1 vaccine is 74% protective 
against symptomatic COVID-19 (Cross et  al., 2003). Meanwhile, 
BNT162b2, also known as the Pfizer-BioNTech COVID-19 vaccine, 
is a messenger RNA (mRNA) vaccine that has been approved by the 
US FDA for the prevention of COVID-19 caused by the SARS-CoV-2 
Beta coronavirus. A heterologous ChAdOx1-S-nCoV-19 and 
BNT162b2 vaccination combination provides better protection 
against severe SARS-CoV-2 infection in a real-world observational 
study (n = 13,121). Studies have shown that T-cell responses following 
ChAdOx1 vaccination were higher than those elicited by BNT162b2. 
Meanwhile, T-cell responses elicited by BNT162b2 booster doses were 
enhanced in different vaccination strategies. Both homologous and 
heterologous vaccinations were able to induce progressively increased 
frequencies of CD4 and CD8 T cells. However, the heterologous 
combination elicited stronger CD4 T-cell responses; CD8 T-cell 
responses were also progressively stronger after the booster dose 
(Pozzetto et al., 2021). The tolerability and safety profile of BNT162b2 
at 30 μg administered as a 2-dose regimen are favorable. In participants 
who received only one ChAdOx1 dose, antibodies against the SARS-
CoV-2 spike protein peaked at day 28 (median 157 ELISA units [EU]); 
on day 56, the median was 119 EU. Among participants who received 
the booster dose, the median antibody at day 56 was 639 EU (Folegatti 
et al., 2020). Studies have demonstrated the efficacy of a two-dose 
regimen of the BNT162b2 vaccine (Mizrahi et al., 2021).

An increasing number of studies have confirmed that high-
throughput sequencing data information can provide important 
guidance for revealing the pathogenic mechanism of diseases and 

tackling various medical problems (Dai et al., 2018; Kong et al., 2020; 
Yang et al., 2020, 2022). Our team has long been working on using 
machine learning analysis methods to screen for disease-related 
signatures and explain their pathogenic mechanisms. We divided the 
data on 161 people vaccinated against COVID-19 into six groups 
according to the injection and vaccination time, aiming to further 
explore changes in blood gene expression after different doses, 
especially the molecular characteristics of antiviral immunity. A 
variety of algorithms were used to analyze gene expression information 
on vaccines from different vaccinations. The algorithms included 
feature ranking algorithms, such as least absolute shrinkage and 
selection operator (Lasso) (Tibshirani, 2011), light gradient-boosting 
machine (LightGBM) (Ke et al., 2017), Monte Carlo feature selection 
(MCFS) (Dramiński et al., 2007), max-relevance and min-redundancy 
(mRMR) (Peng et al., 2005), and permutation feature importance 
(PFI) (Fisher et al., 2019), as well as classification algorithms, such as 
decision tree (DT) (Safavian and Landgrebe, 1991), random forest 
(RF) (Breiman, 2001), K-nearest neighbor (KNN) (Cover and Hart, 
1967), and support vector machine (SVM) (Cortes and Vapnik, 1995). 
Based on feature ranking algorithms, gene feature lists were obtained, 
which were subjected to incremental feature selection (IFS) method 
(Liu and Setiono, 1998), incorporating four classification algorithms, 
for extracting essential genes, classification rules, and build optimal 
classifiers. This study revealed that blood gene expression changed 
after the initial immunization and booster vaccination. A number of 
important genes (e.g., NRF2, RPRD1B, NEU3, SMC5, and TPX2) may 
be closely related to the antiviral immunity induced by vaccines. These 
findings are helpful for understanding the importance of vaccination 
and boosting injections by revealing the effects of different injections 
on the expression of immune-related molecules in the host and by 
providing a reference for viral immune intervention strategies for 
COVID-19.

2. Materials and methods

The workflow of the machine learning framework is shown in 
Figure  1. The samples were grouped according to the number of 
inoculations and inoculation time. The genes were subsequently 
ranked using five methods and further processed by IFS method with 
four classification algorithms. By observing the performance of the 
classifiers, a number of key genes and summarized quantitative 
classification rules were identified. Last, the key genes were 
functionally enriched to determine the biological processes involved 
in their action. The methods used are described in detail in this section.

2.1. Data

Blood transcriptome data from 161 individuals were obtained from 
the GEO database under the registration number GSE201533 (Lee 
et al., 2022a). We divided the vaccinees into two groups: I for the first 
COVID-19 vaccination dose and II for the second dose. For the first 
group, three subsets were included: I-D0, I-D2-4, and I-D7, meaning 
day 0, days 2–4, and day 7 after the first dose of ChAdOx1, respectively. 
There were also three subsets in the second group, say II-D0, II-D1-4, 
II-D7-10, meaning the day 0, days 1–4, and days 7–10 after the second 
dose of BNT162b2, respectively. Four of the vaccinees received a second 
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dose of ChAdOx1. Table 1 shows the number of samples in each subset. 
Each sample was represented by 26,364 gene expression levels, which 
were deemed as features in this study. The six subsets (I-D0, I-D2-4, 
I-D7, II-D0, II-D1-4, and II-D7-10) were termed as labels. The current 
study was conducted by deeply investigating such classification problem.

2.2. Feature ranking algorithms

Lots of features were used to represent each sample. Evidently, 
some were important and others were useless. It was necessary to 

extract important features. To date, several feature analysis 
methods have been proposed, which can evaluate the importance 
of features. The selection of such method is a challenge problem 
as each method has its own merits and defects. Generally, one 
method can only output a part of essential features. Thus, it was 
beneficial to employ multiple methods, thereby providing a more 
complete picture on essential features. Here, five algorithms, 
namely, Lasso (Tibshirani, 2011), LightGBM (Ke et al., 2017), 
MCFS (Dramiński et al., 2007), mRMR (Peng et al., 2005), and 
PFI (Fisher et al., 2019), were employed to rank genes according 
to their importance. These algorithms have been frequently 
applied to solve many life science problems (Zhao et al., 2018; 
Ren et al., 2022; Li et al., 2022a,b,c; Huang et al., 2023a,b).

2.2.1. Least absolute shrinkage and selection 
operator

Based on the nonnegative garrote proposed by Breiman (1995), 
Robert Tibshirani first proposed the Lasso algorithm in 1996 
(Tibshirani, 2011). The algorithm proposes a first-order penalty 
function containing regularized formulas, where each feature is 
regarded as an independent variable in the function. The coefficients 
of the features are then obtained by solving the optimization function. 
The absolute value of a coefficient indicates the degree of correlation 
of each feature to the target dependent variable. To achieve data 
compression and reduce overfitting, the algorithm regularizes the 
coefficients of some variables while setting some to zero to eliminate 
the features that tend to contribute less to the follow-up prediction. 
Accordingly, the algorithm can rank features according to the absolute 
values of their coefficients. In present study, the Lasso program in 
Scikit-learn (Pedregosa et al., 2011) was adopted, which was executed 
using default parameters.

2.2.2. Light gradient-boosting machine
LightGBM (Ke et al., 2017) is based on the gradient-boosting 

decision tree framework and introduces gradient one-sided sampling, 
exclusive feature bundling, histogram algorithm, and leaf-wise growth 
strategy. It enables data slicing, bundling, and dimensionality 
reduction and ultimately reduces computational cost while improving 
prediction accuracy. The importance of each feature is determined by 
the number of trees that the feature participates in building: the higher 
the participation, the higher the importance. Thus, features can 
be ranked in a list with decreasing order of this number. The current 
study used the LightGBM program obtained from.1 For convenience, 
it was performed using default parameters.

2.2.3. Monte Carlo feature selection
Monte Carlo feature selection was originally developed by 

Dramiński et al. (2007). The algorithm selects some features randomly 
and repeatedly to obtain p feature subsets. Each feature subset is then 
divided into a training set and a test set t  times, and t  trees are 
constructed. Thus, p × t trees are obtained. The importance of features 
can be evaluated by their contributions to building these trees and is 
defined as the relative importance (RI) score, which is calculated 
as follows:

1 https://lightgbm.readthedocs.io/en/latest/

FIGURE 1

Flow chart of the entire analysis process. The blood transcriptome 
data of 161 vaccinees with different COVID-19 vaccination was 
investigated. Each vaccinee was represented by 26,364 gene 
expression levels. Five feature ranking algorithms (Lasso, LightGBM, 
MCFS, mRMR, and PFI) were used to rank gene features according to 
their importance. Subsequently, these lists were fed into incremental 
feature selection method, which contained four classification 
algorithms, to extract essential genes, classification rules, and build 
optimal classifiers.
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where CCAω  is the weighted precision of the tree τ  under 
consideration, ( )ng τ  is a node of the tree whose information gain is 
denoted as ( )( )IG ng τ , and ( ) ( ). .no in ng no inτ τ  denotes the 
sample size of ( ) ( )ng τ τ . u  and v  are two positive numbers 
weighting the CCAω  and the ratio ( ). / .no in ng no inτ τ , respectively. 
To execute MCFS, we  downloaded its program from.2 Default 
parameters were used.

2.2.4. Max-relevance and Min-redundancy
The mRMR method was proposed by Peng et al. (2005) in 

2005. It screens features based on their correlation with the target 
variable and the redundancy between features. The correlation 
and redundancy can be calculated from the mutual information 
between features or target variables. The tradeoff of correlation 
and redundancy is used to evaluate the importance of features. 
At each round, one feature with the maximum correlation to 
target variables and minimum redundancy to features in the 
current list is selected and appended to the current list. Here, 
we used the mRMR program sourced from.3 It was executed with 
default parameters.

2.2.5. Permutation feature importance
The PFI for RFs was first introduced in 2001 by Breiman (2001) 

and was later extended to any fitted estimator for features by Fisher 
et al. (2019). The idea is relatively simple. If a feature is important, the 
prediction error will further increase after the feature’s values are 
shuffled. If a feature is not important, shuffling its values does not 
increase the prediction error. The PFI program used in this study was 
retrieved from scikit-learn (Pedregosa et  al., 2011), which was 
executed with default parameters.

Above five algorithms were applied to the blood transcriptome 
data one by one. Each algorithm produced one feature list. For easy 
descriptions, the generated lists were called Lasso, LightGBM, MCFS, 
mRMR and PFI feature lists.

2 http://www.ipipan.eu/staff/m.draminski/mcfs.html

3 http://home.penglab.com/proj/mRMR/

2.3. Incremental feature selection

When the feature list contains an excessive number of features, it 
is not suitable for direct use in building prediction models. In this 
study, the IFS (Liu and Setiono, 1998) method was used to extract the 
best subset of features. From the feature list, a series of feature subsets 
can be constructed. Each subset includes 10 more features than the 
previous subset in the order of the list. These feature subsets were then 
fed to one classification algorithm to build the classifier. The 
performance of these classifiers was evaluated by 10-fold cross-
validation. Lastly, the best classifier can be  obtained, which was 
termed as the optimal classifier. The feature subset for constructing 
this classifier was called the optimal feature subset.

2.4. Synthetic minority oversampling 
technique

According to Table  1, some classes (e.g., I-D0) contained 
much more samples than other classes (e.g., II-D7-10). The 
dataset was imbalanced. The results of the classifier would have 
preferences for the majority class when the number of samples 
from different categories differs significantly. This study used 
synthetic minority oversampling technique (SMOTE) (Chawla 
et al., 2002) to balance the dataset. For each class with a small 
number of samples, a sample is random chosen. Then its k nearest 
neighbors in the same class are identified by Euclidean distance. 
A neighbor is randomly selected. A new sample is then randomly 
generated by linearly interpolating the randomly chosen sample 
and the selected nearest neighbor. New samples are continuously 
generated until such class contains samples as many as those in 
the largest class. The SMOTE package reported in4 was used in 
this study. Default settings were adopted.

2.5. Classification algorithms for building 
classifiers

Four classification algorithms were used in the IFS approach. Key 
genes were then screened based on the performance of the 
constructed classifiers.

4 https://github.com/scikit-learn-contrib/imbalanced-learn

TABLE 1 Sample sizes of six vaccination status.

Index Vaccination status Sample size

1 I-D0 (Day 0 after the first dose) 37

2 I-D2-4 (Day2 2–4 after the first dose) 36

3 I-D7 (Day 7 after the first dose) 37

4 II-D0 (Day 0 after the second dose) 17

5 II-D1-4 (Days 1–4 after the second dose) 18

6 II-D7-10 (Days 7–10 after the second dose) 16
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2.5.1. Decision tree
The DT algorithm (Safavian and Landgrebe, 1991) constructs a 

tree-like structure in which instances are judged in each internal node 
of the tree. Starting from the root node, all samples are assigned to 
different classes through continuous judgments. Each tree branch 
contains clues to the classification of instances and thus provides 
interpretable classification rules that underlie the understanding of 
biological mechanisms. In this study, we used the CART classification 
tree algorithm with node ranking using the Gini coefficient.

2.5.2. Random forest
In the RF algorithm for classification, a judgment is 

completed by constructing DTs based on different training sets 
and then combining their results to make predictions (Breiman, 
2001; Wang et al., 2021; Ran et al., 2022; Tang and Chen, 2022; 
Wu and Chen, 2023). The training set with the same number of 
samples in the input dataset is repeatedly sampled to generate 
numerous new training sets. Each new training set is then used 
to build a new DT, and an ensemble of DTs is constructed. Given 
a new instance, each DT makes a prediction. Predictions taken 
from all DTs are combined to reach a final decision.

2.5.3. K-nearest neighbor
In KNN (Cover and Hart, 1967), new samples are predicted by 

comparing each with samples with known labels (training samples) 
and determining the k-nearest neighbors. Subsequently, the class of a 
new sample is determined by voting according to the classes of the 
k-nearest neighbors. In this study, the distance was defined as the 
Minkowski distance.

2.5.4. Support vector machine
The SVM algorithm (Cortes and Vapnik, 1995; Wang and Chen, 

2022; Wang and Chen, 2023) utilizes a kernel function that maps the 
attributes of the instances, i.e., the feature vectors, into a higher-
dimensional space and attempts to find a separating hyperplane. This 
hyperplane partitions the instances by class and ensures that the 
margin between the two categories is maximum. This method is 
generally to have good generalization.

We adopted public packages in scikit-learn (Pedregosa et  al., 
2011) to implement above four classification algorithms. All packages 
were performed using default parameters.

2.6. Performance evaluation

In the multi-class classification problem, weighted F1 is an 
important measurement to evaluate the performance of the classifier. 
It is obtained by calculating and integrating the F1-measure values of 
different classes based on the proportion of the samples in each class. 
It is known that F1-measure is an integrated measurement combining 
precision and recall, which can be computed by
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+  
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where i represents the index of class, TP  represents true positive, 
FP  represents false positive, and FN  represents false negative. Then, 
weighted F1 can be calculated by

 
Weighted F w F measure

i

L

i i1 1
1

= × −
=
∑ ,

 
(5)

where L  represents the number of classes and wi  represents the 
proportion of samples in the i-th class to overall samples. Here, 
weighted F1 was selected as the major measurement.

In addition, overall accuracy (ACC) and Matthew correlation 
coefficient (MCC) (Matthews, 1975) are also widely used to assess 
the quality of classifiers. ACC is defined as the proportion of 
correctly predicted samples to all samples. MCC is a balanced 
measurement, which is more objective than ACC when the dataset 
is imbalanced. For the calculation of MCC, two matrices X and Y 
must be constructed first, which store the one-hot representation of 
true and predicted class of each sample. Then, MCC can 
be computed by

 

( )
( ) ( )
cov ,

cov , cov ,

X Y
MCC

X X Y Y
=

 

(6)

where ( )cov ,X Y  denotes the correlation coefficient 
of X and Y .

2.7. Functional enrichment analysis

Using the IFS method, we can obtain the best subset of features 
under different rankings. To clarify the biological processes behind 
genes in these subsets, thereby uncovering their relationship with 
antiviral immunity, this study used gene ontology (GO) enrichment 
analysis to discover the role of the genes and applied Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis to 
identify the underlying pathways. ClusterProfiler package (Wu et al., 
2021) in R was used to perform GO and KEGG enrichment analyses.

3. Results

3.1. Results of feature ranking

To evaluate the importance of features from multiple aspects. 
Five feature ranking algorithms were employed, which were applied 
to the blood transcriptome data one by one. As a result, five feature 
lists, named Lasso, LightGBM, MCFS, mRMR and PFI feature lists, 
were obtained, which are provided in Supplementary Table S1. 
Table 2 shows the top 10 genes in each list. It can be observed that 
top genes in different lists were very different, meaning that the 
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importance of one feature was quite different under the evaluation 
of different methods. Usage of different methods can provide more 
opportunities to discover more essential features.

3.2. Results of incremental feature 
selection

Five feature lists were subjected to the IFS method one by 
one. From each feature list, a series of feature subsets with step 
ten were constructed. On each subset, one classifier was built for 
each of four classification algorithms (DT, KNN, RF, and SVM). 

When constructing the classifiers, the dataset was processed by 
SMOTE to tackle the imbalanced problem. All classifiers were 
evaluated by 10-fold cross-validation. The evaluation results were 
counted as weighted F1, ACC, and MCC, which are provided in 
Supplementary Table S2. Weighted F1was selected as the major 
measurement. Thus, several IFS curves were plotted for different 
classification algorithms and feature lists, as shown in 
Figures 2–6, in which weighted F1 was set as Y-axis and number 
of features was defined as X-axis.

For the Lasso feature list, the IFS curves of four classification 
algorithms are illustrated in Figure  2. It can be  observed that 
when top 11,950, 12,740, 9,150 and 1,460 features were adopted, 

TABLE 2 The top 10 features in five feature lists.

Index Lasso feature list LightGBM feature list MCFS feature list mRMR feature list PFI feature list

1 CENPF RPRD1B NEU3 FAM98B SLC16A14

2 NDUFB9 ITM2C C2 TSSK4 THRAP3

3 BRCA2 HSP90B1 SMC5 CSF1R STAC3

4 LOC102031319 TK1 ZFC3H1 TOP1 ATF5

5 SSBP1 LPAR3 GLS2 NEU3 RAD51

6 PDP1 CENPF NFE2L2 UBE2H CDC45

7 LINC01089 TPX2 C1QC ATP6V1E1 GABPB1

8 C2orf16 ITGAE SDC1 SRPRB CTNNBL1

9 ID2 SPATA24 CAV1 ZNF672 ARHGAP42

10 LINC00630 GTSE1 SNORA2B CUL3 PSME2

FIGURE 2

IFS curves of four classification algorithms on Lasso feature list. DT, KNN, RF, and SVM yielded the highest weighted F1 values of 0.838, 0.765, 0.938, 
and 0.889 when top 11,950, 12,740, 9,150, and 1,460 features were adopted, respectively. RF can yield quite high performance (weighted F1 = 0.906) 
when top 290 features were used.
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four algorithms yielded the highest weighted F1 values of 0.838, 
0.765, 0.938, and 0.889, respectively. Thus, the optimal DT, KNN, 
RF, and SVM classifiers can be built using these features. The 

ACC and MCC values of these classifiers are listed in Table 3. 
Evidently, the optimal RF classifier was best among these 
optimal classifiers.

FIGURE 4

IFS curves of four classification algorithms on MCFS feature list. DT, KNN, RF and SVM yielded the highest weighted F1 values of 0.851, 0.895, 0.951, and 
0.914 when top 20,120, 60, 17,550, and 3,140 features were adopted, respectively. RF can yield quite high performance (weighted F1 = 0.932) when 
top 70 features were used.

FIGURE 3

IFS curves of four classification algorithms on LightGBM feature list. DT, KNN, RF, and SVM yielded the highest weighted F1 values of 0.857, 0.808, 
0.957, and 0.920 when top 15,650, 1,030, 2,730, and 2,750 features were adopted, respectively. RF can yield quite high performance (weighted 
F1 = 0.951) when top 60 features were used.
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For the LightGBM feature list, Figure 3 shows the IFS curves of 
four classification algorithms. The optimal DT/KNN/RF/SVM 
classifier can be built using top 15,650/1030/2730/2750 features in this 

list. Their ACC, MCC, and weighted F1 values are listed in Table 3. 
Clearly, RF still provided the best performance as the optimal RF 
classifier yielded the highest weighted F1 of 0.957.

FIGURE 6

IFS curves of four classification algorithms on PFI feature list. DT, KNN, RF, and SVM yielded the highest weighted F1 values of 0.849, 0.778, 0.944, and 
0.927 when top 5,440, 1,510, 3,630, and 1,530 features were adopted, respectively. RF can yield quite high performance (weighted F1 = 0.919) when 
top 60 features were used.

FIGURE 5

IFS curves of four classification algorithms on mRMR feature list. DT, KNN, RF, and SVM yielded the highest weighted F1 values of 0.845, 0.876, 0.957, 
and 0.926 when top 15,930, 870, 5,150, and 6,750 features were adopted, respectively. RF can yield quite high performance (weighted F1 = 0.931) when 
top 80 features were used.
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As for the rest three feature lists, the IFS curves are shown in 
Figures 4–6. The optimal DT/KNN/RF/SVM classifier can be set up 
on each feature list. The numbers of top features used in these 
classifiers are listed in Table  3, where the performance of these 
classifiers is also provided. Similar to the results on the Lasso and 
LightGBM feature lists, the optimal RF classifier was also better than 
other three optimal classifiers on each feature list.

To make full use of the utility of five algorithms, the best features 
should be extracted from each feature list, thereby obtaining the latent 
essential gene features. As mentioned above, the optimal RF classifier 
was best for each feature list. Thus, the features used in these classifiers 
can be  picked up as important candidates. However, such feature 
numbers (9,150 for Lasso feature list, 2,730 for LightGBM feature list, 
17,750 for MCFS feature list, 5,150 for mRMR feature list, 3,630 for PFI 
feature list) were too large to make detailed analyses. In view of this, 
we tried to find out another RF classifier, which adopted much less 
features and provided a little lower performance than the optimal RF 
classifier, on each feature list. By carefully checking the IFS results on 
RF on each feature list, such RF classifiers adopted the top 290 features 

in the Lasso feature list, top 60 features in the LightGBM feature list, 
top 70 features in the MCFS feature list, top 80 features in the mRMR 
feature list, and top 60 features in the PFI feature list. The corresponding 
points have been marked on the IFS curves of RF, as illustrated in 
Figures 2–6. The detailed performance of these RF classifiers is listed 
in Table 4. It can be observed that their performance was still quite 
high, the weighted F1 values were all higher than 0.900. Compared with 
the weighted F1 yielded by the optimal RF classifier on the same feature 
list, this RF classifier provided a little lower weighted F1. However, their 
efficiencies were sharply improved because much less features were 
involved. This indicated the extreme importance of features used in 
these RF classifiers. For easy descriptions, these RF classifiers were 
called feasible RF classifiers. Furthermore, the performance of the 
feasible RF classifier on one feature list was generally better than the 
optimal DT/KNN/SVM classifier on the same feature list, further 
confirming the importance of features in the feasible RF classifiers. To 
clear show the relationship between the feature sets used in five feasible 
RF classifiers, a Venn diagram was plotted, as shown in Figure 7. The 
detailed results of the intersection are shown in Supplementary Table S3. 

TABLE 3 Performance of the optimal classifiers based on different classification algorithms and feature lists.

Feature list Classification 
algorithm

Number of 
features

Weighted F1 MCC ACC

Lasso feature list

Decision tree 11,950 0.838 0.801 0.839

K-nearest neighbor 12,740 0.765 0.722 0.770

Random forest 9,150 0.938 0.924 0.938

Support vector machine 1,460 0.889 0.863 0.888

LightGBM feature list

Decision tree 15,650 0.857 0.825 0.857

K-nearest neighbor 1,030 0.808 0.764 0.807

Random forest 2,730 0.957 0.947 0.957

Support vector machine 2,750 0.920 0.901 0.919

MCFS feature list

Decision tree 20,120 0.851 0.817 0.851

K-nearest neighbor 60 0.895 0.870 0.894

Random forest 17,550 0.951 0.939 0.950

Support vector machine 3,140 0.914 0.894 0.913

mRMR feature list

Decision tree 15,930 0.845 0.809 0.845

K-nearest neighbor 870 0.876 0.847 0.876

Random forest 5,150 0.957 0.947 0.957

Support vector machine 6,750 0.926 0.908 0.925

PFI feature list

Decision tree 5,440 0.849 0.817 0.851

K-nearest neighbor 1,510 0.778 0.734 0.783

Random forest 3,630 0.944 0.932 0.944

Support vector machine 1,530 0.927 0.909 0.925

TABLE 4 Performance of feasible classifiers on different feature list.

Feature list Classification 
algorithm

Number of 
features

Weighted F1 MCC ACC

Lasso feature list Random forest 290 0.906 0.886 0.907

LightGBM feature list Random forest 60 0.951 0.939 0.950

MCFS feature list Random forest 70 0.932 0.916 0.932

mRMR feature list Random forest 80 0.931 0.916 0.932

PFI feature list Random forest 60 0.919 0.901 0.919
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Some gene features occurred in multiple subsets, meaning that they 
were deemed to be important by multiple feature ranking algorithms. 
They may have strong associations with antiviral immunity. Some of 
them would be discussed in detail in the subsequent sections.

3.3. Classification rules

Although the performance of DT was much lower than RF and 
SVM according to the IFS results on five feature lists, DT has an 
exclusive merit as it is a white-box algorithm. It can provide 
quantitative rules that can be interpreted to aid in the analysis. On the 
Lasso, LightGBM, MCFS, mRMR, and RF feature lists, the optimal DT 
classifier adopted the first 11,950, 15,650, 20,120, 15,930, and 5,440 
gene features. Based on the samples represented by these features, five 
trees were obtained, from which five groups of classification rules can 
be extracted. Supplementary Table S4 shows these classification rule 
groups. Some conditions in major rules would be  discussed in 
detail later.

3.4. Enrichment analysis

Five feature sets used to construct five feasible RF classifiers 
were combined into one set. To uncover the underlying biological 
meanings behind gene features in such set, the enrichment 
analysis was conducted on these genes. Figure 8 visualizes top five 
GO terms in three GO clusters and top five pathways. The GO 
terms, such as thioester and fatty acid metabolic processes, were 
enriched, along with peroxisomes and some terms related to 
metabolism and transport. KEGG enriched pathways included 
fatty acid biosynthesis, catabolism, and metabolism. Thioesters 
can be directly involved in the immune response as carriers of 
antigen presentation and thioesterified fatty acids or other lipid 
products can be  involved in the regulation of immune cells as 
signaling molecules. Their metabolism is inseparable from 
the peroxisome.

A B

FIGURE 8

Gene ontology (GO) and KEGG pathway enrichment analysis on the union of five feature sets used to construct feasible random forest classifiers. The 
FDR < 0.05 criterion was used to filter GO terms and KEGG pathways. The top five significant GO terms in three GO clusters (A) and top five KEGG 
pathways (B) were shown.

FIGURE 7

Venn diagram of the feature sets used to construct feasible random 
forest classifiers on five feature lists that were obtained by Lasso, 
LightGBM, MCFS, mRMR, and PFI, respectively. The overlapping 
circles indicated genes that occurred in multiple sets. These genes 
were deemed to be important by multiple feature ranking algorithms.
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4. Discussion

As listed in “Results”, some essential genes and classification rules 
were discovered. As they can be strongly related to the response to 
vaccination in antitumor viral immunity, they were discussed in this 
section. We collected the scientific findings of other researchers and 
initially summarized the experimental evidence of the aforementioned 
genes and rules, proving the accuracy of the findings.

4.1. Analysis of essential conditions in rules

Five rule groups were discovered as listed in 
Supplementary Table S4. As each rule contained multiple gene features 
and thresholds on expression levels, it was not easy to confirm the 
special pattern expressed by each rule through existing publications. 
Thus, we divided each rule into multiple conditions and analyzed the 
reasonability of some essential conditions. If the conditions used the 
same gene and same expression trend, they were deemed to 
be identical. The occurrence number of each condition in five rule 
groups was counted, which represented how many feature ranking 
methods identified the condition to be important. Some representative 
conditions with such numbers larger than two were discussed.

4.1.1. Analysis of conditions identified via four 
methods

IFI27 occurred in four rule groups, including rule groups on Lasso, 
LightGBM, mRMR, and MCFS feature lists. The study found that the 
expression levels of antiviral-related genes such as IFI27 decreased 
during the vaccinations. This result is consistent with the dynamically 
enhanced inflammatory response in vaccinated individuals. IFI27 is 
considered a biomarker with high sensitivity and specificity 
(AUC > 0.85) (Wang et al., 2022). Vaccination can improve the body’s 
ability to fight viruses. Our analysis results show that the expression 
level of IFI27 gradually increased within 2–4 days of the first injection 
and decreased 7 days after vaccination. However, after the second 
injection, the expression level of IFI27 gradually increased within 
1–4 days after the injection. Compared with the first injection, some 
patients had the fastest response times earlier than the first injection. 
The expression level of IFI27 decreased 7–10 days after vaccination. The 
peak duration of the second injection is speculated to be longer than 
that of the first injection. The antiviral immune-related molecular 
mechanism of IFI27 has been reported. As a common interferon 
(IFN)-stimulated gene, IFI27 encodes a mitochondrial protein that is 
normally induced by IFN to express and function in most responding 
cells. It may regulate apoptosis through the stability of mitochondrial 
membrane, thereby affecting immune response (Cheriyath et al., 2011). 
In addition, IFI27 can inhibit viral DNA replication and gene 
expression (Ullah et al., 2021). In vitro studies have shown that IFI27 is 
up-regulated in plasmacytoid dendritic cells, which are antigen-
presenting cells sensitive to viral infection (Tang et  al., 2017). 
Transcriptome results showed that vaccinated patients had significantly 
attenuated IFN responses compared to unvaccinated Omicron and 
Alpha-infected patients, represented by IFI27, which controls antiviral 
responses (Lee et  al., 2022b). The results of RNA sequencing data 
analysis showed that macrophages in the blood of SARS-CoV-2-
infected patients released a large number of IFNs, activated 
mitochondrial IFI27 expression, and disrupted energy metabolism in 

immune cells, ultimately aggravating viral immune evasion and 
replication (Duan et al., 2022). Based on existing research reports and 
our analysis, we speculate that after vaccination, the release of IFN 
increases, which promotes an increase in mitochondrial protein IFI27, 
inhibits SARS-CoV-2 replication and gene expression, and enhances 
antiviral immunity. In addition, after two vaccine doses, some people’s 
antiviral immunity takes effect earlier than after the first dose, and 
vaccine efficacy lasts longer. Therefore, IFI27 may be  used as a 
biomarker for antiviral immunity of vaccines.

4.1.2. Analysis of conditions identified via three 
methods

Syndecan-1 (SDC1) and small nuclear ribonucleoprotein polypeptide 
G (SNRPG) were found in rule groups on LightGBM, mRMR, and 
MCFS feature lists. SDC1 encodes a transmembrane (type I) heparan 
sulfate proteoglycan protein that belongs to the syndecan proteoglycan 
family. As a component of glycocalyx (GAC), SDC1 plays an important 
role in cell proliferation, cell migration, and other processes through 
extracellular matrix protein receptors (Reszegi et al., 2022). SDC1 was 
found to be elevated in COVID-19 patients (Goonewardena et al., 
2021). SDC1 may contribute to early risk stratification of staged 
diseases such as COVID-19 and provide a pathobiological reference 
(Goonewardena et al., 2021). Studies have confirmed that patients 
infected with COVID-19 can produce inflammation-induced 
degradation of the GAC layer of endothelial cells, and SDC1 can 
be used as an important parameter to assess GAC damage (Vollenberg 
et al., 2021). High levels of SDC1 may cause more severe endothelial 
damage and inflammation (Zhang et al., 2021). Molecular experiments 
demonstrate that SDC1 acts as a target gene of miR-10a-5p during 
porcine hemagglutinating encephalomyelitis virus (PHEV) infection 
and is involved in host defense mechanisms. Decreased expression 
levels of SDC1 lead to reduced viral replication, and downstream 
inhibition of SDC1 exerts an antiviral effect in PHEV-induced disease 
(Hu et al., 2020). Transcriptome analysis showed that the expression 
level of SDC1 increased only 7 days after the first dose of vaccination. 
After the second dose, the expression level remained low. On the one 
hand, this low level may help prevent endothelial damage and severe 
inflammatory response. On the other hand, it may inhibit viral 
replication and facilitate a more efficient antibody production.

SNRPG is a protein-coding gene involved in the formation of the 
U1, U2, U4, and U5 small nuclear ribonucleoprotein complexes. 
Related pathways include SARS-CoV-2 infection and gene expression.5 
Studies have shown that SNRPG-related risk models are associated 
with infiltration of immune cells such as T cells and M2 macrophages 
(Liu et al., 2022). The specific mechanism between SNRPG and SARS-
CoV-2 infection is limited. Transcriptome analysis showed that the 
SNRPG expression level was high on the day of the first vaccine 
injection, whereas the expression level was lower on the day of the 
second vaccine injection. The low SNRPG level continued until day 10 
after vaccination. The obvious differences in SNRPG levels after 
different injections suggest that the gene can be  regarded as an 
indicator of the effectiveness of vaccination. However, the molecular 
mechanism needs to be further explored.

5 https://pathcards.genecards.org/Card/

sars-cov-2_infection?queryString=SNRPG
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4.1.3. Analysis of conditions identified via two 
methods

Rules found in two methods included TPX2, CCDC28A, 
FAM227B, PKN2-AS1, NEK2, USP46, C22orf15, SLC20A1, TMSB15A, 
C2, and ZFC3H1. Some of these genes are associated with antiviral 
immunity. For example, TPX2 (microtubule nucleation factor) is a 
gene whose encoded product is involved in the activation of protein 
kinase activity, DNA damage, gene transcription, and other 
physiological processes. PPI network analysis from STRING revealed 
that as a hub gene, TPX2 may be a novel COVID-19 intervention target 
and biomarker (Hasan et al., 2022). As one of the antigen components 
of a multivalent recombinant fusion protein prophylactic vaccine 
(rBmHAXT), TPX2 can promote the production of high titers of 
antigen-specific antibodies and their isotypes. Animals vaccinated with 
the TPX2 antigen secreted higher levels of blood IFN-γ and showed 
better immune protection compared with unvaccinated animals 
(Khatri et al., 2018). Studies have shown that TPX2 can activate Aurora 
A kinase (AURKA), which is involved in cell cycle regulation. TPX2 
overexpression enhanced cell proliferation and migration (Zou et al., 
2018). The TPX2 gene may be a potential target for diagnosis and 
prognosis in patients already infected with hepatitis B virus (HVB) (Ji 
et al., 2020). Transcriptome data analysis showed that TPX2 expression 
levels increased within 7–10 days after the patients received the second 
vaccine dose. This is consistent with activation of IFN-induced 
responses, increased transcripts of specific IGHV clones, and a trend 
toward memory B cell enrichment (Lee et  al., 2022a). TPX2 may 
be related to antiviral immunity caused by different doses. However, 
the correlation and mechanism of action need to be further verified.

4.2. Top features identified via multiple 
methods

On the basis of the features identified by the five feature ranking 
algorithms (Figure 7), an intersection of results obtained by multiple 
methods (≥3) was selected as important candidates. We summarized 
the evidence for some vital gene features, listed in Table 5, based on 
the broad studies shown below.

NFE2-like bZip transcription factor 2 (NRF2), also called NFE2L2, 
encodes a cap‘n’collar (CNC) transcription factor and belongs to the 
small family of basic leucine zipper (bZIP) proteins (Khan et al., 2021). 
NRF2 can bind to antioxidant response elements and participate in the 
transcription of downstream target genes. Thus, it plays an important 
role in physiological processes such as cellular redox, tissue damage, and 
metabolic homeostasis. The encoded protein of NRF2 is involved in 
various injury and inflammatory responses involving class 
I MHC-mediated antigen presentation and KEAP1-NFE2L2 pathway, 

among others. NRF2 contributes to GSH metabolism and stress response 
and is associated with the pro-inflammatory effects of SARS-CoV-2 in 
host cells (Galli et al., 2022). The protein synthesis of SARS-CoV-2 may 
increase Cys and activate endoplasmic reticulum stress of transcription 
factors, which ultimately promotes changes in cellular oxidation, cellular 
metabolism, and GSH transmembrane flux (Galli et  al., 2022). 
Importantly, NRF2 activation has been shown to benefit respiratory 
infections in various animal models (Muchtaridi et al., 2022). NRF2 
exerts anti-inflammatory effects by inhibiting pro-inflammatory genes 
such as IL6 and IL1B (Huang et al., 2022). NRF2 induces the expression 
of genes that promote specificity of macrophages such as the macrophage 
receptor, which is responsible for bacterial phagocytosis (Schaefer et al., 
2022), and the cluster of differentiation gene 36 (CD36), which resists 
viral infection (Hillier et  al., 2022). NRF2 Activation is involved in 
inflammatory cascade (Jayakumar et al., 2022), regulation of innate 
immune responses, and antiviral cytosolic DNA sensing. NRF2 inhibits 
pro-inflammatory signaling pathways such as TNF-α signaling and is 
involved in regulating the innate immune response during sepsis. NRF2 
increases susceptibility to DNA virus infection by inhibiting the 
expression of the adaptor protein STING1, thereby inhibiting antiviral 
cytosolic DNA sensing (Olagnier et  al., 2018). After SARS-CoV-2 
infection, NRF2 is activated and restricts the release of pro-inflammatory 
cytokines by inhibiting IRF3 dimerization. In addition, NRF2 inhibits 
the replication of SARS-CoV-2 and other viruses through a type 
I IFN-independent pathway (Olagnier et al., 2020).

Regulation of nuclear pre-mRNA domain containing 1B (RPRD1B), 
also named cell-cycle-related and expression-elevated protein in 
tumor (CREPT) or C20ORF77, is located on chromosome 20q11 and 
can bind to RNA polymerase on the cyclin D1 gene, resulting in the 
formation of a cyclin D1 ring structure, which can promote 
transcription (Lu et al., 2012; Wang et al., 2014). RPRD1B can also 
participate in the transcription of genes related to the Wnt/β-catenin 
signaling pathway (Wu et al., 2010). GO annotation results showed 
that RPRD1B can bind to the RNA polymerase II complex and play a 
role in pathways such as TCR signaling and T-cell activation. The 
mRNA and protein expression of RPRD1B in patients under 50 years 
old were significantly different from those in patients over 50 years of 
age. RPRD1B expression levels correlate with human papillomavirus 
infection and may be affected by age (Wen et al., 2021). The expression 
level of RPRD1B in peripheral blood T cells of psoriasis, lichen planus 
(LP), and atopic dermatitis (AD) was found higher than that of healthy 
subjects. RPRD1B is involved in the pathogenesis of inflammatory 
diseases by regulating the transcription of genes such as IL-4, RGS16, 
and CD30 (Li et al., 2013). Our analysis showed that the RPRD1B 
expression level changed in patients who received different 
vaccinations. Combined with existing evidence, we  speculate that 
RPRD1B uses T cells as a carrier to play a role in antiviral immunity.

Neuraminidase 3 (NEU3) is a protein-encoding gene whose product 
is located in the plasma membrane and belongs to the glycohydrolase 
family. Its activity is specific to gangliosides and may be involved in 
gangliosides in lipid bilayer adjustment. Pathways associated with NEU3 
include protein metabolism and glycosphingolipid metabolism. It can 
directly interact with signaling receptors such as EGFR to regulate 
transmembrane signaling (Wada et  al., 2007; Mozzi et  al., 2015). 
Sialidase activity in human polymorphonuclear leukocytes plays a key 
role in infection and inflammatory responses (Cross et al., 2003; Sakarya 
et al., 2004). Sialidase activity is determined by membrane-associated 
sialidase (NEU3), which promotes cell adhesion and cell proliferation. 

TABLE 5 Essential genes identified by three feature ranking algorithms.

Index Gene symbol Description

1 RPRD1B
Regulation of nuclear pre-mRNA 

domain containing 1B

2 NFE2L2 NFE2-like bZip transcription factor 2

3 SMC5
Structural maintenance of 

chromosome 5

4 NEU3 Neuraminidase 3
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Combined with existing evidence, our results indicate that after 
vaccination, the body produces antibodies against SARS-CoV-2 that 
regulate the host immune response by affecting the activity of NEU3.

The encoded product of structural maintenance of chromosome 5 
(SMC5) has ATP-binding activity and is involved in physiological 
processes such as DNA recombination, cellular senescence, protein 
metabolism, and transport of mature mRNAs. In addition, SMC5 can 
bind to SMC6, participate in the repair of DNA double-strand breaks 
through homologous recombination, and prevent the transcription of 
free DNA such as circular virus DNA genomes (Decorsière et  al., 
2016). Proteomic analysis revealed that Epstein–Barr virus infection 
disrupts the adhesion proteins SMC5/6, thereby affecting DNA damage 
repair. In the absence of the involucrin protein BNRF1, SMC5/6 
interferes with the formation and encapsidation of viral replication 
compartments (RCs), ultimately affecting viral lytic replication. 
SMC5/6 may act as intrinsic immunosensors and restriction factors of 
human herpes virus RC in viral infectious diseases (Yiu et al., 2022). 
The SMC5/6 complex compresses viral chromatin to silence gene 
expression; thus, its depletion enhances viral expression. The SMC5/6 
complex also functions in immunosurveillance of extrachromosomal 
DNA (Dupont et al., 2021). As an intrinsic antiviral restriction factor, 
Smc5/6, when localized to nuclear domain 10 (ND10) in primary 
human hepatocytes, inhibits HBV transcription without inducing an 
innate immune response (Niu et  al., 2017). We  screened SMC5 
signatures in populations vaccinated with different doses. The results 
suggest that SMC5 may serve as an indicator of vaccine effectiveness.

5. Conclusion

The purpose of this study was to analyze the blood transcriptome 
in response to different numbers and timing of vaccinations through 
a variety of machine learning algorithms. It also aimed to identify 
antiviral immunity-related molecules in different vaccinated 
populations. The feature intersection of multiple analysis methods 
reflects the effects of different vaccinations on host gene expression. 
The analysis results showed that the key gene features were highly 
consistent with existing research conclusions, which helped us to 
further clarify the possible mechanisms of these genes. The important 
antiviral immune characteristics obtained in this study will help in 
understanding the differences in mechanisms of action of different 
vaccinations and provide a reference for targeted COVID-19 
intervention and for optimization of vaccine strategies.
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